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Abstract

It is now common to record dozens to hundreds or more neurons simultaneously, and to ask how 

the network activity changes across experimental conditions. A natural framework for addressing 

questions of functional connectivity is to apply Gaussian graphical modeling to neural data, where 

each edge in the graph corresponds to a non-zero partial correlation between neurons. Because the 

number of possible edges is large, one strategy for estimating the graph has been to apply methods 

that aim to identify large sparse effects using an L1 penalty. However, the partial correlations 

found in neural spike count data are neither large nor sparse, so techniques that perform well in 

sparse settings will typically perform poorly in the context of neural spike count data. Fortunately, 

the correlated firing for any pair of cortical neurons depends strongly on both their distance apart 

and the features for which they are tuned. We introduce a method that takes advantage of these 

known, strong effects by allowing the penalty to depend on them: thus, for example, the 

connection between pairs of neurons that are close together will be penalized less than pairs that 

are far apart. We show through simulations that this physiologically-motivated procedure performs 

substantially better than off-the-shelf generic tools, and we illustrate by applying the methodology 

to populations of neurons recorded with multielectrode arrays implanted in macaque visual cortex 

areas V1 and V4.
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1 Introduction

The rapid growth in the number of neurons being recorded simultaneously (Ahrens et al., 

2015; Alivisatos et al., 2013; Kerr and Denk, 2008; Kipke et al., 2008) creates an urgent 

need for statistical procedures that can identify the structure of covariation in neural network 

activity (Shadlen and Newsome, 1998; Brown et al., 2004; Cunningham and Yu, 2014; 

Stevenson and Kording, 2011; Song et al., 2013; Yatsenko et al., 2015; Cohen and Maunsell, 

2009; Cohen and Kohn, 2011; Efron et al., 2001; Kelly and Kass, 2012; Mitchell et al., 

2009; Vinci et al., 2016). An appealing approach to network analysis begins by representing 

multivariate activity as a graph, that is, a set of nodes together with a specification of which 

nodes are connected by edges (Bassett and Sporns, 2017). In the case of multi-neuron 

recordings, each node would correspond to a neuron. Because these recordings are typically 

noisy, capturing in full detail the interactions among neurons, which can occur at multiple 

timescales, is very difficult. An initial simplification is to consider the vector of spike counts, 

within a time interval of several hundred milliseconds, to be a Gaussian random vector X 

whose covariance matrix Σ defines a graph based on the inverse matrix Ω = Σ−1 (assuming Σ 
is invertible). Specifically, the edges in the graph correspond to the non-zero off-diagonal 

elements of Ω = [ωij], that is, an edge between nodes i and j is absent if and only if ωij·= 0. 

Furthermore, ωij= 0 if and only if the corresponding partial correlation satisfies ρij = 0, and 

ρij = 0 if and only if the i and j nodes are independent conditionally on all the other nodes, 

that is in our case, an edge exists between pairs of neurons that have a unique component of 

covariation that is not associated with all the other neurons. The time-scale, imposed by the 

scientific questions of interest or by objective choice of bin size, such as experimental task 

durations, affects the elements of Σ and hence the conclusions one might draw from the 

graph.

Such Gaussian graphical models are widely applied and studied (Murphy, 2012). However, 

even this simple case becomes challenging as the number of neurons grows: although, for 

typical spike count data, estimation of any single correlation coefficient may incur a 

relatively small error, compounding thousands of such small errors produces an unstable 

estimate of the matrix Σ. Thus, some form of regularization in the estimation of Σ is usually 

applied. In recent years, the most commonly-applied form of covariance regularization has 

been the Graphical lasso (Glasso) (Yuan and Lin, 2007; Friedman et al., 2008; Banerjee et 

al., 2008; Rothman et al., 2008; Mazumder and Hastie, 2012). To define it, we write the 

Gaussian likelihood function asL Ω; 𝕏n , where 𝕏n = X(1), …, X(n)  with X(r) representing 

the Gaussian random vector of spike counts of d neurons on trial r, for r = 1,... ,n, we assume 

the number of non-zero elements of Ω is comparatively small (so the matrix is sparse), and 

we maximize the penalized log likelihood function

Ω(λ) = arg max
Ω ≻ 0

logL Ω; 𝕏n − λ‖Ω‖1, (1)

where ‖Ω‖1 = ∑i, j = 1
d |ωi j| is the L1 matrix norm of Ω (with or without the diagonal entries) 

(Yuan and Lin, 2007; Friedman et al., 2008; D’Aspremont et al., 2008; Rothman et al., 2008; 
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Mazumder and Hastie, 2012) and Ω is assumed to be positive definite. The magnitude of the 

regularization parameter λ > 0 controls the degree of sparsity.

Glasso performs well in the presence of a small number of large effects, i.e., a small number 

of large non-zero offdiagonal elements of Ω, which corresponds to large signals relative to 

noise. In microelectrode array recordings, however, we expect instead to find a large number 

of small and noisy effects. Indeed, using realistic settings for a numerical simulation (spike 

counts on coarse time scales 300 ~ 1000ms) we found that Glasso and existing variants 

perform poorly (see Fig. 1 and the simulation section). We therefore sought to enhance off-

the-shelf regularization by including information that is specific to the neural setting. In this 

paper we introduce a variant of Glasso that takes advantage of known neurophysiology: the 

covariation of pairs of neurons’ spike counts depends on their distance apart and their tuning 

curve correlation (Smith and Kohn, 2008; Smith and Sommer, 2013; Goris et al., 2014; 

Vinci et al., 2016). We use a Bayesian formulation of the problem to allow the penalty to 

vary with each neuron pair, separately, so that edges can become less likely to be placed 

between neurons as their distance apart increases or their tuning curve correlation decreases 

- the relationship of the penalty to these two covariates is learned from the data. We call the 

method Graphical lasso with Adjusted Regularization (GAR). Fig. 1 illustrates the typical 

benefit of applying GAR in comparison with Glasso. We provide an extensive simulation 

study to compare GAR with several variants of Glasso that have appeared in the literature. 

We also show how the Bayesian approach provides an elegant framework to construct the 

graph, in a manner similar to false discovery rate regression (Scott et al., 2015). Finally, we 

apply the method to populations of neurons recorded with multielectrode arrays implanted in 

macaque visual cortex areas V1 and V4 to illustrate aspects of network behavior that can be 

discovered with this approach.

2 Results

We first describe several penalized likelihood methods for estimating Ω, including GAR 

(Sections 2.1 and 2.2). We then explain how to infer a neuronal network connectivity graph 

from the estimate of Ω (Section 2.3). Finally, we illustrate the properties of these methods in 

an extensive simulation study (Section 2.4), and we estimate the connectivity graphs of 

populations of neurons recorded with multielectrode arrays implanted in macaque visual 

cortex areas V1 and V4 (Section 2.5).

2.1 Estimating the precision matrix Ω

The Glasso estimate of Ω is obtained in Eq. (1) where

logL Ω; 𝕏n = n
2 log det(Ω) − trace(ΣΩ) − dlog(2π) , (2)

Σis the sample covariance matrix of𝕏n, and λ > 0 is chosen according to one of several 

possible criteria (Yuan and Lin, 2007; Liu et al., 2010; Foygel and Drton, 2010). Here we 

use the criterion of Fan et al. (2009), taking λ to minimize the cross-validated risk of 
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estimating Ω withΩ(λ), calculated as the average loss, −logL(Ωtrain(λ); 𝕏test), across 500 

random (90%, 10%) splits of the data 𝕏n = 𝕏train, 𝕏test  where Ωtrain(λ) is the estimate in Eq. 

(1) based on𝕏train.

A variant is the adaptive Glasso (AGlasso) (Fan et al., 2009) given by

Ω(λ) = arg max
Ω ≻ 0

logL Ω; 𝕏n − λ‖Q ⊙ Ω‖1, (3)

that is Eq. (1) but with the penalty ‖Ω‖1 replaced by ‖Q⊙Ω‖1, where ⊙ denotes the entry-

wise matrix multiplication and Q is a matrix containing values inversely related to the 

absolute values of an initial estimate Ω, for example Q = [|ωi j|
−1/2] with Ω = ωi j  the inverse 

of the sample covariance matrix Σ (Fan et al., 2009). Hence, the AGlasso aims to penalize 

less/more the large/small entries of Ω. However, a reliable initial estimate of Ω is not always 

available; for instance, when the number of neurons d is greater than the number of trials n, 

Σ requires modifications to be inverted, such as adding a small constant to its diagonal to 

make it positive definite. Because the AGlasso estimate depends on the quality of the initial 

estimate of Ω, it does not necessarily outperform the Glasso estimate.

The Bayesian Adaptive Glasso (BAGlasso; Wang (2012)) supplements the Gaussian 

likelihood with a prior distribution for Ω

π(Ω | Λ) ∝ ∏
i, j = 1

d
e

−λi j|ωi j| × I(Ω ≻ 0) (4)

where Λ = [λij] is a symmetric matrix that contains a different penalty for each wij, to make 

it possible to penalize less/more the large/small wij. The data automatically tunes the 

penalties if we assume a sufficiently flexible hyperprior for Λ, for example independent 

Gamma distributions for each λij (Wang, 2012). The BAGlasso estimate of Ω is taken to be 

the mean (posterior expectation) or the mode (maximum a posteriori, a.k.a. MAP) of 

π(Ω | 𝕏n), the posterior distribution of Ω. The BAGlasso estimator is not necessarily better 

than the Glasso or the AGlasso estimator because the added model flexibility also induces 

more variability. Note that the simple case where λij· = λ for all (i, j) is known as the 

Bayesian Glasso (BGlasso; Wang (2012)); furthermore the BGlasso MAP estimate of Ω for 

a fixed λ is the Glasso estimate in Eq. (1).

The Glasso framework in Eq. (1) can also be extended into the Sparse-Low rank model 

(SPL)

(S , L) = arg max
S − L ≻ 0,

rank(L) ≤ q

logL S − L; 𝕏n − λ‖S‖1 . (5)
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where Ω = S — L ≻ 0 is assumed to be the combination of a sparse component S 

representing the dependence structure of the recorded neurons conditionally on all other 

recorded and latent neurons in the network, and a low-rank component L ≻ 0 aimed at 

capturing the network effect of latent neurons on the recorded ones (Chandrasekaran et al., 

2012; Giraud and Tsybakov, 2012; Yuan, 2012; Yatsenko et al., 2015). The parameters λ 
and q in Eq. (5) may be selected via cross-validation, analogously to Glasso. If L is set to 

zero, then Eq. (5) is equivalent to Glasso in Eq. (1). Partial correlations based on the 

component S alone would represent the conditional dependence structure of the observed 

neurons in an unknown larger network containing a set of unobserved units of intrisic 

dimensionality assumed to be smaller than q. However, for small sample sizes n and large 

numbers of neurons d, the sparse and low-rank components may become too expensive to 

estimate accurately so that SPL might perform no better than other methods (Giraud and 

Tsybakov, 2012; Yatsenko et al., 2015).

Proposed methods—The AGlasso and BAGlasso penalize less the Ω matrix entries that 

are anticipated to be larger, where the “anticipation” is explicitly garnered from an initial 

estimate of Ω for AGlasso, or implicitly data driven in the BAGlasso. Sometimes we have 

available additional variables that carry information about the strength of the dependence 

between neurons, for example inter-neuron distance and tuning curve correlation, which 

have been observed to regulate the shared activity of neuron pairs (Smith and Kohn, 2008; 

Smith and Sommer, 2013; Goris et al., 2014; Yatsenko et al., 2015; Vinci et al., 2016). Our 

proposed methods take advantage of these known, strong effects by allowing the penalties to 

depend on them: for example, pairs of neurons that are close together will be penalized less 

than pairs that are far apart (see data analysis, Section 2.5).

Let W i j ∈ ℝm be a vector of m auxiliary quantities that carry information about the strength 

of the dependence between neurons i and j. The Smooth Adaptive Glasso (SAGlasso) is a 

“smooth” variant of the AGlasso, where the entries qij of the weight matrix Q in Eq. (3) are 

taken to be smooth functions of Wij. This smoothing will both reduce the noise in Q and 

introduce the information carried by Wij.into the regularized estimation of Ω. To proceed, we 

regress qi j/ qiiq j j on Wij using a local smoother such as smoothing splines or local 

polynomials, where we divide the qij by qiiq j j so that they are on the scale of the partial 

correlations

ρi j = −
ωi j

ωiiω j j
. (6)

To ensure that the resulting weights qij are positive, we either perform a Gamma regression 

(Algorithm 1, Appendix), or log transform qi j/ qiiq j j first if a Gaussian regression is used.

The Graphical lasso with Adjusted Regularization (GAR) is a variant of the BAGlasso, 

where we impose additional structure on λij in Eq. (4). Specifically, we assume that the 

penalties are functions of the auxiliary variables Wij according to:
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λi j = αiα jg W i j , i < j, (7)

where the function g(Wij) is fitted to the data rather than pre-specified, and the ai ‘s are 

positive parameters that mimic the scaling components ωii
−1/2 in Eq. (6), so that g(Wij) is on 

the scale of the partial correlation 𝜌ij. We render g identifiable by setting λii = αi
2, which is 

reasonable since αi mimics ωii
−1/2, and the mean parameter of in Eq. (4) is λii

−1. Then, while 

the BAGlasso postulates a hyperprior for Λ in Eq. (4), here we assume a hyperprior on the 

parameters of Λ in Eq. (7), that is on Θ = {α, g}, where α = (α1,…,αd), and g is the m-

variate function of the auxiliary variables W. The GAR full Bayes estimate of Ω is taken to 

be the mean or the mode ofπ(Ω | 𝕏n, W), the posterior distribution of Ω given the data 𝕏n and 

auxiliary covariates W = {Wij}. Ideally, g should be as general a function as possible. 

However, the model is complex enough to make the posterior difficult to calculate or 

simulate from so we opted to use the simplest of non-parametric functions: a step function. 

In Section 2.2.2 we describe a Gibbs sampler to simulate fromπ(Ω, Θ | 𝕏n, W), and thus 

obtain sample mean or mode estimates of Ω. An alternative that allows a general form of g is 

to take an empirical Bayes approach to obtain a point estimate of Θ as the maximizer of the 

likelihood of Θ given 𝕏n and W, and calculate the posterior distribution of Ω conditional on 

that estimate, that isπ(Ω | 𝕏n, W , Θ), instead of calculating the full Bayes posterior. We 

implement this approach in Section 2.2.3 and apply it to our data in Section 2.5, taking 9 to 

be a regression spline with knots at the quartiles of the auxiliary variables. In the end, we 

have the full Bayes and the empirical Bayes GAR variants, and we can take the estimate of 

Ω to be either the mean or the mode of the corresponding posterior distribution. In our 

simulations (Section 2.4) we show that the improvement provided by GAR can be 

substantial compared to the competing methods, especially for values of d and n typically 

found in experimental neural data.

The proposed and existing methods considered here are similarly scalable. All methods aim 

to estimate the d(d + 1)/2 parameters of the precision matrix Ω, but their regularizations have 

different complexities: Glasso uses a single regularization parameter, λ in Eq. 1, and SPL 

uses two, λ and q in Eq. 5, while AGlasso and BAGlasso allow d(d + 1)/2 different penalties 

across the entries of Ω. SAGlasso and GAR also allow a different penalty for each entry of 

Ω, but their effective number is smaller than d(d + 1)/2. Indeed, the SAGlasso penalties all 

depend on W through a regression function that depends only on a limited number of 

regression coefficients. For GAR, all penalties are functions only of g and the d parameters 

αi (Eq. 7), where g is a regression function with a few degrees of freedom, e.g. splines with 

3 or 4 knots. Morever, SAGlasso and GAR gain statistical efficiency when the auxiliary 

variables W are informative.

Finally, we note that a simple way to combine GAR with SPL (GAR-SPL) consists of 

replacing the penalty λ‖S‖1 in Eq. (5) byξ‖Λ ⊙ S‖1,, where Λ is a GAR estimate of
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Λ | 𝕏n, W , and ξ and q are selected via cross-validation. In our simulations, GAR-SPL 

outperformed SPL but not GAR. A full Bayesian treatment of GAR-SPL, where the penalty 

matrix is estimated in direct combination with S rather than Ω, might provide a better 

performance; this is a topic of future research.

2.2 GAR estimation

In Sections 2.2.2 and 2.2.3 we describe Full and Empirical Bayes implementations of GAR, 

which both involve a data augmentation sampler that we present in Section 2.2.1. 

Algorithms and details are in Appendix.

2.2.1 Data augmentation—Both Full and Empirical Bayes implementations of GAR 

involve drawing samples from the posterior distribution

π(Ω | 𝕏n, Λ) ∝ π(Ω | Λ) × L Ω; 𝕏n , (8)

where the likelihood L Ω; 𝕏n  and the prior π(Ω | Λ) are defined in Eqs. (2) and (4). We 

proceed using a data augmentation strategy (Wang, 2012) where we introduce the nuisance 

random quantity𝒯 = τi j i < j
, and jointly sample (Ω, 𝒯) from

π(Ω, 𝒯 | 𝕏n, Λ) ∝ π(Ω, 𝒯 | Λ) × L Ω; 𝕏n (9)

using the block Gibbs Sampler in Appendix, Algorithm 2, where

π(Ω, 𝒯 | Λ) ∝ π(Ω | 𝒯, Λ) × π(𝒯 | Λ), (10)

π(Ω | 𝒯, Λ) = ∏
i < j

φ ωi j | 0, τi jλi j
−2/2 × ∏

i = 1

d
γ ωii | 1, λii × I(Ω ≻0) × C(𝒯, Λ), (11)

π(𝒯 | Λ) ∝ C(𝒯, Λ)−1∏
i < j

γ τi j | 1, 1 , (12)

φ(u | μ,σ2) is the Gaussian p.d.f. with mean μ and variance σ2, γ(z|a,b) is the Gamma p.d.f. 

with shape and rate parameters a and b, and C(𝒯, Λ) is the finite normalizing constant of Eq. 

(11). Then, because the Laplace distribution is a Gaussian scale mixture (Andrews and 

Mallows, 1974; West, 1987), we can write Eq. 8 as the integral of Eq. 9:

π(Ω | 𝕏n, Λ) = ∫ π(Ω, 𝒯 | 𝕏n, Λ) d𝒯,
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so that the matrix Ω in a samp le (Ω, 𝒯) drawn from Eq. (9) is a sample from the posterior 

distribution in Eq. 8.

2.2.2 Full Bayes estimation—Let g in Eq. (7) be a step function with K steps and 

value βk > 0 in step k, that is:

g W i j = ∑
k = 1

K
βkIAk

W i j , (13)

where I is the indicator function, ∀h ≠ l, Ah ⋂ Al = ∅, and ∪k = 1
K Ak = ℝm. Let α = (α1,

…,αd), β = (β1,…,βK) and Θ = {α,β}, whereλii = αii
2. Following the augmentation strategy 

in Section 2.2.1, Eq. (10) reduces to

π(Ω, 𝒯 | Θ, W)

= ∏
i < j

φ ωi j | 0,
τi j

2αi
2α j

2∑k = 1
K

βk
2IAk

W i j

γ τi j | 1, 1

× ∏
i = 1

d
γ ωii | 1, αi

2 × I(Ω ≻ 0) × G(Θ)

(14)

where G(Θ) is the finite normalizing constant. We further assume the hyperprior density on 

Θ

π(Θ) ∝ ∏
i = 1

d
αi

r − 1e
−sαi

2
× ∏

k = 1

K
βk

r′ − 1e
−s′βk

2
× G(Θ)−1 (15)

with r = s = 1, r′ = 0.01, and s′ = 0.00001; results were not sensitive to the choice of these 

parameters. We use the Gibbs sampler in Appendix, Algorithm 3, to sample from the full 

joint posterior distribution

π(Ω, Θ, 𝒯 | 𝕏n, W) ∝ π(Ω, Θ, 𝒯 | W) × L Ω; 𝕏n , (16)

where the likelihood L Ω; 𝕏n  is defined in Eq. (2), and the prior joint distribution 

π(Ω, Θ, 𝒯 | W) is the product of Eqs. (14) and (15).

In practice, we take the number of steps K in Eq. (13) to be relatively small, e.g. 4 or 5, if we 

expect the penalties to change relatively slowly with W. Otherwise, to increase the flexibility 
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of g while ensuring that enough data points contribute to estimating each βk, we can afford 

of take K ≈ d since d(d + 1)/2 values of W are available. We further locate the steps at 

evenly spaced empirical quantiles of the W’s, using a hierarchical quantile splitting when W 
is multi-dimensional, so that each step contains approximately the same number of W’s. If 

no auxiliary quantity W is available, full Bayes GAR can still be applied by setting K = 1. If 

we wanted to constrain g to be monotonic increasing, we could enrich the prior in Eq. (15) 

with the factor ∏k = 2
K I βk − 1 < βk , which requires βk to be sampled from the same 

distribution at step 2 of Algorithm 3, but truncated to be within the interval (βk-1, βk+1), 

where β0 = 0 and βK+1 = ∞. Different features of g may be imposed in similar ways.

2.2.3 Empirical Bayes estimation—By assuming Eq. (7) andλii = αi
2, Eq. (4) reduces 

to

π(Ω | Θ, W) = ∏
i < j

αiα jg W i j e
−2αiα jg Wi j | ωi j |

× ∏
i = 1

d
αi

2e
−αi

2ωii × I(Ω ≻ 0) × G(Θ) (17)

where Θ = {α, g}, g is a positive function of any form estimable in a Gamma regression, and 

G(Θ) is the normalizing constant. We further assume the prior density

π(Θ) ∝ p(Θ) × G(Θ)−1 (18)

where p (Θ) is a density on Θ. We estimate Θ by maximizing the posterior density

π(Θ | 𝕏n, W) = ∫
Ω ≻ 0

π(Ω, Θ | 𝕏n, W)dΩ (19)

using an Expectation-Maximization algorithm (Dempster, 1977; Gelman et al., 2004):

– E-step: Given the current estimate Θold, we compute the expectation

𝔼[logπ(Ω, Θ | 𝕏n, W) | 𝕏n, Θold, W], (20)

with respect to Ω π(Ω | 𝕏n, Θold, W), which reduces to c + Q(Θ | Θold), where c is 

a constant of Θ and
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Q(Θ | Θold) =

∑
i < j

log αiα jg Wi j − 2αiα jg Wi j ωi j

+ ∑
i = 1

d
2logαi − αi

2ωii + logp(Θ),

where ωi j = 𝔼 | ωi j | | 𝕏n, Θold, W  can be approximated using the Gibbs sampler 

(Section 2.2.1).

– M-STEP: Q(Θ | Θold) is concave with respect to g and αi, i = 1,…,n, so we can 

maximize it with respect to Θ by circularly optimizing with respect to α and g 

until convergence, as follows: assuming p(Θ) ∝ 1 in Eq. (18), ∂Q
∂αi

= 0 subject to 

αi > 0 yields the maximizer

αi = η2 + 8ωii(d + 1) − η / 4ωii , (21)

where η = 2∑ j ≠ i α jg W i j ωi j, and the maximizing function g is obtained by 

regressing yi j = 2αiα jωi j on Wij, i < j in a Gamma regression model.

We summarize the procedure for the case p(Θ) ∝ 1 in Appendix, Algorithm 4.

2.3 Estimating a connectivity graph

Here, we explain how to estimate graphs based on partial correlation estimates, so as to 

control the edge false discovery and false nondiscovery rates.

Let E = {eij} be a true graph, where eij = 1 when nodes i and j are connected by an edge, and 

eij = 0 otherwise. We build graph estimators of two kinds:

1. A δ-graph has edges Eδ = e i j(δ)  such that, for a threshold δ ∈ [0,1),

e i j(δ) =
1, if | ρi j | > δ

0, otherwise
(22)

where ρi j = − ωi j/ ωiiω j j is a point estimate of the partial correlation in Eq. (6). 

That is, an edge is present in the graph estimate if the corresponding estimated 

absolute partial correlation | ρi j |  exceeds some threshold δ.

2. A (p, δ)-graph has edges Ep, δ = e i j(p, δ)  such that, for thresholds p, δ ∈ [0,1),
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e i j(p, δ) =
1, if πi j(δ) > p

0, otherwise
(23)

where

πi j(δ) = ℙ( | ρi j | > δ | 𝕏n, W) (24)

is the edge posterior probability, that is the posterior probability that the 

magnitude of the partial correlation ρ- exceeds δ. The (p, δ)-graph uses the full 

posterior probability of the partial correlations rather than the point estimates ρi j, 

setting an edge to zero if the edge posterior probability (Eq. 24) is smaller than p. 

In our simulations, (p, δ)-graphs were often more precise than δ-graphs.

One must choose values for δ and p. Using δ = 0 in Eq. (22) could produce a completely 

dense graph, while using a large value would only identify strong edges, which is not 

sensible for neural networks since connections can be small and numerous. Ideally, δ should 

be as close as possible to the minimum magnitude of the true non-zero partial correlations; 

we take a robust estimate of that minimum to be the 5-th quantile of the magnitudes of the 

non-zero MAP partial correlation estimates. We use the same δ in Eq. (23), and choose p to 

control the false discovery and non-discovery rates of the graph edges (FDR and FNR, 

respectively), that is the rate of false detected edges (number of (i, j) such that e i j = 1 but eij 

= 0) out of all detections (number of e i j = 1) and the rate of true missed connections 

(number of (i, j) such that e i j = 0 but eij = 1) out of all non-detections (number ofe i j = 0):

FDR = 𝔼
∑i < j e i j 1 − ei j

∑i < j e i j
(25)

and

FNR = 𝔼
∑i < j 1 − e i j ei j

∑i < j 1 − e i j
, (26)

where the expectations are taken with respect to the data 𝕏n = X(1), …, X(n) . Then for a 

fixed δ, a (p, δ)-graph can be selected by choosing either

p* = min p:FDR ≤ C or p * * = max p:FNR ≤ C

for some desired upper bound C, depending on whether we want to control the FDR or the 

FNR, or choose p to balance the FDR and FNR, that is FDR ≈ FNR (the intersection of the 
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green and red curves in Fig. 2). However, the FDR and FNR are easy to approximate in 

simulations when the true graph E is known, but not otherwise. An alternative is to calculate 

their Bayesian counterparts, obtained by Eqs. (25) and (26) but with expectation taken 

conditionally on the data 𝕏n, which yields

FDRII =
∑i < j e i j 1 − πi j(δ)

∑i < j e i j
(27)

and

FNRII =
∑i < j 1 − e i j πi j(δ)

∑i < j 1 − e i j
, (28)

where πij (δ) is the edge posterior probability defined in Eq. (24). Equation (27) has the 

same form as the Bayesian FDR in multiple hypothesis testing (Efron et al., 2001; Efron, 

2007) and FDR-regression (Scott et al., 2015), obtained as the average of the local FDRs, i.e. 

posterior probabilities that the hypotheses are null, across the rejections. In our framework 

(1 — πij (δ)) is the local FDR for the pair (i,j). In Fig. 2 we show by simulation that 

bounding FDRII or FNRII also appears to bound their frequentist counterparts. This result is 

not surprising because empirical estimates of the Bayesian FDR are typically upward biased 

estimates of the frequentist FDR (Efron and Tibshirani, 2002).

ROC curves summarize graph estimation performance—Other useful measures of 

detection error are sensitivity and specificity

SENS =
∑i < j e i jei j

∑i < j ei j
(29)

and

SPEC =
∑i < j 1 − e i j 1 − ei j

∑i < j 1 − ei j
, (30)

which give the proportions of true edges correctly identified and of missing edges correctly 

omitted, respectively. By tuning the parameters defining the estimated edges e i j’s, for 

example λ in Eq. (1) and p in Eq. (23), we can obtain the curve of SENS versus 1 — SPEC, 

known as Receiver Operating Characteristic (ROC) curve (see Figs. 1 and 3). A point above 

the ROC curve denotes an edge detection performance that cannot be achieved by the 

estimator, i.e. no values of the tuning parameters could make the estimator produce that 
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outcome. Therefore, a larger area under a ROC curve (AUC) indicates a better edge 

detection performance; we use this metric to compare graph estimators in our simulations 

(Figs. 1 and 3).

2.4 Statistical properties of the estimates of Ω in simulated data

We compared the performance of the various estimators of Ω in an extensive simulation 

study. We simulated data sets of n d-dimensional Gaussian vectors X(1), …, X(n)iidN μ, Ω−1 , 

with μ chosen to match typical values found in experimental data, and with Ω = [ωij] 

generated as follows: for i < j,

ωi j = Zi jexp bW i j + ϵi j

Zi j I(z = − 1)η + I(z = 1)(1 − η)

ϵi j N 0, σϵ
2

(31)

where I (A) = 1 if A is true and I (A) = 0 otherwise, so that Zij ∈ {—1,1} makes ωij negative 

with probability η and positive with probability 1 — η. We use a simple auxiliary variable 

Wij, which we take to be the physical distance between neurons i and j on a 4mm × 4mm 

Utah electrode array, and used b = –2, η = 0.75, and σ𝜖 = 1 to generate values of ωij that are 

consistent with the experimental data analyzed in Section 2.5. We then symmetrized Ω by 

setting ωji = ωij, and set the diagonal entries ωii to the smallest positive ω* that rendered Ω 
positive definite. We achieved sparsity by resetting to zero the smallest half of the partial 

correlations so that half of the graph edges were null, and rescaled Σ = Ω−1 so its diagonal 

elements would have magnitude similar to the experimental data analyzed in Section 2.5.

Fig. 1 shows a simulated network of d = 49 neurons with dependence structure in Eq. (31), 

the Glasso graph estimate, and the empirical Bayes GAR estimate (Algorithm 4) with g (Eq. 

7) taken to be a regression spline: GAR uses the spatial information of the inter-neuron 

distances and yields more accurate connectivity graph estimates. Here and in the rest of the 

paper, all GAR parameters, including the penalty parameters, are assigned a prior 

distribution and are thus selected implicitly. Similarly for the other Bayesian methods. For 

the non-Bayesian methods, Glasso, AGlasso, and SPL, the penalty parameters are selected 

by cross validation (Fan et al., 2009).

Fig. 3a shows the AUC and mean squared error (MSE) of the partial correlation matrix 

estimate for a simulated network of d =50 neurons and sample size n = 200, for moderate 

deviations from 𝜎𝜖 = 1 in Eq. (31), where the MSE is the average of the squared error, 

∑i < j (ρi j − ρi j)
2/(2d(d − 1)), across repeat simulations. We show only the performance of 

the full Bayes GAR estimate; it is comparable to that of the empirical Bayes GAR estimate 

but faster to compute. Fig. 3b shows how AUC and MSE vary with the sample size n for 

fixed 𝜎𝜖 = 1 and d = 50. GAR outperforms all other methods in Figs. 3a and 3b. The 

SAGlasso is the next best method. It is easier to implement than GAR but provides only a 

modest improvement over other methods.
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Figs. 3a and 3b also show the performance of GAR*, the full Bayes estimate that uses a 

constant g(w) in Eq. (7). Comparing GAR and GAR* shows the added benefit of including 

auxiliary information within our novel Bayesian framework. Note that GAR* appears to 

outperform the Glasso and its variants even without adapting the regularization to the 

covariate. This may be due to the parameters αi (Eq. 7) forcing the penalty to be on the 

standardized scale of the partial correlations rather than on the scale of the precision matrix 

entries, which are known to be highly sensitive to the variance of the Gaussian vectors X 

(Yuan and Lin, 2007). It is also possible that, while the Glasso variants AGlasso and 

BAGlasso also attempt to attenuate the data scaling effect on the regularization, they involve 

d(d +1) /2 regularization parameters (the entries of Q in Eq. 3 and the λij ‘s in Ea. 4), 

whereas GAR* achieves the same goal with only d +1 parameters (the αi’s and the constant 

g), which might reduce the variance of the partial correlation estimates.

The problem of estimating pairwise dependences conditionally on both observed and latent 

units (here neurons) has been dealt with previously by applying SPL in Eq. (5). In Fig. 3c we 

compare the performances of GAR, Glasso, SPL, and GAR-SPL to estimate the dependence 

structure of d =50 recorded neurons when an additional q = 20 neurons belong to the 

network but their activity is not observed. GAR outperformed SPL, likely because the 

information extracted from the inter-neuron distance overcompensated the missed 

information about the activity of the latent variables. SPL outperformed Glasso only in terms 

of MSE. The variant GAR-SPL outperformed SPL but not GAR, likely because of the 

additional variance due to the estimation of the low-rank component. However, a full 

Bayesian treatment of GAR-SPL might provide a better performance; this is a topic of future 

research.

Fig. 3d repeats the AUC curves of Figs. 3bc but with non-Gaussian data generated from the 

multivariate Poisson- lognormal distribution (Vinci et al., 2016)

Xi
(r) | Zi

(r) Poisson e
Zi

(r)
, i = 1, …, d

Z1
(r), …, Zd

(r) ′ N(μ, Σ),

(32)

where the spike counts X(r) = (X1
(r), …, Xd

(r)) on trial r are independent given their latent log-

ratesZ1
(r), …, Zd

(r), and μ and Σ were set to match typical values found in experimental spike 

count data (μi ≈ 2, Σii ≈ 0.25, implying about 8.37 spikes/s on average). Under this model, 

dependences between spike counts are weaker than those of their latent rates due to Poisson-

noise corruption (Vinci et al., 2016; Behseta et al., 2009). Since the dependences between 

the log-rates likely provide a better representation of input correlation (Vinci et al., 2016), 

we estimate the neuronal graph based on the partial correlations Ω = Σ−1 of the latent rates, 

applying first the square root transformation to the spike counts to improve their fit to a 

Gaussian distribution (Kass et al., 2014; Georgopoulos and Ashe, 2000; Yu et al., 2009). Fig. 

3d shows that GAR outperformed all other methods, presumably because it successfully 
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extracted the connectivity information carried by inter-neuron distance despite the Poisson 

noise. Also as in Fig. 3c, GAR-SPL outperformed SPL but not GAR. We repeated the 

simulation of Fig. 3d with values of μi small enough to induce neurons’ firing rates of about 

0.1 spikes/s and, compared to Fig. 3d, noted a loss of AUC of about 5% for GAR and GAR-

SPL, and about 20% for all other methods that do not use auxiliary information.

2.5 Estimating neural connectivity in macaque visual cortex

Spike data were recorded from the V1 and V4 visual cortex of two rhesus macaque monkeys 

using 100-electrode Utah arrays. For the V1 data (Kelly et al., 2010; Scott et al., 2015; 

Cowley et al., 2016), visual stimuli were presented to an anesthetized animal. The stimuli 

were either a 30s sequence of drifting sinusoidal gratings (98 different orientations and two 

blanks, 300ms each), or blank gray screen (Fig. 4a). The 30s stimuli sequence was randomly 

ordered, and then repeated in that same order 120 times. For the V4 data, the visual stimuli 

were either vertical drifting sinusoidal gratings or a blank gray screen (Fig. 4b). Each trial 

began with the animal fixating a small dot for 150ms before the grating or blank screen was 

presented for 1000ms. Then the stimulus and fixation point were extinguished and the 

animal received a liquid reward for making an eye movement to a target 8 degrees from 

fixation in a random direction. Each stimulus (the vertical grating or the blank) was repeated 

126 times. All procedures were approved by the Institutional Animal Care and Use 

Committee of the University of Pittsburgh and Albert Einstein College of Medicine, and 

were in compliance with the guidelines set forth in the National Institutes of Health’s Guide 

for the Care and Use of Laboratory Animals.

We applied GAR to the neurons’ spike counts in repeated trials of duration 300ms and 

1000ms in the V1 and V4 experiments, respectively, to estimate the connectivity at the trial 

time scale. We square-root transformed the spike counts to mitigate the dependence between 

variance and mean and thus improve their fit to Gaussian distribution we assume in this 

paper.

V1 data—We obtained recordings for 128 candidate neuronal units by sorting the voltage 

signals of the 76 electrodes with the best signal to noise ratio (Kelly et al., 2007), in response 

to a sequence of 98 drifting sinusoidal gratings and blank screen (Fig. 4a). Previous analyses 

of these data have been published (Kelly et al., 2010; Scott et al., 2015; Cowley et al., 2016). 

To produce easily readable graphs, we analysed only 100 neurons, selected as follows: we 

first retained the highest spiking neuron on each of the 76 electrodes that had identifiable 

action potentials, and then added the 24 highest spiking remaining neurons. The firing rates 

of these 100 neurons ranged from 0.61 to 31.97 spikes/s, with mean 6.27, and 2.5th and 

97.5th percentiles 1.12 and 16.20.

Neurons in V1 are driven by drifting gratings of orientation θ ∈ (0, 360] (Scott et al., 2015), 

and their average firing rates are usually described by sinusoidal tuning functions of θ, with 

similar tuning in diametrically opposite orientations θ and θ + 180 degrees (Butts and 

Goldman, 2006; Smith and Kohn, 2008; Scott et al., 2015; Vinci et al., 2016). Hence 

maximal firing rates occur at θ* and θ * + 180, for some θ*, and minimal firing rates occur 

in the orthogonal orientations, θ* ± 90. The tuning similarity of two neurons can be 
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quantified by their tuning curve correlation (TCC), computed as the Pearson’s correlation of 

the two neurons’ tuning curves across stimuli (Smith and Kohn, 2008; Smith and Sommer, 

2013; Ecker et al., 2014; Kass et al., 2014; Vinci et al., 2016). The strength of the 

dependence between two neurons’ activities has been observed to increase with TCC and 

decrease with inter-neuron distance (DIST) (Smith and Kohn, 2008; Smith and Sommer, 

2013; Goris et al., 2014; Vinci et al., 2016), so we considered these two auxiliary quantities 

for our GAR connectivity graph estimation.

Fig. 5 shows the results of GAR applied to 300 ms square root transformed spike counts for 

the vertical grating (θ = 0) and blank screen conditions. The estimated penalty functions 

g(W1,W2) in Eq. (7) (fitted using Algorithm 4, with g a bivariate regression splines) are 

plotted in Fig. 5a: they increase with W1 = DIST and decrease with W2 = TCC, which is 

consistent with previous analyses of V1 macaque data (Goris et al., 2014; Smith and Kohn, 

2008; Scott et al., 2015) where neurons dependences in macaque V1 were observed to 

decrease with inter-neuron distance and increase with tuning curve similarity. Fig. 5b shows 

that the corresponding edge posterior probabilities (Eq. (24)) decrease with DIST and 

increase with TCC, on average; the horizontal lines denote probability thresholds that lead to 

different graph FDRII controls (Eqs. (23), (25), and (27)). We obtained similar results for all 

grating orientations. Finally, Fig. 6a displays the estimated (p, δ)-graphs (Eq. (23)): the 

graph for the vertical grating contains 1160 edges (859 positive and 301 negative 

connections) with 10% FDRn, and 350 edges (307 positive, 43 negative) with 5% FDRII; the 

graph under blank screen contains 1246 edges (937 positive, 309 negative) with 10% FDRn, 

and 405 edges (362 positive, 43 negative) with 5% FDRII.

To investigate the extent to which covariation is tuned to orientation we computed the 

average absolute correlation

AC(θ) = 1
d(d − 1) ∑

i ≠ j
| ci j(θ) | , (33)

and the multivariate Gaussian Mutual Information (Shannon, 1964; Guerrero, 1994; Cover 

and Thomas, 2012)

MI(θ) = − 1
2log det C(θ), (34)

where C(θ) = diag(Σ(θ))−1/2 × Σ(θ) × diag(Σ(θ))−1/2 = [cij(θ)] is the correlation matrix of the 

square-rooted spike counts at orientation θ, and Σ(θ) = Ω(θ)-1. Larger AC(θ) and MI(θ) 

imply stronger connectivity. Fig. 6b shows the posterior means of AC(θ) and MI(θ) as 

functions of θ, with 95% posterior probability bands; both measures display similar 

variations in connectivity and it appears that grating orientations θ and θ + 180 yield graphs 

with similar connectivity. To confirm this, we considered the network connectivity at 

orientations Δθ apart: given some orientation θ and some Δθ, we (i) calculated
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D(Δθ) = ∑
i < j

| ci j(θ) − ci j(θ + Δθ) | , (35)

(ii) obtained a permutation test p-value (Kass et al., 2014) of the null hypothesis that the 

connectivity is the same at θ and θ + Δθ, i.e. D(Δθ) = 0, and repeated (i) and (ii) for all 98 

values of θ ∈ [0,360]. Fig. 6c shows how the proportion of 5%-level test rejections varies 

with Δθ: the connectivity changes smoothly as a function of Δθ, and the connectivity at an 

arbitrary orientation θ differs maximally from the connectivity at the orthogonal orientations 

θ ± 90, and minimally at orientation θ + 180.

We applied GAR to estimate the V1 neuron network because our simulation study suggests 

it is the most accurate method. For comparison’s sake, we also applied AGlasso (Eq. 3) and 

drew qualitatively similar conclusions: 681 edges were identified for vertical grating and 

more, specifically 945, for blank screen (although the resulting graphs look quite different 

since only about 50% of these edges were also identified by GAR at 10% FDRn within each 

condition) and the mutual information and average absolute correlation showed variations 

with orientation that were similar to, but more volatile than in Fig. 6b.

V4 data—V4 data were recorded in response to a vertical grating (θ = 0) and a blank 

screen (Fig. 4b). We selected 100 out of the 152 available candidate neuronal units, 

according to the same criteria used for the V1 data. The firing rates of these 100 neurons 

ranged from 0.04 to 38.54 spikes/s, with mean 6.64, and 2.5th and 97.5th percentiles 0.09 

and 27.33. We applied GAR (Algorithm 4 with a univariate regression spline) to the 1000 

ms square root transformed spike counts with inter-neuron distance (DIST) as an auxiliary 

quantity, and estimated the connectivity in the two conditions. The estimated penalty 

function g(W) (Eq. (7), Fig. 7a) increases with W = DIST and the edge posterior probability 

(Eq. (24), Fig. 7b) decreases with DIST, which is consistent with the previous analyses in 

Smith and Sommer (2013) and Vinci et al. (2016). Note that the posterior probability of non-

zero partial correlations (|ρ| > δ = .005) remains substantial at 70–75% between neurons that 

are over 2mm apart, but because these correlations have magnitude (absolute value of 

posterior mean) close to the threshold δ (not shown), they do not appear in the (p, δ)-graphs 

displayed in Fig. 7c, at 10% and 5% FDRII. The graph under vertical grating contains 333 

edges (229 positive and 104 negative) with 10% FDRII, and 59 edges (53 positive and 6 

negative) with 5% FDRII the graph under blank screen contains 573 edges (400 positive and 

173 negative) with 10% FDRII, and 143 edges (115 positive and 28 negative) with 5% 

FDRII. These results suggest that neural connectivity is denser in the spontaneous activity 

induced by the blank screen. This was confirmed by a permutation test (Kass et al., 2014) 

based on the statistic D(a, b) = ∑i < j | ci j(a) − ci j(b) | , analogous to Eq. (35), with null 

hypothesis D(a, b) = 0: the p-value was smaller than 10-8.

For comparison sake, we also estimated the V4 neuron network using the AGlasso (Eq. 3) 

and found 297 and 492 edges for vertical grating and blank screen, respectively; about 42% 

of AGlasso’s edges were also discovered by GAR at 10% FDRII in the vertical grating 

condition, and about 44% in the blank screen condition.
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Remarks—In the two datasets we analysed here, the estimated function g (Eq. (7)) 

increased with inter-neuron distance and decreased with tuning curve correlation; 

conversely, the edge posterior probabilities (Eq. (24) decreased and increased with inter-

neuron distance and tuning curve correlation, respectively (Figs 5 and 7). Because g was 

fitted using splines, the dependence of the regularization on the auxiliary variables was 

estimated from the data rather than prespecified. Hence, GAR automatically extracted the 

neurons functional connectivity information carried by the auxiliary variables and 

incorporated it into the estimation of the partial correlations and dependence graphs. These 

are the main results of our data analyses. Note that the penalty function g is not constrained 

to be monotonic. While lateral connectivity in a region or within a single cortical area 

decreases with distance, which was encoded in our two data examples by g increasing with 

distance, there are many long neural pathways in the brain (see Van Den Heuvel and Sporns 

(2011)). If these also induce functional connectivity, GAR will extract that information and 

fit a penalty function g that varies accordingly.

We further note that in both analyses reported here, the number of positive connections were 

approximately two to four times the number of negative ones. This result is consistent with 

previous analyses in macaque visual cortex where the majority of pairwise correlations were 

positive (Smith and Kohn, 2008; Smith and Sommer, 2013), which in turn suggests that 

finding a majority of positive partial correlations is reasonable (if a positive-definite 

covariance matrix has mostly positive entries, then its inverse has mostly negative entries, 

and consequently partial correlations are mostly positive according to Eq. (6)); a majority of 

positive partial correlations has also been observed in mouse visual cortex (Yatsenko et al., 

2015). Moreover, it is also known that in macaque visual cortex the ratio of excitatory to 

inhibitory neurons is about 80/20 (Markram et al., 2004), which, depending on the relative 

proportion of inhibitory to excitatory neurons recorded and their connection strengths and 

probabilities, might favors positive functional connections. We also found that the partial 

correlations in areas V1 and V4 had similar magnitudes (Fig. 8a), but that the correlations 

were larger and the connectivity denser in V1 (Figs. 8b and 8c), which is consistent with 

previous findings in V1 (Smith and Kohn, 2008) and V4 (Smith and Sommer, 2013; Vinci et 

al., 2016). Denser connectivity and higher correlations in V1 may be due to differences in 

time-scales and correlation between cortical layers (Smith et al., 2013), since the V1 data 

were targeted at more superficial layers than V4, as well as other differences in connectivity 

structure between the two cortical regions. In addition, slow fluctuations in activity due to 

anesthesia may have played a role in the higher correlation values in V1 (Ecker et al., 2014), 

although the values present in the data analyzed here are similar to other V1 reports in 

awake animals (Gutnisky and Dragoi, 2008; Poort and Roelfsema, 2009; Samonds et al., 

2009; Rasch et al., 2011).

3 Discussion

We have derived and implemented a method for pairwise covariate adjustment of the 

regularization penalty in the Graphical lasso, and have shown that it can greatly improve 

identification of the functional connectivity graph in high - dimensional neural spike count 

data. We have also illustrated the use of this technique in studying network activity by 

analyzing data from cortical areas V1 and V4, where the covariates were distance between 
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neurons and tuning curve correlation. We expect this approach to be applicable to neural 

activity throughout cortex, and in subcortical areas as well. At the very least, partial 

correlation may be expected to change with inter-neuron distance, regardless of where these 

neurons are located, although cell-type shape specific information may also be useful to 

include, for example through a group-lasso type regularization (Yuan and Lin, 2006), to 

adjust for anisotropies of neurons’ axonal projections (Sin- cich and Blasdel, 2001). In 

addition, even in the absence of a well-defined tuning curve, it is reasonable to expect partial 

correlation to depend on other characterizations of trial- averaged responses across 

experimental conditions (based, for example, on the PSTH), or anatomical connectivity and 

genetic information about neurons. Thus, we suggest the incorporation of this kind of 

covariate information is likely to be helpful in a wide range of problems involving neural 

functional connectivity.

While we are inclined, based on the research reported here, to think that the general idea of 

incorporating covariate information into regularization is a good one, there are many 

different ways to carry it out. These could involve alternative forms of regularization (e.g. an 

elastic net may be better suited than an L1 penalty to regularize a large number of small 

effects), within both Bayesian and nonBayesian frameworks, as well as regularization 

combined with dimensionality reduction (Chandrasekaran et al., 2012; Yuan, 2012; Yatsenko 

et al., 2015). These are topics for future research. Also, in previous work we noted that when 

spike count correlation is viewed as resulting from underlying firing-rate correlation after 

corruption by Poisson-like noise (Vinci et al., 2016; Behseta et al., 2009), the firing- rate 

correlation can be much larger than spike count correlation, and may be expected to be more 

sensitive to experimental manipulation because it likely provides a better representation of 

input correlation (Vinci et al., 2016). A natural next step, therefore, is to nest GAR within 

the hierarchical model of Vinci et al. (2016). We are currently working on that extension to 

the method developed here. In addition, covariate-adapted regularization may be applied to 

high-dimensional point process models of neural spike trains (Kass et al., 2014) and time 

series models for local field potentials and other continuous-time neural signals. We hope to 

investigate the utility of the general idea in these diverse neural contexts.
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4: Appendix

4.1 SAGlasso algorithm

There are several ways to build the weight matrix Q of SAGlasso. We used Gamma 

regression, as described in Algorithm 1, which can be implemented efficiently with standard 
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statistical software, e.g. R packages glm (Dobson and Barnett, 2008; Hastie and Pregibon, 

1992; McCullagh and Nelder, 1989; Venables and Ripley, 2002), mgcv (Wood, 2011), and 

gam (Hastie and Tibshirani, 1990). Note that in Eq. (3), Q is typically estimated by the 

square rooted absolute entries of the inverse sample covariance matrix. In SAGlasso, we 

observed a slightly better performance without applying any transformation.

Algorithm 1

SAGlasso

Input: 𝕏n, W, λ > 0, and Ω, preliminary estimate of Ω.

    1. Obtain {Yij}i<j, where yi j = | ωi j | / ωiiω j j
1/2

.

    2. Fit Gamma regression of Yij on Wij with rate g(Wij).

    3.Obtain Q = qi j  where qi j = g W i j / ωiiω j j
1/2

, for i ≠ j, and qii = | ωii | −1
, for i = 1,..., d.

    4. Solve Eq. (3) with Q = Q and λ.

Output: EstimateΩ(λ).

4.2 GAR algorithms

GAR Algorithms 2–4 are derived in Section 2.2, and implemented in our R package 

“GARggm” available in ModelDB.

In Algorithm 2, U ~ InvGaussian(a, b) has p.d.f. p(u) = b

2πu3
1/2

exp −b(u − a)2/ 2a2u . 

Moreover, given a matrix M, Mij is the i-th row and j-th column entry of M; M-ij is the j-th 

column of M without the i-th entry; Mi-j is the i-th row of M without the j-th entry; and M-i-
j is the submatrix obtained by removing the i-th row and the j - th column from M. 

Algorithms 3 and 4 both produce posterior samples of Ω whose average approximates the 

posterior mean of Ω. The posterior mode of Ω can be obtained by solving Eq. (1) with λ||Ω|| 

replaced by ‖Λ ⊙ Ω‖1, where Λ is the estimated penalty matrix from either Algorithm 3 or 4, 

and ⊙ denotes the entry-wise matrix multiplication. This optimization can be performed 

using R functions such as glasso (package glasso, Friedman et al. (2008)) with argument rho 

set equal to 2Λ/n; see also the R package QUIC, Hsieh et al. (2011). We solve the SPL 

problem in Eq. (5) by the EM algorithm of Yuan (2012) involving Glasso, and we impose 

the GAR penalty matrix Λ on S in the Maximization step to obtain the GAR-SPL estimate. 

For d ~ 100, we suggest to run the Gibbs samplers for at least B = 2000 iterations, including 

a burn-in period of 300 iterations. The Gamma regression in step 2b of Algorithm 4 can be 

implemented either parametrically or nonparametrically by using standard statistical 

software (e.g. R packages glm (Dobson and Barnett, 2008; Hastie and Pregibon, 1992; 

McCullagh and Nelder, 1989; Venables and Ripley, 2002) and mgcv (Wood, 2011)); in the 

data analyses we used splines (Kass et al., 2014).
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Algorithm 2

Block Gibbs sampler for Ω π(Ω | 𝕏n, Λ).

Input: S = ∑r = 1
n X(r) − X ′ X(r) − X  and Λ; start value of Ω; number of iterations B.

For b =1,..., B :

    1. For i < j: sample τi j
−1 InvGaussian((λi j | ωi j | )−1, 2).

    2. For i = 1, ...,d: compute Ω−ii = Ωi − i′ ≔ η and

        ωii: = ξ + η′Ω−i − i
−1 η, where

        ξ ~ Γ(n/2 + 1, Sii/2 + λii), and η ~ N(−AS−ii,A), with

        A = Sii + 2λii Ω−i − i
−1 + D

−1
 and

        D = 2diag
λ1i
2

τ1i
, …,

λ(i − 1)i
2

τ(i − 1)i
,

λ(i + 1)1
2

τ(i + 1)i
, …,

λdi
2

τdi
.

    3. Set Ω(b) = Ω.

Output: Sequence Ω(1),..., Ω(B).

Algorithm 3

GAR - Full Bayes

Input: 𝕏nand W; parameters r,r’, s, s’, K; sets Ak k = 1
K

; start values of Ω,α, and β; number of iterations B.

For b = 1,..., B:

    1. For i = 1, ...,d:

        αi
2 | rest Γ (r + d + 1)/2, s + Ci ,

          where Ci = ωii + ∑ j ≠ i α j
2∑k = 1

K βk
2IAk

W i j ωi j
2 τi j

−1
.

    2. For k = 1,..., K:

        βk
2 | rest Γ r′ + Dk /2, s′ + Ek ,

          where Dk = ∑i < j IAk
W i j , and

          Ek = ∑i < j IAk
W i j ωi j

2 αi
2α j

2τi j
−1

.

    3. Do steps 1–2 of Algorithm 2 with current Λ.

    4. Set Ω(b) = Ω and Θ(b) = {α, β}.

Output: Sequences {Ω(1),Θ(1)},…, {Ω(B),Θ(B)}.
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Algorithm 4

GAR - Empirical Bayes

Input: 𝕏n and W; start values of Ω and Θ.

1. E-step: For i < j, approximate ωi j = 𝔼 | ωi j | | 𝕏n, Θ, W  by Algorithm 2.

2. M-STEP: Iterate a)-b) until convergence:

    a) For i = 1,..., d, update αi according to Eq. (21).

    b) Obtain g as the rate function of the Gamma regression of yi j = 2αiα jωii on Wij, i < j.

3. Iterate 1–2 until convergence.

Output: Estimate of Θ.

4.3 Computational efficiency of estimators

Table 1 contains the computation times of the graph estimators considered for d = 50,100 

and n = 200,500, using the programming language R, CPU Quad-core 2.6 GHz Intel Core 

i7, and RAM 16 GB 2133 MHz DDR4. These times could be improved substantially by 

using a lower level language such as C++. Glasso, AGlasso, SPL, and SAGlasso are fitted 

with tuning parameter optimization based on tenfold cross-validation involving 500 random 

splits over a fine grid of 20 values of the tuning parameter about its optimal value. GAR full 

Bayes (Algorithm 3; K = [ d]) involved B = 2000 iterations, where the Gibbs sampler 

converged after about 300 iterations. GAR empirical Bayes (Algorithm 4; splines with 3 

knots) involved 30 EM iterations, each including 500 iterations of Gibbs sampler for the E-

step; the efficiency of this method may be improved by replacing the Gibbs sampler with 

some alternate faster approximation of Eq (20)
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Fig. 1. 
Glasso and GAR graph estimation performances for a simulated network. The true graph 

contains d = 49 neurons and 118 edges, and is based on parameter settings derived from 

cortical data. Blue and red edges denote positive and negative partial correlations and the 

size of each node is proportional to the number of its connections. The GAR and Glasso 

estimates displayed are based on a sample size of n = 200 (see simulation Section 2.4 for 

details). For clarity, we show only the 118 strongest estimated connections (Glasso estimated 

642 edges and GAR 204). ROC curves were obtained for 50 repeat simulated data; all 50 

curves are plotted as thin lines and their averages as thick lines. The average area under the 

curves (AUC) is written in parentheses ± 2 simulation standard error: GAR is more accurate 

than Glasso.
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Fig. 2. 
Bayesian FDR and FNR, FDRII and FNRII, plotted on the x- axes, control their frequentist 

counterparts FDR and FNR, plotted on the y-axes, in a simulation based on d = 100 neurons 

and sample size n = 500 (Section 2.4). The black lines are the first bisectors x = y.
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Fig. 3. 
Performance of graph estimates, measured by areas under ROC curves (AUC), and of partial 

correlation estimates, measured by MSEs, for d = 50 neurons simulated according to Eq. 

(31) as functions of σϵ in (a), where σϵ ≈ 1 (shaded grey area) represents a real data 

scenario, and as functions of the sample size n in (b). (c) AUC and MSE for d = 50 observed 

neurons conditionally on q = 20 latent ones as functions of n. (d) AUC when methods are 

applied to non-Gaussian Poisson-lognormal (PLN) data without (top) and with (bottom) 

latent neurons, as functions of n. The horizontal intevals on the left of ah curves are 95% 

simulation intervals.
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Fig. 4. 
Experiments. (a) The V1 stimuli consist of 30 second sequences of 98 randomly ordered 

oriented drifting gratings, or a blank gray screen. (b) The V4 stimuli consist of a blank gray 

screen or a vertical drifting sinusoidal grating appearing in the aggregate receptive field of 

the V4 neurons (RFs, indicated by the dashed circle).
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Fig. 5. 
(a) Estimated penalty functions (Eq. 7) and (b) edge posterior probabilities (Eq. (24)) for ad 

pairs of V1 neurons, with average plotted in red, under vertical grating and blank conditions. 

The penalty g(W1, W2) increases with W1 = inter-neuron distance and decreases with W2 = 

tuning curve correlation. The average edge posterior probability decreases with W1 and 

increases with W2. The horizontal Lines are the probability thresholds that lead to the 

corresponding 5, 10, 15, or 20% FDRII controls in (p, δ)-graphs (Eqs. (23), (25), and (27)).
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Fig. 6. 
Connectivity of V1 neurons. (a) Estimated connectivity (ρ,δ)-graphs under vertical grating 

and blank conditions, with respective number of edges 1160 ± 87 and 1246 ± 87 (95% 

bootstrap intervals) at 10% FDRII, and 350 ± 29 and 405 ± 30 at 5% FDRII. The node 

positions represent the individual active channels on the 4×4 mm electrode array, blue and 

red edges denote positive and negative partial correlations, and a node size is proportional to 

the number of its connections. (b) Average across neuron pairs of absolute correlation (blue, 

Eq. 33) and mutual information (red, Eq. 34) with 95% posterior probability bands, as 

function of grating orientation θ. Larger values imply stronger connectivity. Both measures 

show maximal values about 20% above their minimum values. (c) Proportions of rejections 

across θ values of the 5%-level permutation tests that compare connectivities between 

orientations Δθ apart. Connectivity changes smoothly as a function of Δθ, and the 

connectivity at an arbitrary orientation θ differs maximally from the connectivity at the 

orthogonal orientations θ ± Δθ with Δθ = 90.
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Fig. 7. 
(a) Estimated penalty functions (Eq. 7) and (b) edge posterior probabilities (Eq. (24)) for all 

pairs of V4 neurons, with average plotted in red, under vertical grating and blank conditions. 

The penalty g(W) increases with W = inter-neuron distance. The average edge posterior 

probability decreases with W. The horizontal lines are the probability thresholds that lead to 

the corresponding 5, 10, 15, or 20% FDRII controls in (p,d)-graphs (Eqs. (23), (25), and 

(27)). (c) Estimated connectivity (p, δ)-graphs under the two conditions, with respective 

number of edges 333 ± 79 and 573 ± 89 (95% bootstrap intervals) at 10% FDRII, and 59 
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± 19 and 143 ± 21 at 5% FDRII. The node positions represent the individual active channels 

on the 4 × 4 mm electrode array, blue and red edges denote positive and negative partial 

correlations, and a node size is proportional to the number of its connections.
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Fig. 8. 
Distributions of partial correlations, correlations, and number of connections per neuron in 

areas V1 and V4. Partial correlations in areas V1 and V4 have similar magnitudes. 

Correlations and number of connections per neuron are larger in area V1.
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Table 1

Computational time in seconds with 95% confidence intervals for d = 50,100 and n = 200,500.

Method

d = 50 d = 100

n = 200 n = 500 n = 200 n = 500

Glasso 150 ± 1 160 ± 1 1198 ± 6 1057 ± 10

AGlasso 65 ± 1 87 ± 1 410 ± 3 501 ± 7

SPL 541 ± 19 641 ± 12 4626 ± 41 2709 ± 23

BAGlasso 96 ± 3 97 ± 2 825 ± 5 824 ± 5

SAGlasso 91 ± 1 116 ± 2 550 ± 18 626 ± 8

GAR-FB 92 ± 1 92 ± 1 827 ± 11 823 ± 3

GAR-EB 654 ± 22 724 ± 5 4163 ± 38 4337 ± 40
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