Skip to main content
. Author manuscript; available in PMC: 2019 Oct 1.
Published in final edited form as: J Comput Neurosci. 2018 Sep 6;45(2):83–101. doi: 10.1007/s10827-018-0692-x

Algorithm 3.

GAR - Full Bayes

Input: Xnand W; parameters r,r’, s, s’, K; sets{Ak}k=1K; start values of Ω,α, and β; number of iterations B.
For b = 1,..., B:
    1. For i = 1, ...,d:
        αi2|rest~Γ((r+d+1)/2,s+Ci),
          where Ci=ωii+jiαj2k=1Kβk2IAk(Wij)ωij2τij1.
    2. For k = 1,..., K:
        βk2|rest~Γ((r+Dk)/2,s+Ek),
          where Dk=i<jIAk(Wij), and
          Ek=i<jIAk(Wij)ωij2αi2αj2τij1.
    3. Do steps 1–2 of Algorithm 2 with current Λ.
    4. Set Ω(b) = Ω and Θ(b) = {α, β}.
Output: Sequences {Ω(1),Θ(1)},…, {Ω(B),Θ(B)}.