Skip to main content
. Author manuscript; available in PMC: 2019 Oct 1.
Published in final edited form as: J Comput Neurosci. 2018 Sep 6;45(2):83–101. doi: 10.1007/s10827-018-0692-x

Algorithm 4.

GAR - Empirical Bayes

Input: Xn and W; start values of Ω and Θ.
1. E-step: For i < j, approximate ω¯ij=E[|ωij||Xn,Θ,W] by Algorithm 2.
2. M-STEP: Iterate a)-b) until convergence:
    a) For i = 1,..., d, update αi according to Eq. (21).
    b) Obtain g as the rate function of the Gamma regression of yij=2αiαjω¯ii on Wij, i < j.
3. Iterate 1–2 until convergence.
Output: Estimate of Θ.