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Large-scale genome-wide enrichment analyses
identify new trait-associated genes and pathways
across 31 human phenotypes
Xiang Zhu 1,2 & Matthew Stephens 2,3

Genome-wide association studies (GWAS) aim to identify genetic factors associated with

phenotypes. Standard analyses test variants for associations individually. However, variant-

level associations are hard to identify and can be difficult to interpret biologically. Enrichment

analyses help address both problems by targeting sets of biologically related variants. Here

we introduce a new model-based enrichment method that requires only GWAS summary

statistics. Applying this method to interrogate 4,026 gene sets in 31 human phenotypes

identifies many previously-unreported enrichments, including enrichments of endochondral

ossification pathway for height, NFAT-dependent transcription pathway for rheumatoid

arthritis, brain-related genes for coronary artery disease, and liver-related genes for Alzhei-

mer’s disease. A key feature of our method is that inferred enrichments automatically help

identify new trait-associated genes. For example, accounting for enrichment in lipid transport

genes highlights association between MTTP and low-density lipoprotein levels, whereas

conventional analyses of the same data found no significant variants near this gene.
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Genome-wide association studies (GWAS) have success-
fully identified many genetic variants—typically single-
nucleotide polymorphisms (SNPs)—underlying a wide

range of complex traits1,2. GWAS are typically analyzed using
single-SNP association tests, which assess the marginal correla-
tion between the genotypes of each SNP and the trait of interest.
This approach can work well for identifying common variants
with sufficiently-large effects. However, for complex traits, most
variants have small effects, making them difficult to identify even
with large sample sizes3. Further, because many associated var-
iants are noncoding it can be difficult to identify the biological
mechanisms by which they may act.

Enrichment analysis—also referred to as pathway4 or gene set5

analysis—can help tackle both these problems. Instead of ana-
lyzing one variant at a time, enrichment analysis assesses groups
of related variants. The idea—borrowed from enrichment analysis
of gene expression6—is to identify groups of biologically related
variants that are enriched for associations with the trait: that
is, they contain a higher fraction of associated variants than
would be expected by chance. By pooling information across
many genetic variants this approach has the potential to detect
enrichments even when individual genetic variants fail to reach a
stringent significance threshold4. And because the sets of variants
to be analyzed are often defined based on existing biological
knowledge, an observed enrichment automatically suggests
potentially relevant biological processes or mechanisms.

Although the idea of enrichment analysis is simple, there are
many ways to implement it in practice, each with its own
advantages and disadvantages. Here we build on a previous
approach7 that has several attractive features not shared by most
methods. These features include: it accounts for linkage dis-
equilibrium (LD) among associated SNPs; it assesses SNP sets for
enrichment directly, without requiring intermediate steps like
imposing a significance cut-off or assigning SNP-level associa-
tions to specific genes; and it can reassess (“prioritize”) variant-
level associations in light of inferred enrichments to identify
which genetic factors are driving the enrichment.

Despite these advantages, this approach has a major limitation:
it requires individual-level genotypes and phenotypes, which are
often difficult or impossible to obtain, especially for large GWAS
meta analyses combining many studies. Our major contribution
here is to overcome this limitation, and provide a new method
that requires only GWAS summary statistics (plus LD estimates
from a suitable reference panel). This allows the method to be
applied on a scale that would be otherwise impractical. Here,
we exploit this to perform enrichment analyses of 3913 biological
pathways and 113 tissue-based gene sets for 31 human pheno-
types. Our results identify many novel pathways and tissues
relevant to these phenotypes, as well as some that have been
previously identified. By prioritizing variants within the enriched
pathways we identify several trait-associated genes that do not
reach genome-wide significance in conventional analyses of the
same data. The results highlighted here demonstrate the potential
for these enrichment analyses to yield novel insights from existing
GWAS summary data.

Results
Method overview. Figure 1 provides a schematic method over-
view. In brief, we combine an enrichment model7 with regression
with summary statistics (RSS)8, a multiple regression likelihood
for single-SNP association summary statistics, to create a model-
based enrichment method for GWAS summary data. We refer to
this enrichment method as RSS-E.

Specifically RSS-E requires single-SNP effect estimates and
their standard errors from GWAS, and LD estimates from an

external reference panel with similar ancestry to the GWAS
cohort. Then, for any given set of SNPs, RSS-E estimates an
enrichment parameter, θ, which measures the extent to which
SNPs in the set are more often associated with the phenotype.
This enrichment parameter is on a log10 scale, so θ= 2 means
that the rate at which associations occur inside the set is ~100
times higher than the rate of associations outside the set, whereas
θ= 0 means that these rates are the same. When estimating θ
RSS-E uses a multiple regression model8 to account for LD
among SNPs. For example, RSS-E will (correctly) treat data from
several SNPs that are in perfect LD as effectively a single
observation, and not multiple independent observations. RSS-E
ultimately summarizes the evidence for enrichment by a Bayes
factor (BF) comparing the enrichment model (M1: θ > 0) against
the baseline model (M0: θ= 0). RSS-E also provides posterior
distributions of genetic effects (β) under M0 and M1, and uses
them to prioritize variants within enriched sets.

Although enrichment analysis could be applied to any SNP set,
here we focus on SNP sets derived from gene sets such as
biological pathways. Specifically, for a given gene set, we define a
corresponding SNP set as the set of SNPs within 100 kb of the
transcribed region of any member gene; we refer to such SNPs as
“inside” the gene set. If a gene set plays an important role in a
trait then genetic associations may tend to occur more often near
these genes than expected by chance; our method is designed to
detect this signal.

To facilitate large-scale analyses, we designed an efficient,
parallel algorithm implementing RSS-E. Our algorithm exploits
variational inference9, banded matrix approximation10 and an
expectation-maximization accelerator11. Software is available at
https://github.com/stephenslab/rss.

Method comparison based on simulations. The novelty of RSS-E
lies in its use of whole-genome association summary statistics to
infer enrichments, and more importantly, its automatic prioritiza-
tion of genes in light of inferred enrichments. We are not aware of
any published method with similar features. However, there are
methods that can learn either enrichments or gene-level associa-
tions from GWAS summary statistics, but not both. We compare
RSS-E to them through simulations using real genotypes12.

To benchmark its enrichment component, we compared RSS-E
with a suite of conventional pathway methods, Pascal13, and a
polygenic approach, LD score regression (LDSC)14. We started
with simulations without model mis-specification, where baseline
and enrichment datasets were generated from corresponding
models (M0 andM1). Figure 2a and Supplementary Figure 1 show
the trade-off between false and true enrichment discoveries for
each method. All methods are powerful when the true underlying
genetic architecture is polygenic, whereas LDSC performs worse
when the truth is sparse. In both polygenic and sparse scenarios
RSS-E is the most powerful method.

Next, to assess its robustness to mis-specification, we
performed three sets of simulations where either the baseline
(M0) or enrichment (M1) model of RSS-E were mis-specified.
Specifically, we considered scenarios where (i) baseline data
contained enrichments of random near-gene SNPs (Fig. 2b,
Supplementary Fig. 2); (ii) baseline data contained enrichments
of random coding SNPs (Fig. 2c, Supplementary Fig. 3); and
(iii) enrichment data contained enrichments of effect sizes
(Fig. 2d, Supplementary Fig. 4). The results show that RSS-E is
highly robust to model mis-specification, and still consistently
outperforms Pascal and LDSC.

Recent analyses using LDSC focus on genotype–phenotype
associations of HapMap Project Phase 3 (HapMap3) SNPs15,
even though summary statistics of 1000 Genomes Project SNPs16
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are often available. We used this “SNP subsetting” strategy in data
analyses to reduce computation, since computational costs of
RSS-E decrease as the number of SNPs analyzed decreases
(Methods). However, when subsetting GWAS summary statistics
to HapMap3 SNPs, RSS-E also subsets LD estimates to HapMap3
SNPs (Fig. 1), whereas LDSC still uses LD estimates of 1000
Genomes SNPs. To assess the impact of “SNP subsetting” on RSS-
E, we simulated data using all 1000 Genome SNPs, applied the
enrichment methods to summary statistics of HapMap3 SNPs
only, and then compared HapMap3-based results with results
of analyzing all 1000 Genome SNPs. As above, RSS-E is robust
to “SNP subsetting” and more powerful than other methods
(Supplementary Fig. 5).

Finally, to benchmark its prioritization component, we
compared RSS-E with four gene-based association methods17–20.
Figure 3 and Supplementary Figures 6, 7 show the power of each
method to identify gene-level associations. RSS-E substantially
outperforms existing methods even in the absence of enrichments
(Fig. 3a), especially in the polygenic scenario. This is because RSS-
E exploits a multiple regression framework8 to learn the genetic
architecture from data of all genes and assesses their effects
jointly, whereas other methods implicitly assume a fixed, sparse
architecture and only use data of a single gene to estimate its
effect. When datasets contain enrichments (Fig. 3b), RSS-E
further leverages them, which existing methods ignore,
to improve power.

In conclusion, RSS-E outperforms existing methods in both
enrichment and prioritization analysis, and is robust to a wide

range of model mis-specification. To further investigate its real-
world benefit, we applied RSS-E to analyze 31 complex traits and
4026 gene sets.

Multiple regression on 1.1 million variants across 31 traits. The
first step of our analysis is multiple regression of 1.1 million
HapMap3 common SNPs for 31 traits, using GWAS summary
statistics from 20,883 to 253,288 European ancestry individuals
(Supplementary Table 1; Supplementary Fig. 8). This step
essentially estimates, for each trait, a baseline model (M0) against
which enrichment models (M1) can be compared. The fitted
baseline model captures both the size and abundance (“poly-
genicity”) of the genetic effects on each trait, effectively providing
a two-dimensional summary of the genetic architecture of each
trait (Fig. 4a; Supplementary Fig. 9; Supplementary Table 2).

The results emphasize that genetic architecture varies con-
siderably among phenotypes: estimates of both polygenicity and
effect sizes vary by several orders of magnitude. Height and
schizophrenia stand out as being particularly polygenic, showing
approximately ten times as many estimated associated variants as
any other phenotype. Along the other axis, fasting glucose, fasting
insulin and hemoglobin show the highest estimates of effect
sizes, with correspondingly lower estimates for the number of
associated variants. Although not our main focus, these results
highlight the potential for multiple regression models like ours to
learn about effect size distributions and genetic architectures from
GWAS summary statistics.

1. Public Data

1.1 GWAS summary statistics

(�j,sj) := marginal effect and standard error of SNP jˆ ˆ

ˆˆ

ˆ

ˆ ˆ ˆ ˆ� := (�1,...,�p)′,S := diag{ (s1,...,sp)′}

1.2 External LD estimates

R := p × p matrix of LD between SNPs

1.3 Predefined gene sets

aj:= 1 {SNP j is “near” a gene in the set}

Gene Chr Start End
BRAF

MAPK1
MAPK3

7 140419127 140624564
22 22108789 22221970
16 30125426 30134827

2. Bayesian Model

2.1 Likelihood

� := (�1, . . . , �p)′

� ~     (SRS−1�, SRS)

2.2 Prior distribution

2.3 Baseline model

M0 : log10

M1 : log10

πj

1 − πj

πj

1 − πj

= �0

2.4 Enrichment model

= �0 + aj �

3. Inference

3.1 Gene set enrichment

BF :=
Pr (Data | M1)
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3.2 Gene prioritization
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Fig. 1 Schematic overview of RSS-E, a model-based enrichment analysis method for GWAS summary statistics. RSS-E combines three types of public data:
GWAS summary statistics (1.1), external LD estimates (1.2), and predefined SNP sets (1.3). GWAS summary statistics consist of a univariate effect size
estimate (β̂j) and corresponding standard error (̂sj) for each SNP, which are routinely generated in GWAS. External LD estimates are obtained from an
external reference panel with ancestry matching the population of GWAS cohorts. SNP sets here are derive from gene sets based on biological pathways or
sequencing data. We combine these three types of data by fitting a Bayesian multiple regression (2.1–2.2) under two models about the enrichment
parameter (θ): the baseline model (2.3) that each SNP has equal chance of being associated with the trait (M0: θ= 0), and the enrichment model (2.4) that
SNPs in the SNP set are more often associated with the trait (M1: θ > 0). To test enrichment, RSS-E computes a Bayes factor (BF) comparing these two
models (3.1). RSS-E also automatically prioritizes loci within an enriched set by comparing the posterior distributions of genetic effects (β) underM0 andM1

(3.2). Here we summarize the posterior of β as P1, the posterior probability that at least one SNP in a locus is trait-associated. Differences between P1
estimated under M0 and M1 reflect the influence of enrichment on genetic associations, which can help identify new trait-associated genes (3.2)
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Fitting the baseline model also yields an estimate of effect
size for each SNP. These can be used to identify trait-associated
SNPs and loci. Reassuringly, these multiple-SNP results recapi-
tulate many associations detected in single-SNP analyses of the
same data (Supplementary Figs. 10–12). For several traits, these
results also identify additional associations (Supplementary
Figs. 13, 14). These additional findings, while potentially
interesting, may be difficult to validate and interpret. Enrichment
analysis can help here: if the additional signals tend to be enriched
in a plausible pathway, it may both increase confidence in the
statistical results and provide some biological framework to
interpret them.

Enrichment analyses of 3913 pathways across 31 traits. We next
performed enrichment analyses of SNP sets derived from 3913
expert-curated pathways, ranging in size from 2 to 500 genes
(Supplementary Figs. 15, 16). For each trait-pathway pair we
computed a BF testing the enrichment model (M1), and estimated
the enrichment parameter (θ).

Since these analyses involve large-scale computations that are
subject to approximation error, we developed some sanity checks
for confirming enrichments identified by RSS-E. Specifically
these simple methods confirm that the z-scores for SNPs inside a
putatively enriched pathway have a different distribution from
those outside the pathway (with more z-scores away from 0)—
using both a visual check and a likelihood ratio statistic
(Supplementary Fig. 17). Of note, these methods cannot replace
RSS-E in the present study. The visual check requires human

input, and thus is not suitable for large-scale analyses like ours.
The likelihood ratio does not account for LD, and is expected to
be less powerful (Supplementary Fig. 18).

Since genic regions may be generally enriched for associations
compared with nongenic regions, we confirmed that top-ranked
pathways often showed stronger evidence for enrichment than
did the set containing all genes (Supplementary Fig. 19). We
also created “null” (nonenriched) SNP sets by randomly drawing
near-gene SNPs, and performed enrichment analyses of these
“null” sets on real GWAS summary data. Enrichment signals
of these simulated genic sets are substantially weaker than
the actual top-ranked sets (Supplementary Fig. 20). Further,
to check whether observed enrichments could be driven by
other functional annotations (e.g., coding), we computed the
correlation between enrichment BFs and proportions of gene-
set SNPs falling into each of 52 functional categories14. Among
1612 trait-category pairs, we did not observe any strong
correlation (median 7.3 × 10−3; 95% interval [−0.08 to 0.21];
Supplementary Fig. 21). Together, these results suggest that
observed enrichments are unlikely to be artifacts driven by model
mis-specification.

For most traits our analyses identify many pathways with
strong evidence for enrichment—for example, 20 traits have
enrichment BFs ≥ 108 in more than 100 pathways per trait
(Supplementary Fig. 22). Although the top enriched pathways for
a given trait often substantially overlap (i.e., share many genes),
several traits show enrichments with multiple nonoverlapping or
minimally overlapping pathways (Supplementary Fig. 23). Table 1
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Fig. 2 Comparison of RSS-E to other methods for identifying enrichments from GWAS summary statistics. We used real genotypes12 to simulate individual-
level data under two genetic architectures (“sparse” and “polygenic”) with four baseline-enrichment patterns: a baseline and enrichment datasets followed
baseline (M0) and enrichment (M1) models in RSS-E; b baseline datasets assumed that a random set of near-gene SNPs were enriched for genetic
associations and enrichment datasets followed M1; c baseline datasets assumed that a random set of coding SNPs were enriched for genetic associations
and enrichment datasets followed M1; d baseline datasets followed M0 and enrichment datasets assumed that trait-associated SNPs were both more
frequent, and had larger effects, inside than outside the target gene set. We computed the corresponding single-SNP summary statistics, and, on these
summary data, we compared RSS-E with Pascal13 and LDSC14 using their default setups. Pascal includes two gene scoring options: maximum-of-χ2 (-max)
and sum-of-χ2 (-sum), and two pathway scoring options: χ2 approximation (-chi) and empirical sampling (-emp). For each simulated dataset, both Pascal
and LDSC produced enrichment p values, whereas RSS-E produced an enrichment BF; these statistics were used to rank the significance of enrichments.
Each panel displays the trade-off between false and true enrichment discoveries for all methods in 200 baseline and 200 enrichment datasets of a given
simulation scenario, and also reports the corresponding areas under the curve (AUCs), where a higher value indicates better performance. Simulation
details and additional results are provided in Supplementary Figures 1–4

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06805-x

4 NATURE COMMUNICATIONS |  (2018) 9:4361 | DOI: 10.1038/s41467-018-06805-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


gives examples of top enriched pathways, with full results
available online (Methods).

Our results highlight many previously reported trait-pathway
links. For example, Hedgehog pathway is enriched for associa-
tions with adult height (BF= 1.9 × 1040), consistent with both
pathway function21 and previous GWAS22. Other examples
include interleukin-23 mediated signaling pathway with inflam-
matory bowel disease (BF= 3.1 × 1023; ref. 23), T helper cell
surface molecule pathway with rheumatoid arthritis (BF= 3.2 ×
108; ref. 24), statin pathway with levels of high-density lipoprotein
cholesterol (BF= 8.4 × 10113; ref. 25), and glucose transporter
pathway with serum urate (BF= 1.2 × 101558; ref. 26).

The results also highlight several pathway enrichments that
were not reported in corresponding GWAS publications. For
example, the top pathway for rheumatoid arthritis is calcineurin-
regulated nuclear factor of activated T cells (NFAT)-dependent
transcription in lymphocytes (BF= 1.1 × 1010). This result adds
to the considerable existing evidence linking NFAT-regulated
transcription to immune function27 and bone pathology28. Other
examples of novel pathway enrichments include endochondral
ossification pathway with adult height (BF= 7.7 × 1068; ref. 29),
p75 neurotrophin receptor-mediated signaling pathway with
coronary artery disease (BF= 9.6 × 1015; ref. 30), and osteoblast
signaling pathway with gout (BF= 3.8 × 1030; ref. 31).
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Fig. 3 Comparison of RSS-E to other methods for identifying gene-level associations from GWAS summary statistics. We used real genotypes12 to simulate
individual-level data with and without enrichment in the target gene set (a “baseline”; b “enrichment”), each under two genetic architectures (“sparse” and
“polygenic”), and then computed corresponding single-SNP summary statistics. On these summary data, we compared RSS-E with four other methods:
SimpleM17, VEGAS18, GATES19, and COMBAT20. We applied VEGAS to the full set of SNPs (-sum), to a specified percentage of the most significant SNPs
(−10% and −20%), and to the single most significant SNP (-max), within 100 kb of the transcribed region of each gene. All methods are available in the
package COMBAT (Methods). For each simulated dataset, we defined a gene as “trait-associated” if at least one SNP within 100 kb of the transcribed
region of this gene had nonzero effect. For each gene in each dataset, RSS-E produced the posterior probability that the gene was trait-associated. whereas
the other methods produced association p values; these statistics were used to rank the significance of gene-level associations. Each panel displays the
trade-off between false and true gene-level associations for all methods in 100 datasets of a given simulation scenario, and reports the corresponding
AUCs. Simulation details and additional results are provided in Supplementary Figures 6, 7
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Overlapping pathway enrichments among related traits. Some
pathways show enrichment in multiple traits. To gain a global
picture of shared pathway enrichments among traits we estimated
the proportions of shared pathway enrichments for all pairs
of traits (Fig. 4b; Supplementary Table 3). Clustering these pair-
wise sharing results highlights four main clusters of traits:
immune-related diseases, blood lipids, heart disorders, and red
blood cell phenotypes. Blood cholesterol shows strong pairwise
sharing with serum urate (0.67), hemoglobin (0.66), and fasting
glucose (0.53), which could be interpreted as a set of blood ele-
ments. Serum urate shows moderate to strong sharing with
rheumatoid arthritis (0.19) and inflammatory bowel diseases
(0.38–0.63), possibly due to the function of urate crystals in
immune responses32. Further, Alzheimer’s disease shows mod-
erate sharing with blood lipids (0.17–0.23), heart diseases
(0.15–0.21), and inflammatory bowel diseases (0.10–0.13). This
seems consistent with recent data linking Alzheimer’s disease to
lipid metabolism33, vascular disorder34, and immune activation35.
The biologically relevant clustering of shared pathway enrich-
ments helps demonstrate the potential of large-scale GWAS data
to highlight similarities among traits, complementing other
approaches such as clustering of shared genetic effects36 and
coheritability analyses37.

Novel trait-associated genes informed by enriched pathways. A
key feature of RSS-E is that pathway enrichments, once identified,
are automatically used to prioritize associations at variants near
genes in the pathway. Specifically, RSS-E gives almost identical
estimates of the background parameter (θ0) in both baseline
and enrichment analyses (Supplementary Fig. 24), and yields a
positive estimate of the enrichment parameter (θ) if the pathway
is identified as enriched (Supplementary Fig. 25). The positive
estimate of θ increases the prior probability of association for
SNPs in the pathway, which in turn increases the posterior
probability of association for these SNPs.

This ability to prioritize associations, which is not shared by
most enrichment methods, has several important benefits. Most
obviously, prioritization analyses can detect additional genetic
associations that may otherwise be missed. Furthermore,
prioritization facilitates the identification of genes influencing a
phenotype in two ways. First, it helps identify genes that may
explain individual variant associations, which is itself an
important and challenging problem38. Second, prioritization
helps identify genes that drive observed pathway enrichments.
This can be useful to check whether a pathway enrichment may
actually reflect signal from just a few key genes, and to
understand enrichments of pathways with generic functions.

ALS

ANM

BMI

CAD CD

DS

FGFI

GOUT

HB

HDL

HEIGHT

HR

IBD

LDL

LOAD MCH

MCHC

MCV

MI

NEU

PCV

RA

RBC

SCZ

T2D
TC

TG

UC

URATE

WHR
10−2

10−1.5

10−1

10−0.5

100

100.5

10−6 10−5 10−4 10−3 10−2

Fraction of trait-associated SNPs

S
ta

nd
ar

di
ze

d 
ef

fe
ct

 s
iz

e 
of

 tr
ai

t-
as

so
ci

at
ed

 S
N

P
s

Trait category
Neurological
Anthropometric
Immune-related

Metabolic
Hematopoietic

a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
C

Z
G

O
U

T
H

R
A

LS
B

M
I

D
S

N
E

U
R

A
U

C
U

R
A

T
E

C
D

IB
D

LO
A

D
LD

L
T

C
H

D
L

T
G

C
A

D
M

I
W

H
R

T
2D

R
B

C
F

I
M

C
H

C
H

B
P

C
V

M
C

H
M

C
V

F
G

A
N

M
H

E
IG

H
T

SCZ
GOUT

HR
ALS
BMI
DS

NEU
RA
UC

URATE
CD
IBD

LOAD
LDL
TC

HDL
TG

CAD
MI

WHR
T2D
RBC

FI
MCHC

HB
PCV
MCH
MCV

FG
ANM

HEIGHT

b

Fig. 4 Baseline and enrichment analyses of GWAS summary statistics for 31 complex traits. References of these data are provided in Supplementary Notes.
a Summary of inferred effect size distributions of 31 traits. Results are from fitting the baseline model (M0) to GWAS summary statistics of 1.1 million
common HapMap3 SNPs for each trait using variational inference (Methods). We summarize effect size distribution using two statistics: the estimated
fraction of trait-associated SNPs (average posterior probability of a SNP being trait-associated; x-axis) and the standardized effect size of trait-associated
SNPs (average posterior mean effect size of all SNPs, normalized by phenotypic standard deviation and fraction of trait-associated SNPs; y-axis). Each dot
represents a trait, with horizontal and vertical point ranges indicating posterior mean and 95% credible interval. See Supplementary Notes for more details.
Note that some intervals are too small to be visible due to log10 scales. See Supplementary Table 2 for numerical values of all intervals. b Pairwise sharing
of 3913 pathway enrichments among 31 traits. For each pair of traits, we estimate the proportion of pathways that are enriched in both traits, among
pathways enriched in at least one of the traits (Methods). Traits are clustered by hierarchical clustering as implemented in the package corrplot (Methods).
Darker color and larger shape represent higher sharing. The sharing estimates are provided in Supplementary Table 3. ALS amyotrophic lateral sclerosis;
DS depressive symptoms; LOAD late-onset Alzheimer’s disease; NEU neuroticism; SCZ schizophrenia; BMI body mass index; HEIGHT adult height; WHR
waist-to-hip ratio; CD Crohn’s disease; IBD inflammatory bowel disease; RA rheumatoid arthritis; UC ulcerative colitis; ANM age at natural menopause;
CAD coronary artery disease; FG fasting glucose; FI fasting insulin; GOUT gout; HDL high-density lipoprotein; HR heart rate; LDL low-density lipoprotein;
MI myocardial infarction; T2D type 2 diabetes; TC total cholesterol; TG triglycerides; URATE serum urate; HB hemoglobin; MCH mean cell HB; MCHC
MCH concentration; MCV mean cell volume; PCV packed cell volume; RBC red blood cell count
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To illustrate, we performed prioritization analyses on the trait-
pathway pairs showing strongest evidence for enrichment.
Following previous Bayesian analyses7,39, here we evaluated
genetic associations at the level of loci, rather than individual
SNPs. Specifically, for each locus we compute P1, the posterior
probability that at least one SNP in the locus is associated with
the trait, under both the baseline and enrichment hypothesis.
Differences in these two P1 estimates reflect the influence of
enrichment on the locus (Fig. 1).

The results show that prioritization analysis typically increases
the inferred number of genetic associations (Supplementary
Fig. 26), and uncovers putative associations that were not
previously reported in GWAS. For example, enrichment in
chylomicron-mediated lipid transport pathway (BF= 3.4 × 1065;
Fig. 5a) informs a strong association between gene MTTP
and levels of low-density lipoprotein (LDL) cholesterol
(baseline P1: 0.14; enrichment P1: 0.99; Fig. 5b). This gene is
a strong candidate for harboring associations with LDL:
MTTP encodes microsomal triglyceride transfer protein, which
has been shown to involve in lipoprotein assembly; mutations
in MTTP cause abetalipoproteinemia, a rare disease characterized
by low levels of apolipoprotein B and LDL cholesterol; and
MTTP is a potential pharmacological target for lowering LDL
cholesterol levels40. However, no genome-wide significant SNPs
near MTTP were reported in single-SNP analyses of either the
same data41 (Fig. 5c), or more recent data42 with larger sample
size (Fig. 5d).

Prioritization analysis of the same pathway (chylomicron-
mediated lipid transport) also yields several additional plausible
associations (Fig. 5b; Supplementary Table 4). These include LIPC
(baseline P1: 0.02; enrichment P1: 0.96) and LPL (baseline P1:
0.01; enrichment P1: 0.76). These genes play important roles in
lipid metabolism and both reach genome-wide significance in
single-SNP analyses of high-density lipoprotein cholesterol and
triglycerides41 although not for LDL cholesterol (Supplementary
Fig. 27); and a multiple-trait, single-SNP analysis43 of the same
data also did not detect associations of these genes with LDL.

Several other examples of putatively novel associations that
arise from our gene prioritization analyses are summarized in
Table 2, with related literature reported in Supplementary Notes.

Enrichment analyses of 113 tissue-based gene sets. RSS-E is not
restricted to pathways, and can be applied more generally. Here,
we use it to assess enrichment among tissue-based gene sets that
we define based on gene expression data. Specifically, we use RNA
sequencing data from the Genotype-Tissue Expression project44

to define sets of the most “relevant” genes in each tissue, based on
expression patterns across tissues. The idea is that enrichment of
GWAS signals near genes that are most relevant to a particular
tissue may suggest an important role for that tissue in the trait.

A challenge here is how to define “relevant” genes. For
example, are the highest expressed genes in a tissue the most
relevant, even if the genes is ubiquitously expressed45? Or is a

Table 1 Top enriched biological pathways in complex traits

Phenotype Top enriched pathway Database # of signals (genes) log10BF

Neurological traits
Depressive symptoms Eicosapentaenoate biosynthesis HumanCyc (PC) 2 (12) 36.9
Alzheimer’s disease Golgi associated vesicle biogenesis Reactome (PC) 3 (49) 83.7
Anthropometric traits
Adult height Endochondral ossification WikiPathways (BS) 57 (65) 68.9
Immune-related traits
Crohn’s disease Inflammatory bowel disease KEGG (BS) 24 (61) 25.6
Inflammatory bowel disease Inflammatory bowel disease KEGG (BS) 26 (61) 24.2
Rheumatoid arthritis NFAT-dependent transcriptiona PID (BS) 11 (45) 10.0
Ulcerative colitis Inflammatory bowel disease KEGG (BS) 16 (61) 11.8
Metabolic traits
Age at natural menopause IL-2Rβ in T-cell activation BioCarta 2 (37) 866.7
Coronary artery disease p75(NTR)-mediated signaling PID (BS) 4 (55) 16.0
Fasting glucose Hexose transport Reactome (BS) 4 (47) 1,898.4
Gout Osteoblast signaling WikiPathways (BS) 2 (13) 30.6
High-density lipoprotein Statin pathway WikiPathways (BS) 18 (30) 113.9
Low-density lipoprotein Chylomicron-mediated lipid transport Reactome (PC) 11 (17) 65.5
Myocardial infarction Glutathione synthesis and recycling Reactome (PC) 2 (11) 9.6
Total cholesterol Glucose transport Reactome (BS) 2 (41) 833.2
Triglycerides Targets of C-MYC activationb PID (BS) 3 (79) 604.9
Serum urate Transport of glucose and othersc Reactome (PC) 4 (95) 1,558.1
Hematopoietic traits
Hemoglobin (HB) RNA polymerase I transcription Reactome (BS) 27 (107) 2,641.3
Mean cell HB (MCH) Meiotic synapsis Reactome (PC) 21 (72) 2,334.3
MCH concentration SIRT1 negative regulation of rRNAd Reactome (PC) 3 (63) 700.8
Mean cell volume DNA methylation Reactome (PC) 28 (61) 2,077.3
Packed cell volume RNA polymerase I promoter opening Reactome (PC) 27 (59) 217.5
Red blood cell count GSL biosynthesis (neolacto series) KEGG (PC) 2 (21) 391.2

For each trait here we report the most enriched pathway (if any) that (i) has an enrichment Bayes factor (BF) greater than 108; (ii) has at least 10 and at most 200 member genes; (iii) has at least two
member genes with enrichment P1 > 0.9 (denoted as “signals”); and (iv) passes the visual and likelihood ratio sanity checks (Supplementary Fig. 17). All BFs reported here are larger than corresponding
BFs that SNPs within 100 kb of transcribed regions of all genes are enriched (Supplementary Fig. 19). The corresponding baseline and enrichment parameter estimates are provided in online results
(Methods). P1 posterior probability that at least one SNP within 100 kb of the transcribed region of a given gene has nonzero effect on the target trait; CaN: calcineurin; NFAT: nuclear factor of activated
T cells; IL-2Rβ: interleukin-2 receptor beta chain; p75(NTR): p75 neurotrophin receptor; SIRT1: Sirtuin 1; GSL: glycosphingolipid; PC: Pathway Commons63; BS: NCBI BioSystems64
a The full name of this pathway is “calcineurin-regulated NFAT-dependent transcription in lymphocytes”
b The full name of this pathway is “validated targets of C-MYC transcriptional activation”
c The full name of this pathway is “transport of glucose and other sugars, bile salts and organic acids, metal ions and amine compounds”
d The full name of this pathway is “SIRT1 negatively regulates ribosomal RNA expression”
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gene that is moderately expressed in that tissue, but less expressed
in all other tissues, more relevant? To address this we considered
three complementary methods to define tissue-relevant genes
(Methods). The first method (“highly expressed”, HE) uses the
highest expressed genes in each tissue. The second method
(“selectively expressed”, SE) uses a tissue-selectivity score46

designed to identify genes that are much more strongly expressed
in that tissue than in other tissues. The third method
(“distinctively expressed”, DE) clusters tissue samples and
identifies genes that are most informative for distinguishing each
cluster from others47. This last method yields a list of “relevant”
genes for each cluster, but most clusters are primarily associated
with one tissue, and so we use this to assign genes to tissues.
These methods often yield minimally overlapped gene sets for the

same tissue (median overlap proportion: 4%; Supplementary
Fig. 28).

Despite the small number of tissue-based gene sets relative to
the pathway analyses above, this analysis identifies many strong
enrichments. The top enriched tissues vary considerably among
traits (Table 3), highlighting the benefits of analyzing a wide
range of tissues. In addition, traits vary in which strategy for
defining gene sets (HE, SE, or DE) yields the strongest
enrichment results. For example, HE genes in heart show
strongest enrichment for heart rate; SE genes in liver show
strongest enrichment for LDL. This highlights the benefits of
considering different annotation strategies, and suggests that,
unsurprisingly, there is no single answer to the question of which
genes are most “relevant” to a tissue.

* *
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For some traits, the top enriched results (Table 3) recapitulate
previously known trait-tissue connections (e.g., lipids and liver,
glucose and pancreas), supporting the potential for our approach
to identify trait-relevant tissues. Further, many traits show
enrichments in multiple tissues. For example, associations in
coronary artery disease are strongly enriched in genes related to
both heart (SE, BF= 6.6 × 107) and brain (DE, BF= 3.5 × 108).
The multiple-tissue enrichments highlight the potential for our
approach to also produce novel biological insights, which we
illustrate through an in-depth analysis of late-onset Alzheimer’s
disease (LOAD).

Tissue-based analysis of LOAD identified three tissues with
very strong evidence for enrichment (BF > 1030): liver, brain and
adrenal gland. Because of the well-known connection between

gene APOE and LOAD48, and the fact that APOE is highly
expressed in these three tissues (Supplementary Notes), we
hypothesized that APOE and related genes might be driving these
results. To assess this we reanalyzed these strongly enriched gene
sets after removing the entire apolipoproteins (APO) gene family
from them. Of three tissues, only liver remains (moderately)
enriched after excluding APO genes (Fig. 6), suggesting a possible
role for non-APO liver-related genes in the etiology of LOAD.

To identify additional genes underlying the liver enrichment,
we performed prioritization analysis for non-APO liver-related
genes. This highlighted an association of LOAD with gene TTR
(baseline P1: 0.64; enrichment P1: 1.00; Supplementary Notes).
TTR encodes transthyretin, which has been shown to inhibit
LOAD-related protein from forming harmful aggregation and

Table 3 Top enriched tissue-based gene sets in complex traits

Phenotype Tissue (method) log10BF Select top driving genes (# of signals)

Alzheimer’s disease Adrenal gland (SE) 45.6 APOE, APOC1 (2)
Neuroticism Brain (SE) 26.3 LINGO1, KCNC2 (2)
Adult height Nerve tibial (DE) 25.2b PTCH1, SFRP4, FLNB (59)
Crohn’s disease Cluster 1a (DE) 15.4 SMAD3, ZMIZ1, NUPR1 (6)
Inflammatory bowel disease Cluster 1a (DE) 15.8 SMAD3, ZMIZ1, NUPR1 (10)
Ulcerative colitis Heart (HE) 7.0 PLA2G2A, TCAP, ALDOA (4)
Age at natural menopause Brain (DE) 1053.2 BRSK1, PPP1R1B, NPTXR (6)
Coronary artery disease Brain (DE) 8.5 PSRC1, ZEB2, PTPN11 (3)
Fasting glucose Pancreas (SE) 2396.8 G6PC2, PDX1, SLC30A8 (5)
Fasting insulin Testis (SE) 866.7 ABHD1, PRR30, C2orf16 (3)
Heart rate Heart (HE) 4.1 MYH6, PLN (5)
High-density lipoprotein Liver (HE) 20.2 APOA1, APOE, MT1G, FTH1 (10)
Low-density lipoprotein Liver (SE) 33.4 ABCG5, LPA, ANGPTL3, HP (13)
Total cholesterol Liver (DE) 56.0 APOA1, APOE, HP (9)
Triglycerides Liver (HE) 93.2 APOA1, APOE, FTH1 (7)
Serum urate Kidney (SE) 210.8b SLC17A1, SLC22A11, PDZK1 (7)
Hemoglobin (HB) Whole blood (DE) 2078.1 HIST1H1E, HIST1H1C (4)
Mean cell HB Whole blood (DE) 1363.0 NPRL3, FBXO7, UBXN6 (11)
Mean cell volume Whole blood (DE) 1019.6b UBXN6, RBM38, NPRL3 (11)
Packed cell volume Heart (HE) 945.4 RPL19, TCAP (2)
Red blood cell count Breast (SE) 141.7 OBP2B, STAC2 (2)

Each tissue-based gene set contains 100 transcribed genes used in the Genotype-Tissue Expression project. For each trait we report the most enriched tissue-based gene set (if any) that has a Bayes
factor (BF) greater than 1000 and has more than two member genes with enrichment P1 > 0.9 (denoted as “signals”). All trait-tissue pairs reported above pass the sanity checks (Supplementary Fig. 17)
The corresponding baseline and enrichment parameter estimates are provided in online results (Methods). P1: posterior probability that at least one SNP within 100 kb of the transcribed region of a given
gene has nonzero effect on the target trait; HE: highly expressed; SE: selectively expressed; DE: distinctively expressed
a Multiple tissues show partial membership in “Cluster 1”, including ovary, thyroid, spleen, breast, and stomach47
b These three BFs are smaller than corresponding BFs that SNPs within 100 kb of transcribed regions of all genes are enriched (Supplementary Fig. 19)

Table 2 Select putative gene-level associations from prioritization analyses

Phenotype Pathway (# of genes, log10BF) Gene Baseline P1 Enrichment P1
Adult height Endochondral ossification (65, 68.9) HDAC4 0.98 1.00

PTH1R 0.94 1.00
FGFR1 0.67 0.97
MMP13 0.45 0.93

Inflammatory bowel disease Cytokine receptor interactiona (253, 21.3) TNFRSF14 0.98 1.00
FAS 0.82 0.99
IL6 0.27 0.87

Rheumatoid arthritis NFAT-dependent transcriptionb (45, 10.0) PTGS2 0.74 0.98
PPARG 0.28 0.98

Coronary artery disease p75(NTR)-mediated signaling (55, 16.0) FURIN 0.69 0.99
MMP3 0.43 0.97

High-density lipoprotein Lipid digestion and transportc (58, 89.8) CUBN 0.24 1.00
ABCG1 0.01 0.89

BF: enrichment Bayes factor; P1: posterior probability that at least one SNP within 100 kb of the transcribed region of a given gene has nonzero effect on the target trait. NFAT: nuclear factor of activated
T cells; p75(NTR): p75 neurotrophin receptor
a The full name of this pathway is “cytokine-cytokine receptor interaction”
b The full name of this pathway is “calcineurin-regulated NFAT-dependent transcription in lymphocytes”
c The full name of this pathway is “lipid digestion, mobilization, and transport”
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toxicity49,50. Indeed, transthyretin is considered a biomarker for
LOAD: patients show reduced transthyretin levels in plasma51

and cerebrospinal fluid52. Rare variants in TTR have recently
been found to be associated with LOAD53,54. By integrating
GWAS with expression data our analysis identifies association of
LOAD with TTR based on common variants.

Discussion
We have presented RSS-E, a new method for simultaneous
enrichment and prioritization analysis of GWAS summary data,
and illustrated its potential to yield novel insights by extensive
analyses involving 31 phenotypes and 4026 gene sets. We have
space to highlight only select findings, and expect that researchers
will find the full results (Methods) to contain further insights.

Enrichment tests, sometimes known as “competitive tests”,
have several advantages over alternative approaches—sometimes
known as “self-contained tests”—that simply test whether a SNP
set contains at least one association4,5. For example, for complex
polygenic traits any large pathway will likely contain at least one
association, making self-contained tests unappealing. Enrichment
tests are also more robust to confounding effects such as popu-
lation stratification, because confounders that affect the whole
genome will generally not create artifactual enrichments. Indeed,
in this sense enrichment results can be more robust than single-
SNP results. (Nonetheless, most summary data analyzed here
were corrected for confounding; see Supplementary Table 5.)

Compared with other enrichment approaches, RSS-E has sev-
eral particularly attractive features. First, unlike many methods

(e.g., 4,55.) RSS-E uses data from genome-wide common variants,
and not only those that pass some significance threshold. This
increases the potential to identify subtle enrichments even in
GWAS with few significant results. Second, RSS-E models
enrichment directly as an increased rate of association of variants
within a SNP set. This contrasts with alternative two-stage
approaches (e.g., 13,56.) that first collapse SNP-level association
statistics into gene-level statistics, and then assess enrichment at
the gene level. Our direct modeling approach has important
advantages, most obviously that it avoids the difficult and error-
prone steps of assigning SNP associations to individual genes, and
collapsing SNP-level associations into gene-level statistics. For
example, simply assigning SNP associations to the nearest gene
may highlight the “wrong” gene and miss the “correct” gene
(e.g., 38). Although our analyses do involve assessing proximity of
SNPs to genes in a gene set, they avoid uniquely assigning each
SNP to a single gene, which is a subtle but important distinction.

Perhaps the most important feature of RSS-E is that enrich-
ment leads naturally to prioritization that highlights which genes
in an enriched pathways are most likely to be trait-associated. We
know of only two published methods7,57 with similar features, but
both require individual-level data and so could not perform the
analyses presented here. With candidate loci prioritized by RSS-E,
researchers can further use off-the-shelf fine-mapping methods58

to pinpoint associations to single causal variants.
Although previous studies have noted potential benefits of

integrating gene expression with GWAS data, our enrichment
analyses of expression-based gene sets are different from, and
complementary to, this previous work. For example, many studies
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strongest enrichment signals for Alzheimer’s disease. Each gene set was analyzed twice: the left panel corresponds to the analysis based on the original
gene set; the right panel corresponds to the analysis where SNPs within 100 kb of the transcribed region of any gene in Apolipoproteins (APO) family
(Methods) were excluded from the original gene set. Dashed reddish purple lines in both panel denote the same Bayes factor threshold (1000) used in the
tissue-based analysis of all 31 traits (Table 3). HE highly expressed; SE selectively expressed; DE distinctively expressed
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have used expression quantitative trait loci (eQTL) data to help
inform GWAS results (e.g., 59,60). In contrast we bypass the issue
of detecting (tissue-specific) eQTLs by focusing only on differ-
ences in gene expression levels among tissues. And, unlike
methods that attempt to (indirectly) relate expression levels to
phenotype (e.g.,61,62), our approach focuses firmly on
genotype–phenotype associations. Nonetheless, as our results
from different tissue-based annotations demonstrate, it can be
extremely beneficial to consider multiple approaches, and we view
these methods as complimentary rather than competing.

Like any method, RSS-E also has limitations that need to be
considered when interpreting results. For example, annotating
variants as being “inside” a gene set based on proximity to a
relevant gene, while often effective, can occasionally give mis-
leading results. We saw an example of this when our method
identified an enrichment of SE genes in testis with both total
cholesterol and triglycerides. Further prioritization analysis
revealed that this enrichment was driven by a single gene, C2orf16
which is (a) uniquely expressed in testis, and (b) physically close
(53 kb) to another gene, GCKR, that is strongly associated with
lipid traits (Supplementary Fig. 29). This highlights the need for
careful examination of results, and also the utility of our prior-
itization analyses. Generally we view enrichments that are driven
by a single gene as less reliable and useful than enrichments
driven by multiple genes; indeed, enrichments driven by a single
gene seem better represented as a gene association than as a gene
set enrichment.

Other limitations of RSS-E stem from its use of variational
inference for Bayesian calculations. Although these methods are
computationally convenient in large datasets, and often produce
reliable results, they also have features to be aware of. One feature
is that when multiple SNPs in strong LD are associated with a
trait, variational approximations tend to select one of them and
ignore the others9. This feature will not greatly affect enrichment
inference provided that SNPs that are in strong LD tend to have
the same annotation (because then it will not matter which SNP is
selected). And this holds for the gene-based annotations in the
present study. However, it would not hold for finer-scale anno-
tations (e.g., appearance in a DNase peak), and so in that setting
the use of the variational approximation may need more care.
More generally the accuracy of the variational approximation can
be difficult to assess, especially since the underlying coordinate
ascent algorithm only guarantees convergence to a local opti-
mum. This said, the main alternative for making Bayesian cal-
culations, Markov chain Monte Carlo, can experience similar
difficulties.

Finally, the present study examines a single annotation (i.e.,
gene set) at a time. Practical issues that can occur in single-
annotation analyses (not only ours) include: (a) an enrichment
signal in one pathway can be caused by overlap with another
pathway that is genuinely involved in the phenotype; and (b) for
some traits (e.g., height), genetic associations may be strongly
enriched near all genes, which will cause many gene sets to appear
enriched. Extending RSS-E to jointly analyze multiple annota-
tions like14 could help address these issues. However, this
extension would increase computation costs, and we view the
development of more efficient multiple-annotation enrichment
methods as an important direction for future work.

Methods
GWAS summary statistics and LD estimates. We analyze GWAS summary
statistics of 31 traits, in particular, the estimated single-SNP effect and standard
error for each SNP. Following14, we use the same set of HapMap3 SNPs15 for all 31
traits, even though some traits have summary statistics available on all 1000
Genomes SNPs16. We use this “SNP subsetting” strategy to reduce computation,
since the computational complexity of RSS-E (per iteration) is linear with the total
number of SNPs (Supplementary Notes).

Among the HapMap3 SNPs, we also exclude SNPs on sex chromosomes,
SNPs with minor allele frequency less than 1%, SNPs in the major
histocompatibility complex region, and SNPs measured on custom arrays (e.g.,
Metabochip and Immunochip) from analyses. The final set of analyzed variants
consists of 1.1 million SNPs (Supplementary Table 1, Supplementary Fig. 8).

Since GWAS summary statistics used here were all generated from European
ancestry cohorts, we use haplotypes of individuals with European ancestry from the
1000 Genomes Project, Phase 316 to estimate LD10.

SNP annotations. To create SNP-level annotations for a given gene set, we use a
distance-based approach from previous enrichment analyses7,56. Specifically,
we annotate each SNP as being “inside” a gene set if it is within 100 kb of the
transcribed region of a gene in the gene set. The relatively broad region is chosen to
capture signals from nearby regulatory variants, since many GWAS hits are
noncoding.

Biological pathways. Biological pathway definitions are retrieved from nine
databases (BioCarta, BioCyc, HumanCyc, KEGG, miRTarBase, PANTHER, PID,
Reactome, WikiPathways) that are archived by four repositories: Pathway
Commons (version 7)63, NCBI Biosystems64, PANTHER (version 3.3)65, and
BioCarta (used in ref. 7). Gene definitions are based on Homo sapiens reference
genome GRCh37. Both pathway and gene data were downloaded on August 24,
2015. Following7, we compile a list of 3913 pathways that contains 2–500 auto-
somal protein-coding genes for the present study. We summarize pathway and
gene information in Supplementary Figures 15, 16.

Tissue-based gene sets derived from transcriptome. Complex traits are often
affected by multiple tissues, and it is not obvious a priori what the most relevant
tissues are for the trait. Hence, it is necessary to examine a comprehensive set of
tissues. The breadth of tissues in genotype-tissue expression (GTEx) project44

provides such an opportunity.
Here, we use RNA sequencing data to create 113 tissue-based gene sets. Due to

the complex nature of extracting tissue relevance from sequencing data, we
consider three different methods to derive tissue-based gene sets.

The HE method ranks the mean reads per kilobase per million mapped reads
(RPKM) of all genes based on data of a given tissue, and then selects the top 100
genes with the largest mean RPKM values to represent the target tissue. We
downloaded HE gene lists of 44 tissues with sample sizes greater than 70 from the
GTEx Portal on November 21, 2016.

The SE method computes a tissue-selectivity (TS) score46 in each tissue for each
gene, and then uses the top 100 genes with the largest TS scores to represent
the target tissue. We obtained SE gene lists of 49 tissues from authors of ref. 46

on February 13, 2017.
The DE method summarizes 53 tissues as 20 clusters using admixture models47,

computes a cluster-distinctiveness (CD) score in each cluster for each gene, and
then uses the top 100 genes with the largest CD scores to represent the target
cluster. We obtained DE gene lists of 20 clusters from authors of ref. 47 on May 19,
2016.

Bayesian statistical models. Consider a GWAS with n unrelated individuals
typed on p SNPs. For each SNP j, we denote its estimated single-SNP effect size and
standard error as β̂j and ŝj , respectively. To model fβ̂j; ŝjg, we use the RSS like-
lihood8:

β̂ � N ŜR̂Ŝ�1β; ŜR̂Ŝ
� � ð1Þ

where β̂ :¼ ðβ̂1; ¼ ; β̂pÞ′ is a p × 1 vector, Ŝ :¼ diagð̂sÞ is a p × p diagonal matrix
with diagonal elements being ŝ :¼ ð̂s1; ¼ ; ŝpÞ′, R̂ is a p × p LD matrix estimated
from an external reference panel with ancestry matching the GWAS cohort, β:=
(β1,…,βp)′ are the true effects of each SNP on phenotype, and N denotes normal
distributions.

To model enrichment of genetic associations within a given gene set, we borrow
the idea from refs. 7,39, to specify the following prior on β:

βj � πj � N 0; σ2β

� �
þ ð1� πjÞ � δ0; ð2Þ

σ2β ¼ h �
Xp

j¼1
πjn

�1 ŝ�2
j

� ��1
; ð3Þ

πj ¼ 1þ 10�ðθ0þajθÞ
� ��1

; ð4Þ

where δ0 denotes point mass at zero, θ0 reflects the background proportion of trait-
associated SNPs, θ reflects the increase in probability, on the log10-odds scale, that
a SNP inside the gene set has nonzero effect, h approximates the proportion of
phenotypic variation explained by genotypes of all available SNPs, and aj indicates
whether SNP j is inside the gene set. Following7, we place independent uniform
grid priors on the hyper-parameters {θ0, θ, h}; see Supplementary Tables 6, 7.
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(If one had specific information about hyper-parameters in a given application
then this could be incorporated here.)

Posterior computation. We combine the likelihood function (Eq. (1)) and prior
distribution (Eqs. (2)–(4)) above to perform Bayesian inference. The posterior
computation procedures largely follow those developed in ref. 9. First, for each set
of hyper-parameters {θ0, θ, h} from a predefined grid, we approximate the (con-
ditional) posterior of β using a variational Bayes algorithm. Next, we approximate
the posterior of {θ0, θ, h} by a discrete distribution on the predefined grid, using the
variational lower bounds from the first step to compute the discrete probabilities.
Finally, we integrate out the conditional posterior of β over the posterior of {θ0, θ,
h} to obtain the full posterior of β.

Following7, we set random initialization as a default for the variational Bayes
algorithm. Specifically, we randomly select an initialization, and then use this same
initial value for all variational approximations over the grid of {θ0, θ, h}. This
simple approach was used in all simulations and data analyses for the present
study, and yielded satisfying results in most cases.

To facilitate large-scale analyses, we employ several computational tricks.
First, we use squared iterative methods11 to accelerate the fixed point iterations
in the variational approximation. Second, we exploit the banded LD matrix10 to
parallelize the algorithm. Third, we use a simplification in ref. 7 that scales the
enrichment analysis to thousands of gene sets by reusing expensive genome-wide
calculations. See Supplementary Notes for details.

For one trait, the total computational cost of our analyses is determined by the
number of whole-genome SNPs, the number of gene sets and the grid size for
hyper-parameters, all of which can vary considerably among studies. It is thus hard
to make general statements about computational time. However, to give a specific
example, we finished baseline and enrichment analyses of 1.1 million HapMap3
SNPs and 3913 pathways for LDL within 36 h in a standard computer cluster (48
nodes, 12–16 CPUs per node).

All computations in the present study were performed on a Linux system with
multiple (4–22) Intel E5–2670 2.6 GHz, Intel E5–2680 2.4 GHz or AMD Opteron
6386 SE processors.

Assess gene set enrichment. To assess whether a gene set is enriched for genetic
associations with a target trait, we evaluate a Bayes factor (BF):

BF :¼ pðβ̂jŜ; R̂; a; θ > 0Þ
pðβ̂jŜ; R̂; a; θ ¼ 0Þ ;

ð5Þ

where p(⋅) denotes probability densities, a:= (a1,…,ap)′ and aj indicates whether
SNP j is inside the gene set. The observed data are BF times more likely under the
enrichment model (M1: θ > 0) than under the baseline model (M0: θ= 0), and so
the larger the BF, the stronger evidence for gene set enrichment. See Supplementary
Notes for details of computing enrichment BF.

Detect association between a locus and a trait. To identify trait-associated loci,
we consider two statistics derived from the posterior distribution of β. The first
statistic is P1, the posterior probability that at least one SNP in the locus is asso-
ciated with the trait:

P1 :¼ 1� Pr βj ¼ 0;8 SNP j 2 locusjD
� �

; ð6Þ

where D is a shorthand for the input data of RSS-E including GWAS summary
statistics β̂; Ŝ

� �
, LD estimates R̂

� �
and SNP annotations (a, if any). The second

statistic is ENS, the posterior expected number of associated SNPs in the locus:

ENS :¼
X

j2locusPrðβj ≠ 0jDÞ: ð7Þ

See Supplementary Notes for details of computing P1 and ENS.

Estimate pairwise sharing of pathway enrichments. To capture pairwise sharing
of enrichments, we define π= (π00, π01, π10, π11)′:

πab :¼ Pr z1j ¼ a; z2j ¼ b
� �

; a 2 f0; 1g; b 2 f0; 1g; ð8Þ

where zij equals one if pathway j is enriched in trait i and zero otherwise. Assuming
independence among pathways and phenotypes, we estimate π by

π̂ :¼ argmax

π

Y
j
π00 þ π01BF2j þ π10BF1j þ π11BF1jBF2j

� �
; ð9Þ

where BFij is the enrichment BF for trait i and pathway j. We solve this optimi-
zation problem using an expectation-maximization algorithm implemented in the
package ashr66. The conditional probability that a pathway is enriched in a pair of
traits given that it is enriched in at least one trait, as plotted in Fig. 4b, is estimated
as π̂11=ð1� π̂00Þ.

Connection with enrichment analysis of individual-level data. RSS-E has
close connection with previous work7 developed for individual-level data.
Under certain conditions8, we can show that these two methods are mathematically
equivalent, in the sense that they have the same fix point iteration scheme and
lower bound in variational approximations. See Supplementary Notes for proofs.
In addition to their theoretical connections, we also compared two methods
through simulations, and observed similar inferential results (Supplementary
Fig. 30).

Code availability. The RSS-E software is publicly available at https://github.com/
stephenslab/rss. Illustrations of using RSS-E are provided in https://stephenslab.
github.io/rss/Example-5. The RSS-E software has been tested in the following
versions of MATLAB for 64-bit Linux: 9.3.0.713579 (R2017b), 8.4.0.150421
(R2014b), 8.2.0.701 (R2013b) and version 8.1.0.604 (R2013a). Results of the
present study were generated from version 8.4.0.150421 (R2014b).

This study also used the following software packages: Pascal (https://www2.unil.
ch/cbg/index.php?title=Pascal), LDSC (version 1.0.0, https://github.com/bulik/
ldsc), COMBAT (version 0.0.2, https://cran.r-project.org/web/packages/
COMBAT), corrplot (version 0.84, https://cran.r-project.org/web/packages/
corrplot), and ashr (version 2.0.5, https://cran.r-project.org/web/packages/ashr).
Default setups of these packages were used.

Data availability
Analysis results and all 4026 gene sets for the present study are publicly available at
https://doi.org/10.5281/zenodo.1412872. The 4026 gene sets consist of 3913 biological
pathways retrieved from the following four repositories: Pathway Commons (version 7,
http://www.pathwaycommons.org/archives/PC2/v7), NCBI Biosystems (ftp://ftp.ncbi.
nih.gov/pub/biosystems), PANTHER (version 3.3, ftp://ftp.pantherdb.org/pathway),
BioCarta (used in ref. 7), and 113 tissue-based gene sets derived from GTEx
transcriptome data (https://www.gtexportal.org/home/). Links to download GWAS
summary statistics of 31 human phenotypes are provided in Supplementary Notes.
The list of HapMap3 SNPs is available at https://data.broadinstitute.org/alkesgroup/
LDSCORE/w_hm3.snplist.bz2. The 1000 Genomes Phase 3 data are available at
?ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502. The Wellcome Trust Case
Control Consortium data are available at the European Genome-phenome Archive
(https://www.ebi.ac.uk/ega/). The APO gene family is available at https://www.
genenames.org/cgi-bin/genefamilies/set/405.
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