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Abstract

Background: Paddy soil dissolved organic matter (DOM) represents a major hotspot for soil biogeochemistry, yet we
know little about its chemodiversity let alone the microbial community that shapes it. Here, we leveraged ultrahigh-
resolution mass spectrometry, amplicon, and metagenomic sequencing to characterize the molecular distribution of
DOM and the taxonomic and functional microbial diversity in paddy soils across China. We hypothesized that variances
in microbial community significantly associate with changes in soil DOM molecular composition.

Results: We report that both microbial and DOM profiles revealed geographic patterns that were associated with variation
in mean monthly precipitation, mean annual temperature, and pH. DOM molecular diversity was significantly correlated
with microbial taxonomic diversity. An increase in DOM molecules categorized as peptides, carbohydrates, and unsaturated
aliphatics, and a decrease in those belonging to polyphenolics and polycyclic aromatics, significantly correlated with
proportional changes in some of the microbial taxa, such as Syntrophobacterales, Thermoleophilia, Geobacter, Spirochaeta,
Gaiella, and Defluviicoccus. DOM composition was also associated with the relative abundances of the microbial metabolic
pathways, such as anaerobic carbon fixation, glycolysis, lignolysis, fermentation, and methanogenesis.

Conclusions: Our study demonstrates the continental-scale distribution of DOM is significantly correlated with the
taxonomic profile and metabolic potential of the rice paddy microbiome. Abiotic factors that have a distinct effect on
community structure can also influence the chemodiversity of DOM and vice versa. Deciphering these associations and
the underlying mechanisms can precipitate understanding of the complex ecology of paddy soils, as well as help
assess the effects of human activities on biogeochemistry and greenhouse gas emissions in paddy soils.
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Background
Paddy fields, 90% of which are in Asia, feed more than
half of the world’s population [1]. The continuous flood-
ing in bunded fields of cultivated rice (Oryza sativa) uti-
lizes 24–30% of the world’s developed freshwater
resources and represents one of the major sources of

inland aquatic dissolved organic matter (DOM) [1, 2].
High concentrations and fluxes of DOM from plant deb-
ris during flooding seasons trigger microbial activity,
while anaerobic conditions stabilize DOM against micro-
bial decay via interactions with clay minerals and iron
oxides [1, 3]. DOM plays a central role in biogeochem-
ical processes in both flooded and unflooded paddy soils,
as well as an active role in the global carbon cycle [1, 4].
Recently, the evidence-based soil continuum model

questioned the secondary synthesis of “humic sub-
stances,” or the “humification,” and interpreted organic
debris as a unique source of soil organic matter (SOM)
and DOM [5]. This theory emphasized the inherent
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association between soil microbial metabolism and
DOM heterogeneity. Microbes play an important role in
carbon and nitrogen cycling as well as methane produc-
tion and consumption in soils [1, 6, 7], which influences
carbon balance, greenhouse gas production, crop prod-
uctivity, and water eutrophication [8]. Therefore, a grow-
ing body of research has focused on the biogeography of
microbial communities [9–11]. However, despite efforts
to characterize the drivers of DOM concentration dy-
namics [8, 12–15], no attempts have been made to com-
bine these data so as to understand the associated
properties of each and the environmental factors that
drive them. Ultrahigh-resolution Fourier transform ion
cyclotron resonance mass spectrometry (FT-ICR-MS)
enables detailed characterization of DOM molecular dis-
tribution [13, 16, 17]. This approach has been applied to
marine [18, 19] and inland water [4, 20, 21], and a hand-
ful of comparative experiments have examined soil
DOM at the molecular level [3, 14, 15, 22]; however, the
microbial taxonomic and metabolic structures that influ-
ence the molecular distribution of soil DOM remain
unknown.
To our knowledge, no comprehensive study has yet

been performed to elucidate the natural relationship be-
tween microbial metabolisms and DOM molecular dis-
tribution in paddy soils on continental scales. We apply
FT-ICR-MS plus amplicon and metagenomic sequencing
to characterize the association between microbial com-
munity structure and function with DOM molecular
composition in flooded paddy soils. We hypothesized
that taxonomic and functional composition of soil mi-
crobial communities is significantly associated with
DOM molecular composition in paddy soils and, more-
over, that geographic and edaphic factors significantly
affect this interdependence.

Results
Microbial and DOM biogeography in paddy soils
Across four rice-growing regions in China, we collected
soil samples from 88 flooded paddy fields, wherein most
rice plants were at the tillering phase (Fig. 1 and Table 1).
Based on 16S rRNA gene sequencing, Anaeromyxobacter
(1.9% ± 0.9%), Geobacter (1.0% ± 0.5%), Anaerolinea (0.9%
± 0.6%), and Haliangium (0.8% ± 0.3%) were the most
abundant genera. Bacterial richness (Chao1 and observed
species) and diversity (Shannon and PD whole tree) were
significantly different between regions (Additional file 1:
Figure S1A), with the lowest diversity and richness ob-
served in samples from Sanjiang Plain (P < 0.05, Dunn’s
test). Microbial β-diversity (variance adjusted weighted
UniFrac; VAW-UniFrac) was significantly correlated to
the distance between sites (Mantel r = 0.52, P < 0.001;
Fig. 2a). The proportions of the dominant taxa at each
phylogenetic level differed significantly by region

(Additional file 1: Figure S2). Among the 20 most abundant
genera, only Gemmatimonas and Pseudolabrys were stably
abundant across regions, while the other genera were sig-
nificantly different between regions (Fig. 2b).
DOM analysis revealed 81,759 compounds in total

with an average of 8262 ± 1187 compounds at each site
(Additional file 2: Table S1). A core group of 18,538
molecules was observed in at least 10 sites; 12,791 of
these compounds could be assigned putative molecular
formulae. Chao1 of DOM molecules was significantly
different between the four regions (Additional file 1:
Figure S1B), while Observed species and Shannon diver-
sity were not. β-diversity (Bray-Curtis) of DOM was still
significantly associated with distance between sites
(Mantel r = 0.24, P < 0.001; Fig. 2c). Weighted density
plots of DOM components in van Krevelen diagrams
(Fig. 2d) visualized the significant influence of geo-
graphic region on the abundance of DOM molecular
groups (permutational multivariate analysis of variance,
PERMANOVA r2 = 0.17, P < 0.001). For example, unsat-
urated/aromatic hydrocarbons were enriched in Hani
Terrace and Lianghu Plain samples (area α), phenolics
were enriched in the Hani Terrace samples (area β),
polycyclic aromatics were enriched in Taihu Plain sam-
ples (area ɣ), and polyphenols were enriched in Sanjiang
Plain and Taihu Plain samples (area δ). Unsaturated ali-
phatics and peptides were enriched in samples of Hani
Terrace (area ε).
Canonical correspondence analysis (CCA) and partial

CCA were performed to estimate the contribution of en-
vironmental factors to the variance in microbial and
DOM diversity across sites. The variance in microbial
community was best explained by the variance in DOM
composition (27%; Fig. 3a and Additional file 3: Table
S2), with the converse being true as well (26.8%; Fig. 3b
and Additional file 4: Table S3). This was confirmed
using Procrustes analysis, which demonstrated that the
dissimilarity of DOM and microbial communities be-
tween samples was significantly and strongly correlated
(m122 = 0.66, PMonte Carlo < 0.001). More specifically, the
second principal coordinate (PCo2) of the microbial
Bray-Curtis (5.5%) and VAW-UniFrac distances (5.9%)
as well as functional potentials (3.0%–4.5%) were the
main contributors of DOM variance; PCo1 of DOM
Bray-Curtis distance (4.3%) was the main contributor of
microbial variance, followed by DOM alpha diversity
indicies and PCo1–2 of phenolics, peptides, polyphenols,
and polycyclic aromatic (in the column of V.E. CCA and
V.E. pCCA, Additional file 3: Table S2 and Additional file 4:
Table S3). Individual edaphic factors of pH (3.5%), con-
ductivity (3.7%), real-time air temperature (RAT; 3.5%),
real-time soil temperature (RST; 4.6%), tiller number
(4.3%), and all geographic factors (4.4–6.9%) also de-
scribed microbial variance (Additional file 3: Table S2). It
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Table 1 Various characteristics of the four typical Chinese rice-growing regions

Hani Terrace Taihu Plain Sanjiang Plain Lianghu Plain

Administrative region Yunnan Province. Jiangsu, Zhejiang, Anhui Provinces, and
Shanghai Municipality

Heilongjiang
Province

Hunan and Hubei
Provinces

Longitude range 100°55′27″–103°14′
57″

118°38′12″–121°47′48″ 130°12′45″–134°8′
45″

111°50′51″–114°48′12″

Latitude range 22°46′44″–24°28′13″ 30°3′19″–31°56′15″ 45°16′53″–48°2′40″ 28°34′7″–31°16′21″

Climate 3-D climate,
(sub)tropics

subtropics temperate subtropics

Elevation (m) 350–3000 0–45 50–160 10–100

Rice cultivation history ~ 1200 years ~ 5000 years ~ 60 years ~ 4000 years

Rice cultivars (Oryza sativa
L.) [89]

Most are japonica Half are indica and half are japonica All are japonica Most are indica

Cultivation method traditional modern and small-scale modern and large-
scale

modern and medium-
scale

Mean pH 6.07 ± 0.60 6.60 ± 0.70 6.32 ± 0.32 6.80 ± 0.68

Mean annual temperature (°
C)

16.21 ± 1.77 15.66 ± 0.41 2.85 ± 0.78 16.68 ± 0.35

Mean annual precipitation
(mm/d)

3.20 ± 0.19 3.74 ± 0.19 1.86 ± 0.13 3.45 ± 0.29

Dissolved organic carbon
(mg/ml)

23.51 ± 6.84 31.68 ± 11.41 29.28 ± 8.39 31.61 ± 14.40

Fig. 1 Map of sampling sites (dark-red dots) across four typical Chinese rice-growing regions (red dotted ellipses). It shows broad patterns of rice
field. The map was colored to depict circa the year 2000 area (harvested) and yield of rice crops of China [90]
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should be noted that conductivity was used to quantify
water-soluble ions [23]; tiller number and plant height
were used to roughly indicate the rice growth stage and
the size of plants, and they were classified into edaphic
factors for simplicity. Meanwhile, edaphic factors of pH
(3.4%), dissolved organic carbon (DOC; 3.3%), and geo-
graphic factors of elevation (4.4%), latitude (4.3%), longi-
tude (4.1%), and mean monthly precipitation (MMP;
4.3%) and mean annual temperature (MAT; 3.2%) also de-
scribed the variance in DOM (Additional file 4: Table S3).

To confirm these findings, we fitted these factors to
unconstrained non-metric multidimensional scaling
(NMDS) ordination (Fig. 3c, d, Additional file 3: Table S2
and Additional file 4: Table S3). Significant correlations
(P ≤ 0.001) were observed between the variances of micro-
bial/DOM composition and MMP (r2 = 0.637/0.355),
MAT (r2 = 0.742/0.200), pH (r2 = 0.407/0.409), and eleva-
tion (r2 = 0.342/0.347), as well as latitude (r2 = 0.613/
0.358) and longitude (r2 = 0.553/0.305; Additional file 3:
Table S2 and Additional file 4: Table S3). The associations

Fig. 2 Distributions of DOM molecules and bacteria across 88 paddy soils from four regions. a Non-metric multidimensional scaling of bacterial
OTUs (matrix: variance adjusted weighted UniFrac, stress = 0.1918). b Boxplots showing regional differences of top 20 genera. Genera with significant
differences (Kruskal-Wallis test) were labeled with "*" (P < 0.05), "**" (P < 0.01), and "***" (P < 0.001). For each genus, paired boxes containing no same
letter are considered to be significantly different (P < 0.05, Dunn’s test). c Non-metric multidimensional scaling of DOM molecules (matrix: Bray-Curtis,
stress = 0.1479). d Kernel density plots of DOM formula in van Krevelen diagrams. Darker color indicates a higher molecular density. Accumulated areas
α, β, ɣ, δ, and ε are considered to be clusters of highly unsaturated/aromatic hydrocarbon, phenolics, polycyclic aromatics, polyphenols, and unsaturated
aliphatics or peptides, respectively
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between edaphic, geographical, bacterial (x-axis), and
DOM (y-axis) factors were calculated using Spearman’s
rank correlation (Fig. 3e). The PCo2 of the microbial
Bray-Curtis and VAW-UniFrac distances, latitude, longi-
tude, MMP, MAT, pH, and predicted functional potential
were all strongly correlated with the PCo1 of DOM
(P < 0.001; Fig. 3e and Additional file 4: Table S3). MMP,
as well as the second coordinates (PCo2) of microbial

Bray-Curtis and VAW-UniFrac distances, described the
geographic variance in DOM (PCo1) and DOM features,
while pH, and the PCo1 of microbial distances, described
another pattern of DOM variance (PCo2) (Fig. 3e). Precipi-
tation was positively correlated with the relative abundance
of carbohydrates and peptides while negatively correlated
with the relative abundance of polycyclic aromatic com-
pounds (Fig. 3e and Additional file 1: Figure S3).

Fig. 3 Associations between DOM composition, bacterial community, and the environmental drivers. a The influences of geographical factors, edaphic
factors, and DOM composition features on the bacterial community structure estimated via canonical correspondence analyses (CCA). b The influences
of geographical factors, edaphic factors, and bacteria community features on the DOM composition estimated via CCA. The percentages represent the
variance explained. c, d Multivariate analysis of microbial or molecular data and drivers using non-metric multidimensional scaling (NMDS). Ordinations are
based on Bray-Curtis (c, stress = 0.1656; d, stress = 0.1479). Geographical factors, edaphic factors, and DOM composition (c) or bacteria (d) community were
fit to the ordination using envfit function, respectively. Only factors with significance level ≤ 0.001 were shown. e Spearman’s rank correlations between
DOM diversity features (y axis) and edaphic, geographical, and bacterial factors (x axis), with color coded in blue, red, and yellow, respectively. All factors
imported and their influences are listed in Additional file 3: Table S2 and Additional file 4: Table S3. MAP, mean annual precipitation; MAT, mean annual
temperature; MMP, mean monthly precipitation; MMT, mean annual temperature; RST, real-time soil temperature; RAT, real-time air temperature
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Characterizing the association between DOM molecular
and bacterial taxonomic composition
We performed canonical correlation analysis (CCorA) to
characterize the association between bacterial and DOM
composition (Fig. 4a, b). Using the PCo1–5 axes of DOM
and microbial Bray-Curtis matrices, we observed four out

of five canonical axes with significant correlation coef-
ficients (P < 0.01, chi-square test), which confirmed the
multi-dimensional associations between bacterial commu-
nity and DOM composition (P = 0.0001; Fig. 4a). Each pair
of ordinations along canonical axis represents two corre-
lated dimensions of the multivariate matrices of microbial

Fig. 4 Associations between DOM composition and bacterial community. Canonical correlation analysis was conducted using first five principal
coordinates (PCo1–5). a Combined score plots of the corresponding ordinations pairs of DOM composition and microbial community along the
first and second canonical axes. The lengths of connecting lines represent the dissimilarities of DOM composition and microbial community. b
Plot showing loading coefficients of the five pairs of principal coordinates imported on the corresponding first two pairs of canonical axes. c, d
van Krevelen plots of DOM molecules showing positive and negative Spearman’s rank correlations with the DOM ordinations along the first (c)
and second (d) canonical axes, indicating their association with microbial community dynamics. e Taxonomic cladogram showing positive and
negative correlations with microbial ordinations along the first two canonical axes, indicating their association with DOM compositional changes.
Rings of the cladogram provide a heatmap of the genera (> 0.01%) among the sampling regions with red and blue meaning more and less
accumulated, respectively. Relative abundances of the taxa or genera are shown as the clade marker size or level 5 ring height. The color gradient
bars in c and d, “purple to green” (for the first canonical axis) and “orange red to blue” (for the second canonical axis), indicate the values of
coefficients. These color scales are also applied to the associations between taxa and microbial ordinations along the first and second canonical
axes (e). Compounds category m: polycyclic aromatics; n: polyphenols and polycyclic aromatics with aliphatic chains; o: phenolic and highly
unsaturated compounds; p: unsaturated aliphatics and aromatics with aliphatic chains; q: saturated fatty, sulfonic acids, and carbohydrates; r:
N-containing compounds, i.e., peptides
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community and DOM composition (e.g., Spearman’s
rank correlation ρ = 0.89, P = 2.2 × 10−16 for the first
pair; Fig. 4b).
DOM molecules and microbial taxa that were respon-

sible for the first two pairs of correlated ordinations of
DOM and microbial community were figured out using
Spearman’s rank correlation test (Fig. 4c–e). Bacterial taxa
showing significant correlation in the first canonical axis
were enriched in Hani Terrace samples and attenuated in
Sanjiang Plain samples. These included organisms (e.g.,
Geobacter, Syntrophorhabdus, and Spirochaeta) (Fig. 4e)
that were positively correlated with highly unsaturated/
aromatic hydrocarbon (Fig. 4c; area α in Fig. 2d) and
phenolics (area β) and negatively correlated with poly-
cyclic aromatics (area ɣ) and polyphenols (area δ).
However, some taxa (e.g., Gaiella and Defluviicoccus)
demonstrated an opposite trend (Fig. 4e). Also, other
taxa and DOM compounds were correlated in the sec-
ond canonical axis (Fig. 4d, e).

Factors of the covariation between microbial taxa and
DOM molecules
To determine the factors of covariation between the
microbiome and DOM, we correlated MMP, MAT, and
pH against the DOM and microbial community ordina-
tions along the first two canonical axes using Spearman’s
rank correlation test. For covariation along the first axis
(Fig. 4b), MMP and pH showed strong and significant
correlations (ρ = − 0.68/− 0.65, P = 3.85 × 10−13/9.03 ×
10−12 for pH with DOM/microbial ordination; ρ = 0.52/
0.46, P = 2.17 × 10−7/6.48 × 10−6 for MMP with DOM/
microbial ordination), while MAT was not correlated
(P > 0.1). For covariation along the second axis (Fig. 4b),
MAT, MMP, and pH showed strong and significant cor-
relations (ρ = − 0.40/− 0.59, P = 1.01 × 10−4/1.33 × 10−9

for pH with DOM/microbial ordination; ρ = − 0.51/−
0.50, P = 3.93 × 10−7/8.01 × 10−7 for MMP with DOM/
microbial ordination; ρ = − 0.71/− 0.72, P = 9.50 × 10−15/
2.30 × 10−15 for MAT with DOM/microbial ordination).
In our study, since MMP and MAT changed in opposite
trends along the increased elevation in Hani Terrace
sites, MMP and MAT, as well as pH, were not correlated
with each other (P > 0.05).

DOM composition correlates with microbial functional
potential
To characterize the microbial functional potential, four
samples from each of the four regions were selected for
deep shotgun metagenomic sequencing. The most abun-
dant genera were Streptomyces (3.8%), Anaeromyxobac-
ter (3.2%), Bradyrhizobium (3.0%), Mycobacterium
(1.7%), Solibacter (1.3%), and Geobacter (1.2%). The
abundance of this particular collection of taxa roughly
paralleled what was previously observed in the 16S

rRNA analysis (for details see Additional file 5 and
Additional file 1: Figure S4).
The relationship between DOM composition and the

relative abundance of metagenomic functional genes was
determined by CCorA using PCo1–5 axes of DOM and
PCo1–2 axes of FOAM (Functional Ontology Assign-
ments for Metagenomes, a functional gene database)
orthologs (explained 70% and 65% variances, respectively).
We observed two canonical axes with significant correl-
ation coefficients (P < 0.01, chi-square test), which con-
firmed the association between microbial function
potential and DOM composition (P = 0.012, r1 = 0.89, r2 =
0.76). The association between DOM and FOAM ortho-
logs (Fig. 5a) followed a similar trend to the association
between DOM and microbial taxonomy (Fig. 4c, d). Re-
dundancy analysis (built-in function of CCorA) indicated
that the functional potential distribution could be pre-
dicted by the DOM distribution with an adjusted R2 of
0.70, while the distribution of DOM was correlated to
functional potentials with an adjusted R2 of 0.35. Consist-
ently, 109 out of 129 observed FOAM level 2 functional
pathways were significantly (|r| > 0.5, P < 0.05) correlated
with the variances of DOM in the first two canonical axes
(Additional file 6: Table S4).
To avoid risk of false correlations, we further used marker

genes of certain biogeochemical functions to qualitatively
evaluate the associations (Fig. 5b). Consistently, functional
genes involved in glycolysis (Embden-Meyerhof-Parnos,
EMP), anaerobic C-fixation (light-independent), pyruvate
fermentation (to butyrate), methanogenesis, methane oxida-
tion (soluble methane monooxygenase), and hydrogen me-
tabolism, as well as H4MPT-linked C1 transfer pathway
(hydrogenotrophic methanogenesis associated), showed
positive correlation with compositional changes in DOM
along the first canonical axis, whereas those related to pyru-
vate fermentation (to lactate), carbon monoxide oxidation,
urea degradation, nitrite oxidation, dissimilatory nitrite re-
duction (nirK), and ligninase, as well as the caa3-type and
bo-type cytochrome oxidases, were negatively correlated
(Fig. 5b). Compositional changes of DOM along the first ca-
nonical axis were characterized by increases in highly unsat-
urated/aromatic hydrocarbon and phenolics, peptides, and
unsaturated aliphatics (O/C < 0.5), as well as decreases in
polycyclic aromatics and polyphenols (Fig. 5a, upper panel).
FOAM function categories associated with the tricarboxylic
acid (TCA) cycle and homoacetogenesis were positively
correlated with compositional change of DOM along
the first canonical axis, whereas hydrocarbon degrad-
ation, cellular response to oxidative stress, and fatty
acid oxidation pathways were negatively correlated
(Additional file 6: Table S4).
To confirm the findings from this limited metage-

nomic dataset, Tax4fun [24] was used to predict the
abundance of functional genes based on the 16S rRNA
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amplicon data. The correlation between predicted func-
tional potential and DOM was mostly consistent with
the correlation observed for the real metagenomic data
(Additional file 5 and Additional file 7: Table S5). The
metagenomic taxa that correlated with DOM along the
first canonical axis of Fig. 4c also showed significant cor-
relation with DOM along the first canonical axis of

Fig. 5a. These include Geobacter (Pearson’s correlation
coefficient, r = 0.83, P = 6.32 × 10−5), Syntrophobacterales
(r = 0.94, P = 5.98 × 10−8), Spirochaeta (r = 0.92, P = 3.23 ×
10−7), Thermoleophilia (r = − 0.62, P = 1.01 × 10−2), and
Gaiella (r = − 0.72, P = 1.53 × 10−3).
The relative abundance of methanogens (0.43%) as pre-

dicted from 16S rRNA analysis had the same correlation

Fig. 5 Associations between soil DOM composition and microbial functional capabilities estimated by metagenomics. a van Krevelen plot showing the
positive and negative Spearman’s rank correlations of DOM molecules with the first canonical axis of canonical correlation analysis which indicates the
correlation between DOM composition and FOAM orthologs. “Blue to red” gradient colors indicate the values of the coefficients. b Pearson’s correlation
coefficient between relative abundances of biogeochemical functions (y axis) and DOM diversity features (x axis). Significant correlations (P< 0.05) are
indicated by the black boxes. The first column of b shows the positive and negative Pearson’s correlation coefficients between biogeochemical functions
and the first canonical axis. c FOAM orthologs correlated with DOM distributions, regarding methanogenesis in KEGG module M00567 and M00357.
The protein catalog for quantification was restricted to methanogens (Additional file 9: Table S7) using Kaiju [70]. Moreover, it was further restricted to
Methanothrix and Methanosarcina for aceticlastic methanogenesis. The red, blue, and yellow colors indicate significantly (P< 0.05) positive, negative, and
nonsignificant (P > 0.05) Pearson’s correlation coefficients between FOAM orthologs and the DOM variance along the first canonical axis, respectively.
Gray color indicates orthologs detected in less than eight samples, whereas white indicates orthologs undetected
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with the DOM variance along the first canonical axis
(Pearson’s correlation coefficient r = 0.93, P = 2.16 × 10−7),
as the genes encoding for methanogenesis (Fig. 5c). Des-
pite their distinctly different substrate range, we found
that all methanogenic genera correlated with DOM
variance along the first canonical axis (Additional file 8:
Table S6). Consistently, both functional ortholog groups
(FOAM orthologs) of hydrogenotrophic and aceticlastic
methanogenesis showed significant correlation with
DOM variance along the first canonical axis (Fig. 5c
and Additional file 6: Table S4). Strikingly, methano-
genesis via CO2 reduction (TMP = 4.54, K00320) had a
greater functional potential than aceticlastic methano-
genesis (TMP = 1.93, K00193, K00194, K00197) in all
paddy sites. Methanogenesis can be performed by syn-
trophic methanogenic consortia via direct interspecies
electron transfer (DIET), mediated by electrically con-
ductive pili (e-pili) or biochar and other conductive
materials [25, 26]. So we calculated the Pearson’s cor-
relation coefficient between Fe(III)-reducing bacteria
with/without e-pilin encoding genes and the first ca-
nonical axis of DOM (Additional file 9: Table S7).
Seventeen out of 19 bacteria encoding e-pilin were sig-
nificantly correlated with DOM variance along the first
canonical axis, while 35 out of 70 bacteria without
e-pili were also significantly correlated. Consistently,
electrically conductive pilin (e-pilin, 46.6%) was signifi-
cantly positively correlated to DOM compositional
change, while long type IVa pilin (53.4%) was not (r = 0.61,
P = 0.013 for e-pilin; P > 0.05 for long type IVa pilin).

Discussion
In this study, we demonstrated that DOM molecular dis-
tribution correlates with microbial community structure,
taxonomy, and functional potential in paddy soils from
sites representing gradients of temperature, precipitation,
pH, and human activity. Both molecular distribution of
DOM and microbial community structure exhibited sig-
nificant biogeographic patterns. We considered how biotic
and abiotic factors, like geographic distance, MMP, pH,
MAT, elevation, and the interactions between microbial
communities and DOM molecules, might drive the bio-
geography of microbial communities and the chemogeo-
graphy of DOM molecules. These results expand our
knowledge of how microbes and DOM molecules are dis-
tributed throughout the rice paddy ecosystem.
While variations in the type and abundance of paddy

soil DOM molecules have typically been chalked-up to
temperature, moisture, pH, and mineralogy [15, 27–29],
here, we demonstrated that the microbiome describes
DOM variance to a greater extent than any other ed-
aphic or geographic factor investigated. This result em-
phasizes the overriding potential impact that biotic
function factors can have on constructing the DOM

heterogeneity when compared to other abiotic functions
in paddy soil. The heterogeneous characteristic of DOM
is partly attributed to the chemistry of plant-derived
compounds and their decomposition byproducts [15, 30,
31]. For instance, genes associated with ligninase or
hydrocarbon (mostly aromatics) degradation were posi-
tively correlated with polyphenolic and phenolic com-
pounds and polycyclic aromatics in DOM of flooded
paddy soils. This indicated biodegradation processes
from large biopolymers (e.g., lignin) towards small mole-
cules with concurrent increases in polar and ionizable
groups and thus with increase in solubility [5]. Mean-
while, these compounds (known as terrestrial DOM)
characterized by high cyclization were selectively copre-
cipitated with iron at the redox interface during their
upward diffusion together with the ferrous ion [3]. Dis-
similatory Fe(III)-reducing microbes, e.g., Geobacter,
were responsible for the production of ferrous ion and
thus the coprecipitation of terrestrial DOM with Fe(III)
in paddy soil [32, 33]. Many of the DOM compounds
may also be derived from microbial residues, e.g., cellu-
lar materials and extracellular secretions [34, 35]. Re-
cently, SOM chemistry study in model soils also
demonstrated that the accumulation of chemically di-
verse SOM was driven by distinct microbial communi-
ties, per se, rather than the substrates they utilized [36].
Conversely, we also realized that the abundance and

distribution of DOM explained variations in the paddy
soil microbiome better than any other examined edaphic
or geographic factors. The chemical nature of SOM was
reported to affect the structure and functioning of paddy
soil microbiota [6, 37]. In our study, more biodegradable
substances, e.g., peptides and carbohydrates, favored mi-
crobes (e.g., Geobacter) utilizing mainly simple C forms
and functions regarding glycolysis (EMP) and TCA cycle
in the flooded paddy. This heightened concentration of
biodegradable substances also facilitated pyruvate fer-
mentation, and associated metabolic processes, e.g.
methanogenesis and homoacetogenesis [38]. Microbial
consortia that cooperatively exchange electrons were
pivotal in the anaerobic processing of SOM [25, 26].
Therefore, the increase of Fe(III)-reducing bacteria en-
coding e-pilin may promote the propagation of hydroge-
notrophic methanogens. Consistently, we found that
gene encoding e-pilin, as a potential indicator of the
DIET [39, 40], was significantly correlated with DOM
variance. Moreover, a recent study proved that the aceti-
clastic methanogen Methanothrix spp. receives electrons
for the reduction of CO2 via DIET from microorganisms
expressing e-pilin genes, e.g., Geobacter [39]. Decreased
abundance of DOM compounds with quinone moieties,
which were likely derived from polyphenolic and phen-
olic compounds and polycyclic aromatics, reduced the
possibility that electrons are being transferred to these
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DOM and used in Fe(III) reduction [41, 42], thus in-
creasing the electrons available for methanogenesis.
Of the abiotic factors, precipitation (MMP), tempe-

rature (MAT), and pH explained the majority of the
main variance in DOM composition across the contin-
ental scale paddy fields. pH and temperature have also
been reported to drive soil microbial community com-
position at continental scales [10, 11]. Here, we have
found that temperature (MAT) and pH were signifi-
cantly correlated with the covariations between DOM
and microbial community. Therefore, the influences of
pH and temperature on DOM diversity may be mediated
by microbial community. Consistently, pH was not
strongly correlated with the majority of individual DOM
molecules (Additional file 1: Figure S3), but it could ex-
plain the DOM component variance, implying an indir-
ect effect on DOM molecular distribution. Elevated
temperature may stimulate the biodegradation of plant
residues, but the consequences for microbial-derived
residues are less clear [11, 36].
Precipitation shapes DOM chemodiversity as it en-

hances upward movement of ferrous ions and DOM mol-
ecules from deep soils, and influences the influx of
selective DOM from the surface soil. Precipitation events
dilute not only the ion and DOM concentrations of the
standing water per se, but also that of the irrigation water
sources (i.e., the nearby bodies of water), enhancing the
upward movement of Fe(II) and DOM from deep soils
[43]. Meanwhile, terrestrial DOM would be selectively
trapped at the Ap horizon (oxic and partly oxic) via co-
agulation with the precipitating Fe(III) during the upward
diffusion [1, 3, 44], which then accelerates the upward dif-
fusion of these compounds. Moreover, terrestrial DOM is
relatively harder to be regenerated when compared to
carbohydrate and peptide [45]. Besides, abundant rainfall
preserves the gradient in reduction potential across depth,
which increases not only the mineral reduction but also
the opportunity of DOM reduction in paddy fields [1, 6,
43]. As evidence, significant correlations were found be-
tween precipitation (MMP) and genes encoding caa3-type
and bo-type cytochrome oxidases (Fig. 5b) and cellular re-
sponse to oxidative stress (Additional file 7: Table S5). The
caa3-type and bo-type cytochrome oxidases are mostly
found in aerobes, while cbb3-type and bd-type cyto-
chrome oxidases have been reported to be utilized by an-
aerobes or microaerophiles in microaerobic energy
metabolism [46, 47]. In this case, precipitation may also
shape microbial community.
Factors like parential metrial, redox state, fertilization

level, pesticide application, mineralogy, rice cultivar, and
growth stage may also influence the geography of the micro-
bial community and DOM [29, 48–53]. In submerged paddy
soil, rice aerenchyma enables the transport of atmospheric
O2 to the roots [54], influencing soil redox states [55];

moreover, rice straw and stubble are assumed to provide
substrates for microbial activity in the early growth stage,
while exudates become more important during late tillering
and ripening [56, 57]. Therefore, the effect of the rice plant
on the soil microbial community largely depends on the
plants growth stage. In this study, the tiller number of the
rice (indicating the growth stage) was significantly correlated
with DOM variance (PCo1) and DOM features (Fig. 3e). Re-
cently, a relatively comprehensive study on the DOM che-
modiversity of paddy soil and factors, including mineral
elements of Fe, Mn, Al, Mg, Ca, and Si, demonstrated that
the iron complexing index (Fep/FeR), together with pH and
C/N ratio, were key factors controlling DOM profiles [29].
Another study on agricultural, meadow, and forest soils re-
vealed that pH and nitrate significantly affect the chemical
composition of DOM molecules [14]. These factors were
also separately found to significantly correlate with the
microbiome in paddy soils [48, 58, 59]. Although rice culti-
vation management dominated the microbial community
assembly in paddy soils [60], the soil parent material was
also influential [58], and hence, the influence on DOM dis-
tribution should be further investigated. Although these
previous studies and the current one presented here princi-
pally focus on the spatial distribution of the microbiome
and DOM molecules, how these patterns change over time
is also important [61]. Redox potential is one of the key
temporal factors and is controlled by soil ventilation [1].
Temporal changes of irrigation management, precipitation,
and even light intensity may quickly change the redox
condition in soils. Researchers have revealed that redox po-
tential could significantly shift microbial community com-
position [6, 53]. Retention of certain DOM molecules by
soil minerals and their subsequent stabilization against mi-
crobial decay were also largely dependent on the redox
state [3, 5]. However, it remains unknown whether the tem-
poral dynamics of microbial communities correlates shifts
in DOM composition. Therefore, there is a continued need
for new, well-controlled studies to further elucidate DOM
chemogeography and microbial biogeography.

Conclusions
Understanding the relationship between soil DOM and
microbial community structure and function remains a
research goal for biogeochemists, especially at the mo-
lecular level [8, 52]. Here, we integrated mass spectra
and genomics data to characterize the association be-
tween DOM molecular distribution and microbial diver-
sity and applied gene-centric analysis to elucidate the
microbial metabolic potential that responds and shapes
DOM heterogeneity. DOM chemodiversity was signifi-
cantly and broadly correlated with the taxonomy and
functional potential of the microbial community in
paddy soil. Besides pH and temperature, precipitation
was also found to be a potential factor of microbial
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community and DOM chemical distribution. These fin-
dings are foundational, but could be of great importance
for environmental and agricultural management in
paddy soils.

Methods
Site selection and soil sampling
Soil samples were collected from 88 flooded paddy sites
across four typical Chinese rice-growing regions in 2014
and 2015 (Fig. 1). Most of the soils were sampled during
the tillering phase of rice plants in the paddy fields.
Among 88 sampling sites, there were 23 from Hani
Terrace, 24 from Sanjiang Plain, 18 from Lianghu Plain,
and 23 from Taihu Plain (Table 1). At each site, soil
cores (2.5 cm diameter by 15 cm depth) were sieved
(2 mm) and homogenized, and plant materials were re-
moved immediately before sealing and transportation.
For more details about soil sampling and characteristics
measurements (Additional file 10: Table S8), please see
supplementary methods in Additional file 11.

FT-ICR-MS data analysis
FT-ICR-MS samples were prepared and measured accor-
ding to Kellerman et al. [4] with some modifications (for
details see supplementary methods in Additional file 11).
Detected peaks were considered if the signal-to-noise ratio
was greater than five. After calibration, different spectral
peaks were clustered into operational units within a mass
tolerance with m/z difference ratios less than 1 × 10−6.
The detailed methods for calibration and clustering are
described in Additional file 11. Clusters with fewer than
ten peaks were not considered for further annotation.
Based on the two mandatory and two optional steps for

peak annotation by Koch et al. [16], we introduced a car-
bon isotope ratio-based molecular annotation approach
(Additional file 1: Figure S5), in which molecular formulae
are assigned to peaks according to stringent criteria with
elemental combinations of C1-100H1-150O0-50N0-4P0-1S0-1.
The isotope-based approach first tries to find the carbon
isotope peak of a certain large peak according to mass
differences and then calculates the potential C number in
the molecular formula based on the relatively stable ratio
of naturally occurring 13C-isotope to 12C (i.e., 1.07%) and
the intensity ratio of the two peaks. At the same time, sev-
eral alternative formulas are calculated according to an a
priori definition of elements and unequivocal exclusion
criteria. Then, the carbon numbers of these formulas are
subtracted by the potential C number for carbon number
differences (Cdev), and the molecular formula with the
smallest Cdev is chosen. In this study, Cdev was defined as
acceptable when the Cdev was (− 3, 1) [16]. Annotated for-
mulas were then used as a scaffold, and a “chemical build-
ing block” approach was adopted to annotate the rest of
the peaks. Meanwhile, the relevant 13C, 15N, 34S, 33S, 18O,

17O, 2H, 13C2,
13C3, and

13C34S isotope molecules were all
determined, if detected.
The annotated molecules were assigned to compound

categories based on the stoichiometry of their molecular
formulas [45]: polycyclic aromatics (aromaticity index,
AI > 0.66) [62], polyphenols and polycyclic aromatics
with aliphatic chains (0.66 ≥AI > 0.50), phenolic and
highly unsaturated/aromatic compounds (AI ≤ 0.50 and
H/C ≤ 1.5), unsaturated aliphatics and aromatics with ali-
phatic chains (N = 0, AI ≤ 0.50, 2.0 ≥H/C ≥ 1.5), satu-
rated fatty, sulfonic acids and carbohydrates (H/C ≥ 2.0
or O/C ≥ 0.9), and N-containing compounds, i.e., pep-
tides (N ≥ 1, AI ≤0.50, 2.0 ≥H/C ≥ 1.5).

16S rRNA sequencing and analysis
DNA was extracted using the MoBio PowerSoil DNA
extraction kit following the manufacturer’s protocol. The
concentration and qualification of the total DNA were
examined by electrophoresis on 1% agarose gels, which
was diluted 1 ng/μL using sterile water before down-
stream processing. PCR procedure was carried out as de-
scribed previously [63]. Briefly, the V4-V5 region of the
16S rRNA gene from each soil sample was amplified
using the F515/R907 primer set with a unique 6-nt bar-
code at the 5′ of the forward primer [64]. All PCR reac-
tions were carried out with Phusion® High-Fidelity PCR
Master Mix (New England Biolabs). After electrophor-
esis on 2% agarose gel, PCR products with bright main
strip between 400 and 450 bp were mixed in equidensity
ratios and purified with Qiagen Gel Extraction Kit
(Qiagen, Germany). Sequencing libraries were generated
using the TruSeq® DNA PCR-Free Sample Preparation
Kit (Illumina, USA) following the manufacturer’s recom-
mendations, and index codes were added. After quality
assessing, the libraries were sequenced on an Illumina
HiSeq2500 (Novogene, China), and 250 bp paired-end
reads were generated.
The raw sequence data were processed using the

QIIME v1.9.1 pipeline [65]. Firstly, the forward and re-
verse Illumina reads were joined using the default set-
ting. Then, the multi-lane fastq data were demultiplexed
and quality filtered (Q30 ≥ 75% and Q20 = 100%). Chi-
meras were identified using “identify_chimeric_seqs.py”
with “-m usearch61” and then removed. A total of
15,339,665 reads were kept with a number over 43,000
for each sample. Filtered sequences were clustered into
operational taxonomic units (OTUs) using the function
“pick_open_reference_otu.py” against the SILVA 119
database [66], based on a 97% consensus threshold.
Then, the singletons were removed and taxonomy was
assigned using the RDP classifier against the SILVA data-
base. R package Tax4fun [24] with UProC long read mode
was used to predict the functional capabilities of microbial
community in each sample based on assigning OTUs of
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16S rRNA gene to the reference sequences in the SILVA
(version 119, 97 set) database via SortMeRNA [67].
HUMAnN2 [68] was used to map the resulted orthologs
to functional ontology of FOAM database [69].

Shotgun sequencing, metagenome assembly, and
annotation
A sum of 16 samples (4 samples from each region) was
randomly selected for shotgun metagenome sequencing.
Total DNA was extracted using the same method as that
of 16S rRNA sequencing. DNA concentration was mea-
sured using Qubit® dsDNA Assay Kit in Qubit® 2.0 Flu-
rometer (Life Technologies, USA). Using 1 μg DNA per
sample as input material, sequencing libraries were gen-
erated using NEB Next® Ultra™ DNA Library Prep Kit
(NEB, USA), and index codes were added to attribute se-
quences to each sample. Briefly, the DNA was broken
into 350 bp fragments using sonication, polished and ex-
tracted using the AMPure XP system. Libraries were
prepared on a cBot Cluster Generation System following
the manufacturer’s instructions. After cluster generation,
the library preparations were sequenced on an Illumina
HiSeq platform (Novogene, China) and 150 bp paired-
end reads were generated.
Paired-end reads were quality controlled using Readfq

v8 (https://github.com/cjfields/readfq): sequences with
more than 40 bases, with quality score lower than 38, or
with N bases more than 10 were filtered. The adapter
was also removed from the sequences. Metagenome se-
quencing yielded about 12.8 G clean bases per sample
(Additional file 12: Table S9). Taxonomical classification
of the sequencing reads of each sample was performed
using Kaiju [70] with greedy-5 mode against an
nr-derived database including proteins from archaea,
bacteria, viruses, fungi, and microbial eukaryotes. Based
on the classification result, relative abundances of
Fe(III)-reducing bacteria with or without e-pili were cal-
culated (Additional file 9: Table S7). The 93 known
Fe(III)-reducing microorganisms for which genomes are
available were obtained from a previous study [39].
Metagenome assemblies were conducted for each
sample using MEGAHIT v1.1.1 [71] with “--presets
meta-large.” Metagenome assemblies yielded a total of
41.8 M contigs over 200 bases length and 10.1 M contigs
over 500 bases length (average length was 458 bases;
Additional file 13: Table S10). A total of 53.5 M nucleo-
tide sequences or protein translations of genes were pre-
dicted from the contigs (≥ 200 bp) of each sample using
prodigal [72] with “-p meta.” These genes or proteins
were then pooled together to form a gene catalog and a
protein catalog, respectively. The protein catalog was an-
notated using the FOAM database [69] and hmmer3.1
[73] to obtain function orthologs as defined in KEGG
Orthology [74]. We chose profile’s trusted cutoffs to set

all thresholding. The resulted orthologs were then
mapped to an associated functional ontology of FOAM
database [69] to describe the functional groups and hier-
archy. Metagenomic contigs were annotated to gene and
enzyme using prokka pipeline [75]. The marker genes
used in the analyses of biogeochemical functions were
selected from a hidden markov model database [76] with
a few modifications. Pfam [77] and TIGRfam [78] pro-
tein families were assigned using hmmer3.1 [79]. Pro-
file’s trusted cutoffs were used as thresholds. The
presence of type IV pilA genes was estimated by assign-
ing the gene catalog to nucleotide sequence database
with 33 e-pilin genes and 27 long pilin genes [40] using
Diamond [80] with parameters set as following: --more-
sensitive, -e 0.00001, -l 20. For each gene, the best blast
hit (one HSP > 60 bits) result was selected for down-
stream analyses. To quantify the annotated genes in each
sample, we mapped the paired-end reads back to the as-
semblies according to the pipeline described here: http://
metagenomics-workshop.readthedocs.org/, together with
the other tools, i.e., bowtie2 [81], samtools [82], and
htseq [83]. As suggested by the pipeline, we used the
TPM (Transcripts Per Kilobase Million) method [84] to
normalize abundance values in metagenomes. The gene
encoding for acetyl-CoA synthetase (K01895) is nor-
mally multi-copy, so was not chosen for the comparison.

DOM and bacterial diversity calculations and multivariate
analysis
Accumulation and rank abundance curves of DOM were
calculated with the sum-normalized intensity of
non-singleton data using R package Biodiversity R [85]
and vegan [86]. Bray-Curtis dissimilarity was used to
compute the sparse matrices of DOM molecules and
bacterial community. The molecular and bacterial alpha
diversities and beta diversities were calculated using
QIIME v1.9.1 [65]. VAW-UniFrac dissimilarity was cal-
culated using R package GUniFrac [87]. Modified R
function kde2d weighted from kde2d in MASS package
[88] was used to perform two-dimensional kernel dens-
ity estimation with an axis-aligned bivariate normal ker-
nel in van Krevelen diagram for the density of DOM
molecules in each sampling region. Median values of
molecular abundances were defined as the weights par-
ameter. Mantel test was conducted to determine
whether two distance matrixes were significantly corre-
lated. PERMANOVA test was conducted to determine
whether DOM molecular Bray-Curtis dissimilarity was
significantly different between regions. CCA and NMDS
were performed using rounded intensities rarefied at the
depth of 43,000 for both DOM and bacterial communi-
ties (or their dissimilarity matrices). Partial CCA was
used to calculate the independent influences of different
categories or parameters on DOM or microbial variance.
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Principal coordinates analysis (PCoA) was used to calcu-
late the gradient in compositional changes of microbial
community (based on Bray-Curtis or VAW-UniFrac),
DOM (based on Bray-Curtis), and different DOM cat-
egories (based on Bray-Curtis). Procrustes rotation and
Monte Carlo permutation test (permutation = 9999)
were performed using the two coordinate matrices (out-
put of PCoA) based on their Bray-Curtis dissimilarities.
We performed the test using the first ten axes of DOM
and bacterial coordinate matrices (explained 67% and
65% variations, respectively). CCorA was conducted
using PCo1–5 axes of DOM composition and PCo1–5
axes of microbial community composition or PCo1–2
axes of functional orthologs distance matrices (Bray-
Curtis dissimilarities) as imports following the procedure
described by Osterholz et al. [19]. These analyses were
all conducted using vegan package [86].

Additional files

Additional file 1: Alpha-diversities of bacterial OTUs and DOM molecules
in the tested soil samples across four typical paddy fields. A: Boxplots of alpha-
diversities of bacterial OTUs using four indices: Chao1, observed species, Shan-
non and PD whole tree. B: Boxplots of alpha-diversities of DOM molecules
using three indices: Chao1, observed species, and Shannon. We randomly sub-
sampled 43,000 sequences and 9000 per sample ten times to correct for differ-
ences in sequencing depth for bacterial OTUs and DOM molecules. In the
boxplots, the symbols indicate the following: box, lower and upper quartiles;
horizontal line, median value; whiskers, lower and upper inner fence. The circle
above or below the box plots indicates outliers. Differences among the four re-
gions were tested using non-parametric Kruskal–Wallis test (P< 0.05). Paired
boxes containing no same letter are considered to be significantly different
(Dunn’s test, P< 0.05). Figure S2 Boxplots of regional differences of top taxa
classified using 16S rRNA gene. Differences among the four areas were tested
using non-parametric Kruskal–Wallis test followed by Dunn’s test for pairwise
multiple comparisons. A: Regional differences of the top 10 phyla. B: Regional
differences of the top 10 classes. C: Regional differences of the top 15 orders.
D: Regional differences of the top 20 families. In the boxplots, the symbols in-
dicate the following: boxes, the interquartile range (IQR) between first and
third quartiles; horizontal line, median value; whiskers, the ranges of lower and
higher values within 1.5 × IRQ from the first and the third quartiles, respectively;
circles, outliers beyond the whiskers; *, P< 0.05; **, P< 0.01; ***, P< 0.001. Fig-
ure S3 Van Krevelen plots of DOM molecules, showing Spearman’s rank corre-
lations with the factors used in Fig. 3e. Only DOM molecules with “BH” FDR-
adjusted P≤ 0.05 and |ρ|≥ 0.3 are shown here. Strong correlations (|ρ|≥ 0.5)
were indicated by black perimeter. Category A: saturated fatty and sulfonic
acids, carbohydrates; category B: N-containing compounds, i.e., peptides; cat-
egory C: unsaturated aliphatic compounds, aromatic hydrocarbon; category D:
phenolic and highly unsaturated compounds; category E: polyphenols and
polycyclic aromatics (PCAs) with aliphatic chains; category F: combustion-
derived PCAs. Figure S4 Comparisons analysis of the relative abundances of
dominant genera estimated by 16S rRNA and metagenomics. Fifteen domin-
ant genera are shown here with each plot showing the comparison for a spe-
cific genus. The classified taxa of fungi, viruses, and microbial eukaryotes of
metagenomic data are not considered here. Samples from Sanjiang Plain: H02,
H18, H22, H47; samples from Lianghu Plain: L01, L07, L20, L28; samples from
Taihu Plain: T09, T17, T31, T48; samples from Hani Terrace: Y04, Y24, Y30, Y43.
Pearson’s correlation coefficients (ρ) and statistical significances (P) are inscribed
in each plot. Figure S5 Flowchart of in-house software for the annotation of
DOM molecules. Unequivocal exclusion criteria (elements should follow these
rules): C > 0; N≥ 0; H > 0; O≥ 0; 1≥ P≥ 0; 1≥ S≥ 0; H≥ C/3; H≤ 2C +N+ P +
2; 2|(N +H + P) = 0; N≤ C; O + S≤C + 2 N+ 3P; O + S≥ P. Functional group re-
lationships or “chemical building block” used in elemental formula assignment:
CH4 - O (0.036385 Da), C2H2 (26.015650 Da), C2H4 (28.031300 Da), CH2

(14.015650 Da), H2 (2.015650 Da), H2O (18.010565 Da), O (15.994915 Da), CO2

(43.989830 Da), NH (15.010899 Da), S (31.972071 Da). (DOCX 1840 kb)

Additional file 2: Table S1. Statistics of DOM extraction and annotation
of soil samples collected in this study. Peak number a = number of peaks
after filtering blank peaks and singletons. Peak number b = number of peaks
after filtering blank peaks and those present in less than 10 samples, which is
further introduced to annotation procedure. Peak number c = number of
peaks assigned to putative formulas. (XLSX 18 kb)

Additional file 3: Table S2. Multivariate analysis of bacterial data and
drivers using canonical correspondence analysis (CCA) and non-metric
multidimensional scaling (NMDS). Constrained (CCA) and unconstrained
methods (NMDS and envfit) were used to compare and interpret effects of
edaphic, geographical, and DOM factors on the microbial diversity. CCA1,
CCA2, MDS1, and MDS2 stand for the angle cosines of variables and the
axes. Pvals.1, empirical P values of fit statistic of environmental variables
in CCA; Pvals.2, empirical P values of fit statistic using envfit to present
environmental variables in NMDS; r2, goodness of fit statistic. Variables
with Pvals.2 ≤ 0.001 were ticked on the “Fig. 3c” column and shown on
Fig. 3c. (XLSX 16 kb)

Additional file 4: Table S3. Multivariate analysis of DOM data and
drivers using canonical correspondence analysis (CCA) and non-metric
multidimensional scaling (NMDS). Constrained (CCA) and unconstrained
methods (NMDS and envfit) were used to compare and interpret effects of
edaphic, geographical, and bacterial factors on the DOM chemodiversity.
CCA1, CCA2, MDS1, and MDS2 stand for the angle cosines of variables and
the axes. Pvals.1, empirical P values of fit statistic of environmental variables
in CCA; Pvals.2, empirical P values of fit statistic using envfit to present
environmental variables in NMDS; r2, goodness of fit statistic. Variables
with Pvals.2 ≤ 0.001 were ticked on the “Fig. 3d” column and shown on
Fig. 3d. Variables used in Fig. 3e were ticked on the “Fig. 3e” column.
(XLSX 16 kb)

Additional file 5: Supplementary results about consistence between
metagenomic data and 16S rRNA data. (DOCX 29 kb)

Additional file 6: Table S4. Significant correlations between predicted
functions and the compositional changes of DOM. Pearson’s correlation
coefficient tests were performed between predicted FOAM functions
(level 1 and 2) and the compositional changes of DOM along first and
second canonical axes obtained from canonical correlation analysis
(CCorA). CCorA was performed using the first five principal coordinate
(PCo1–5) axes of DOM composition and PCo1–2 axes of FOAM orthologs.
It resulted in two canonical axes (P < 0.01, chi-square test) along which
significant correlations were observed between functional potentials and
DOM composition (P < 0.013). Only functions with significant correlations
(P < 0.05) were shown here. (XLSX 21 kb)

Additional file 7: Table S5. FOAM orthologous groups used for
comparing metagenomes with Tax4fun-predicted functions. Pearson’s
correlation coefficient was used for the correlation estimation. Only
orthologous groups significantly correlated with DOM variations were
tested here. (XLSX 11 kb)

Additional file 8: Table S6. Significant correlations between major
methanogen genera in the metagenomic samples and the compositional
change of DOM. Pearson’s correlation coefficient tests were performed
between major taxonomic groups of methanogens in the metagenomic
samples and the compositional change of DOM along first canonical axis
obtained from canonical correlation analysis (CCorA). CCorA was performed
using the first five principal coordinate (PCo1–5) axes of DOM composition
and PCo1–2 axes of FOAM orthologs. It resulted in two canonical axes
(P < 0.01, chi-square test) along which significant correlations were observed
between functional potentials and DOM composition (P < 0.013). Only taxa
with significant correlations (P< 0.05) were shown here. MeNH2 is methylamine.
Parentheses means utilized by some, but not all species or strains. (XLSX 12 kb)

Additional file 9: Table S7. Pearson’s correlation coefficients between
Fe(III)-reducing microorganisms in the metagenomic samples and the
compositional change of DOM. Information of the type IVa pilA genes
was given for their potential extracellular electron transport mechanisms.
Pearson’s correlation coefficient and P value were correlated using the
abundance of each species and the first canonical axis of DOM variation.
(XLSX 16 kb)
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Additional file 10: Table S8. Soil and site characteristics associated
with each of the soil samples collected in this study. MAT = mean annual
temperature. MAP = mean annual precipitation, MMT = mean monthly
temperature, MMP = mean monthly precipitation (the data we used is
the month data we sampled at that site or the mean value of 2-month
data if the sampling date was at the beginning or the end of a month),
RST = real-time soil temperature, RAT = real-time air temperature, DOC =
dissolved organic carbon, Olsen-P = rapid available phosphorus, Ph = rice
plant height, FD = flooding depth. MAT, MAP, MMT, and MMP were
22-years observation date obtained from http://neo.sci.gsfc.nasa.gov.
The total carbon (TC), total nitrogen (TN), and total phosphorus (TP)
were on dry basis while the RAP was on wet basis. Field moisture
was measured immediately after sample collection. (XLSX 25 kb)

Additional file 11: Supplementary methods. (DOCX 32 kb)

Additional file 12: Table S9. Basic information of the metagenomic
sequencing. (XLSX 11 kb)

Additional file 13: Table S10. Statistics information of metagenomic
assembly for each metagenomic sample. (XLSX 10 kb)
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