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Abstract

Grand Canonical Monte Carlo (GCMC) simulations of ionic solutions with explicit solvent models 

are known to be challenging. One challenge arises from the treatment of long-range electrostatics 

and finite box size in Monte Carlo simulations when periodic boundary condition and Ewald 

summation methods are used. Another challenge is that constant excess chemical potential GCMC 

simulations for charged solutes suffer from inadequate insertion and deletion acceptance ratios. In 

this work, we address those problems by implementing an oscillating excess chemical potential 

GCMC algorithm with smooth particle mesh Ewald and finite-box size corrections to treat the 

long-range electrostatics. The developed GCMC simulation program was combined with 

GROMACS to perform GCMC/MD simulations of ionic solutions individually containing Li+, Na
+, K+, Rb+, Cs+, F−, Cl−, Br−, I−, Ca2+ and Mg2+, respectively. Our simulation results show that 

the combined GCMC/MD approach can approximate the ionic hydration free energies with proper 

treatment of long-range electrostatics. Our developed simulation approach can open up new 

avenues for simulating complex chemical and biomolecular systems and for drug discovery.
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1. Introduction

Understanding the molecular basis for ionic hydration is fundamentally important to a range 

of chemical, physical and biological sciences. Accurate theoretical models to predict ionic 

hydration thermodynamics are difficult to derive due to the inherent complexity of the ionic 

hydration process, which involves reorientation and polarization of water molecules in the 

vicinity of ions. Moreover, studying ionic hydration in complex heterogeneous 

environments, like water-octanol mixture is even more challenging. One theoretical model 

was proposed by Born in 1920. The Born model is based on classical electrostatics and it 

treats solvents implicitly as a dielectric continuum. For a single spherical ion with charge Q, 

the Born expression for the free energy of creating a charge (or charging free energy) can be 

written as

ΔGelec = Q2

2σ
1
ε − 1 , (1)

where ε is the dielectric constant of the continuum solvent and σ is the so-called effective 

radius of the ion, which is the sum of crystal ionic radius and the solvent radius in the first 

ionic hydration shell. The effective radius of a new ionic compound is usually unknown a 
priori, thus limiting the wide application of the Born model. Nevertheless, the Born model 

successfully predicts a quadratic dependence of charging free energy on the ionic charge and 

a linear response of charging free energy to the ion-solvent electrostatic interaction energy. 

As shown by Roux et al., the Born equation can be derived by evaluating the integral which 

defines the excess chemical potential (μex) for creating a charge in the solvent, i.e.,

μex = ∫ 0
QdQ′∫ d3r( Σθ hθ(r; Q′)ρqθ)1

r , (1.2)

where hθ(r; Q′) is the equilibrium distribution function of the solvent with charge qθ 
surrounding a charged solute with charge Q′. Evaluation of the integral yields the Born 

equation, i.e.,

μex = ∫ 0
QdQ′ Q′

σ(Q′; T , ρ)
1
ϵ − 1 = Q2

2σ
1
ϵ − 1 . (1.3)

The electrostatic interaction energy between an ion and the solvent can be derived in a 

similar way, i.e.,
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Uelec(Q) = ∫ d3r( Σθ hθ(r; Q)ρqθ)Q
r = Q Q

σ(Q; T , ρ)
1
ϵ − 1 = Q2

σ
1
ϵ − 1 . (1.4)

Equations (1.3) and (1.4) demonstrate that the charging free energy is equal to half the 

ensemble average of the ion-solvent electrostatic interaction energy. The same relationship 

was also derived by Åqvist et al. by expanding the free energy difference between two 

thermodynamic states, i.e., ΔG = −β−1ln⟨e−βΔU⟩ as a Taylor series. These suggest a so-called 

linear response theory (LRT) method to calculating ionic charging free energy, i.e. ΔGelec 

can be approximated from molecular dynamics (MD) or Monte Carlo (MC) simulations by 

extracting <Uelec(Q)> for one ion interacting with its aqueous environment. The LRT 

method was verified by Åqvist et al., who showed that the ratio (Relec) of ΔGelec obtained 

from free energy perturbation (FEP) calculations to <Uelec(Q)> varies from 0.43 to 0.55 for 

a series of different ionic molecules, including both atomic and molecular ions.

A more common approach to calculating the ionic hydration free energy (HFE) is 

performing atomistic MD or MC simulations with explicit solvents, with the HFE extracted 

via free energy perturbation (FEP) or thermodynamic integration (TI) methods. To achieve 

adequate convergence, such calculations need to pre-define a number of thermodynamic 

intermediate states and sufficiently long simulations are required. For simple ionic solution 

systems, the convergence can be satisfied within a few hundred picosecond MD simulation.-

However, extensive applications of FEP and TI methods to more complex problems, such as 

estimating ligand-protein binding affinity, are still hampered due to the inherent convergence 

problems. For this reason, efforts continue towards the development of alternative HFE 

computational approaches.

Grand Canonical Monte Carlo (GCMC) simulations, which are carried out at constant 

chemical potential, volume and temperature, thereby allowing for the insertion and deletion 

of particles into and out of the simulation system, offer a new solution to the prediction of 

hydration thermodynamics.- The solute μex provides the driving force for its dissolution, and 

theoretically, μex is equivalent to the Gibbs HFE in the constant temperature and pressure 

condition. Accordingly, this provides a theoretical basis for prediction of HFE from GCMC 

simulations.

A major challenge encountered in GCMC simulations of condensed phase systems, such as 

bulk water, is the very low particle insertion acceptance rate mainly due to overlap of atomic 

van der Waals (vdW) radii even with advanced cavity-biased and configuration-biased 

insertion algorithms. For instance, the acceptance rates for water insertion in aqueous 

solutions have been estimated to be lower than 1% at ambient temperatures. For monoatomic 

ions, this atomic overlap challenge is small as the intrinsic water cavity is large enough to 

accommodate an ion. However, there are other challenges of studying ionic systems with 

explicit-solvent GCMC simulations. Firstly, determination of the ionic μex (or the ionic 

HFE) for the GCMC simulations is nontrivial. As indicated by equation (1.2), the difference 

between the ionic HFE and the ion-water interaction energy is a factor of approximately 2, 

which corresponds to tens of kcal/mol or more. In addition, the hydration of ions involves 
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significant reordering of water molecules, such that the electrostatic interactions between an 

ion and the bulk-like water are initially energetically unfavorable. These suggest that ions 

will most likely never be deleted from or inserted into the solutions if the ionic μex are kept 

constant at approximately the experimental HFE values. To overcome this problem, an 

oscillating-μex GCMC simulation approach, as introduced in our previous work, offers a 

solution. Secondly, the electrostatic interactions in ionic solutions are long-ranged. We note 

that in our previously developed GCMC method, while applied to a range of small organic 

solutes and to the distribution of Mg2+ around RNA,, electrostatic interactions were treated 

using a cutoff method.

In this work, we report the development of an improved GCMC method in which the smooth 

particle-mesh Ewald (PME) method is implemented to treat the short-range and long-range 

electrostatics. Thirdly, when periodic boundary condition (PBC) and PME are used, 

movements of charged solutes in Monte Carlo simulations may be affected by the so-called 

“finite-box” problem. This arises from the artificial ion-image ion interactions when PBC 

and PME are used for charged solutes in low-dielectric solvents. In this work, we also 

propose a method to correct for the finite-box size effect in GCMC simulations of ionic 

solutions. The developed GCMC method was combined with MD simulations to study 

eleven ionic solutions individually containing Li+, Na+, K+, Rb+, Cs+, F−, Cl−, Br−, I−, Ca2+ 

and Mg2+. To validate the GCMC/MD method, we also calculated the ionic HFEs using FEP 

in conjunction with the Bennett acceptance ratio (BAR) method, with proper finite-box 

corrections. It is found that the presented GCMC/MD algorithm can predict the ionic HFEs 

with reasonable accuracy.

2. Method development

2.1 GCMC movement: theory and implementation

In the GCMC simulation method, four types of moves, i.e., insertion, deletion, translation 

and rotation (only water molecules are rotated in the present study) are implemented. These 

movements are attempted and accepted governed by the Boltzmann distribution in the grand 

canonical ensemble. The grand canonical ensemble partition function Ξ(μ, V, T) is related to 

the canonical partition function Q(N,V,T) through the equation

Ξ(μ, V , T) = eβμNQ(N, V , T), (2.1)

and

Q(N, V , T) = 1
h3NN !

∫ ∫ drNd pNexp[ − βH(rN, pN)], (2.2)

Q(N,V,T) can be simplified by splitting the Hamiltonian into the kinetic and potential 

energy contributions, i.e. H(rN, pN) = K(pN) + U(rN), which gives
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Q(N, V , T) = 1
h3NN !

{∫ d pNexp[ − βK(pN)]}{∫ drNexp[ − βU(rN)]}, (2.3)

where the kinetic part can be expressed as

∫ d pNexp[ − βK(pN)] = ∫ d pNe
− β

2mΣi
N(pi, x

2 + pi, y
2 + pi, z

2 )
= 2πm

β

3N
2 . (2.4)

From equations (2.1), (2.3) and (2.4), the grand canonical partition function can be derived

Ξ(μ, V, T) = eβμN

Λ3NN !
∫ drNexp[ − βU(rN)], (2.5)

where Λ = h2
2πmkBT

1 2
 is the average de Broglie wavelength for particles with temperature 

T. β equals 1/kBT, kB is Boltzmann’s constant, U is the potential energy for one microstate. 

The grand canonical ensemble probability density for a microstate can be estimated by

PN(r1, r2, …rN) ∝ eβμNe
−βU(r1, r2, …rN)

Λ3NN !
. (2.6)

The GCMC simulation is performed by generating a Markov chain of configurations where 

the successive microstates are determined from the preceding ones by randomly attempting 

one of the four types of movements. For each of the four types of moves, the movement 

acceptance probability can be generalized as

Atrans rot = min{1, e
−β(Unew − Uold)

} (2.7)

and the insertion acceptance probability can be written as

Ainsert = V Λ−3

N + 1eβμe
−β(U(r1, r2, …rN + 1) − U(r1, r2, …rN))

. (2.8)

Analogously, for deletions, the deletion acceptance probability can be written as

Adelete = N
V Λ−3e−βμe

−β(U(r1, r2, …rN − 1) − U(r1, r2, …rN))
. (2.9)
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It is noticed that the chemical potential, μ, is a sum of the ideal gas chemical potential μid 

and the excess chemical potential μex, i.e. μ= μid+ μex, where the ideal gas chemical potential 

is related to the kinetic factor Λ,

μid = kBT ln(Λ3N /V) . (2.10)

From equations (2.8), (2.9) and (2.10), Adams’s formulation for the grand canonical 

ensemble insertion and deletion acceptance probabilities can be derived, i.e.,

Ainsert = 1
N + 1eBe

−β(U(r1, r2, …rN + 1) − U(r1, r2, …rN))
, (2.11)

Adelete = Ne−Be
−β(U(r1, r2, …rN − 1) − U(r1, r2, …rN))

, (2.12)

where the dimensionless Adams parameter B = βμex + lnN. In our algorithm, the GCMC 

simulations are performed in the constant volume and temperature ensemble at each cycle. 

Equations (2.11) and (2.12) correspond to the random insertion algorithm, which is not 

efficient for GCMC simulations. In Mezei’s cavity-biased insertion algorithm, equations 

(2.8) and (2.9) are modified by multiplying V (the volume of the GCMC region) by a 

dimensionless factor Pcavity, which is the probability of finding a void cavity in the GCMC 

region. Equations (2.11) and (2.12) then become

Ainsert =
Pcavity

N

N + 1 eBe
−β(U(r1, r2, …rN + 1) − U(r1, r2, …rN))

, (2.13)

Adelete = N
Pcavity

N − 1 e−Be
−β(U(r1, r2, …rN − 1) − U(r1, r2, …rN))

. (2.14)

A cubic cavity-biased algorithm is implemented in our GCMC simulation program. As is 

illustrated in Fig. 1, the entire simulation box is compartmentalized into a large number of 

cubes. A cube is considered occupied if the cube contains one or more atoms. An array of all 

void cubes in the GCMC region is then constructed. During the GCMC simulations, 

insertions are attempted by placing the ion to a randomly selected void cube. The insertion 

attempts will be frequently rejected in the condensed phase system due to the high 

probability of atomic overlaps and the exponentially large vdW repulsive energy. To reduce 

the computational cost, an atom overlap check is performed, i.e. if the distance for an ion-

water atom pair is found to be smaller than 0.5 Å, the insertion attempt is immediately 

rejected. Otherwise, the interaction energy of the inserted ion with its environment is 

Sun et al. Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



calculated using methods introduced below and the insertion acceptance probability is 

calculated using equation (2.13). For deletions, an ion within a GCMC region is randomly 

selected and the interaction energy of the ion with its environment is calculated. The 

probability of successful deletion is calculated using equation (2.14). The array of void 

cubes is updated every time an attempted movement (translation, rotation, insertion or 

deletion) is accepted.

2.2 Grid-searching method to calculate the short-range interaction energies

The interaction energy of an ion with its aqueous environment consists of the short-range 

Lennard-Jones (LJ) and electrostatic interaction energies and the long-range electrostatic 

energy. The long-range LJ interaction energy of a single ion with solvent is extremely weak 

relative to the electrostatic term, and hence this contribution is not considered in the current 

implementation. To further improve computational efficiency, a grid-searching algorithm is 

introduced to calculate the short-range interaction energies efficiently. The number of cubes 

in one dimension is

Nα(α = X, Y , Z) =

Lα
l + 1, if the remainder of Lα ∕ l ≠ 0

Lα
l , if the remainder of Lα ∕ l = 0

, (2.15)

where Lα is the simulation box length and l is the size of the cube. An atom is deemed to 

occupy the nth cube in one dimension if the atomic coordinate (rα) in that dimension 

satisfies nα ≤ (rα/1) < nα + 1. The occupied cube’s index number is thus obtained as

index = nZ + nY × NZ + nx × NY × NZ . (2.16)

In this way, all atomic coordinates in the simulation box are coupled to the cube index 

numbers by constructing a two-dimensional cube-atom array, where the first and second 

dimensions of the array store the cube index number and the atomic coordinate, respectively. 

This coupling array allows for quick identification of an atom’s neighboring atoms within a 

cutoff distance in the GCMC simulation energy calculations. For instance, if one attempts to 

insert an ion into a position in the simulation box, as is illustrated in Fig. 1, to search for the 

neighboring atoms surrounding the ion and to calculate the ΔU, the following steps are 

performed:

(1) Determine nx, ny, nz for the cube occupied by the ion, with this grid denoted 

Gion.

(2) Search the neighboring cubes of Gion within a cutoff distance and obtain those 

neighboring cube index numbers using equation (2.16). In this step, the periodic 

boundary condition is considered.

(3) Obtain the atomic coordinates in each of the neighboring cubes from the two-

dimensional cube-atom array.
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(4) Calculate the inter-particle energy if the inter-particle distance is within the 

cutoff distance. In the present GCMC simulations, the cutoff distance is set to 1 

nm for the short-ranged LJ and electrostatic interactions.

2.3 Implementation of smooth particle mesh Ewald

The smooth PME method introduced by Essmann et al. is implemented in the GCMC 

program to account for the long-range electrostatic energy. The total electrostatic energy of a 

N-particle system is composed of four terms,

Uelec = Ushort + Ulong + Ucorr − Uself, (2.17)

Ushort represents short-ranged electrostatic energy calculated in the real space,

Ushort = 1
2 Σn Σi, j = 1

N qiq jerfc( β ∣ r j − ri + n ∣ )
∣ r j − ri + n ∣ , (2.18)

where qi, qj are charges of two interacting atoms; erfc is the complementary error function; β 
is the Ewald splitting parameter which determines the relative convergence rates and the 

values of Ushort and Ulong. An error tolerance value of 0.000001 and an electrostatic real-

space cutoff distance Relec of 1 nm are used to determine the value of β, using the 

relationship erfc(β × Relec)/Relec ≤ 0.000001. The vector n=nXLX+nYLY+nZLZ, where LX, 

LY, LZ are the lengths of the three simulation box edges; nX, nY and nZ are integers 

indicating the use of periodic boundary condition to calculate the Ushort. In this work, Ushort 

is calculated using a grid-searching method, as introduced above. Ulong represents the long-

range electrostatic energy,

Ulong =
KXKYKZ

2 ΣmX = 0
KX − 1

ΣmY = 0
KY − 1

ΣmZ = 0
KZ − 1

Q(mX, mY, mZ) × F−1[BC(mX, mY, mZ) ×

F(Q)(mX, mY, mZ)],

(2.19)

where KX, KY, KZ are the number of cubic PME grid points in three dimensions and the 

distance between two neighboring grid points is set to 0.12 nm; mX, mY, mZ are PME grid 

point indexes. Equation (2.19) suggests that the PME grid point charge array Q is firstly 

constructed in real space and then transformed from real space to Fourier space using the 

fast Fourier transform algorithm, as indicated by F(Q). The charge of a grid point with index 

of (mX, mY, mZ) is given by

Q(mX, mY, mZ) = Σi = 1
N qiMn(ΔX) × Mn(ΔY)Mn(ΔZ), (2.20)
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where ΔX, ΔY, and ΔZ are the distances between the atom and the selected cubic grid point 

in X, Y, Z dimensions; n is the cardinal B-spline order parameter and its value is set to 4 in 

our program. This value suggests that an atomic charge is only assigned to 4 neighboring 

grid points in one dimension (a total of 64 grid points in three dimensions), with the grid 

index, Gindex, and the integer part of the atomic scaled coordinates Sα (α=X, Y, Z) 

satisfying Gindex= Sα-n+k, with k=1, 2, 3, 4. Periodic boundary condition is considered 

when assigning the atom point charges to the grid points. Mn is calculated by,

Mn(u) = 1
(n − 1)! Σi = 0

n ( − 1)i n!
i!(n − i)! (u − i)+

n − 1 . (2.21)

Equation (2.19) also suggests that, in the Fourier space, a BC array is multiplied by F(Q) and 

the obtained result is then reverse transformed from Fourier space to real space to do the 

remaining calculations. The BC array is the product of the independent B and C arrays. The 

elements in the B array are determined by

B(mX, mY, mZ) = ∣ bX(mX) ∣2 ⋅ ∣ bY(mY) ∣2 ⋅ ∣ bZ(mZ) ∣2, (2.22)

bα(mα) are complex numbers and their values are calculated using the following equation

bα(mα) = exp(2πi(n − 1)mα ∕ Kα) × [ Σk = 0
n − 2 Mn(k + 1)exp(2πimαk ∕ Kα)]−1, (2.23)

where n is the B-spline order parameter. The C array is defined by

C(mX, mY, mZ) =
1

πV
exp( − π2m2 β2)

m2 , if m ≠ 0

0, if m = 0
(2.24)

V is the volume of the simulation box, m is a vector and its value is determined by

m =
mX′
LX

+
mY′
LY

+
mZ′
LZ

, (2.25)

mα′ = mα if 0 ≤ mα ≤ Kα/2, otherwise mα′ = mα − Kα. The long-range electrostatic energy of 

an ion with the environment is calculated by

Ulong = Ulong, environment + ion − Ulong,environment − Ulong,ion, (2.26)

where Ulong, environment+ion is the long-range electrostatic energy for the system, 

Ulong, environment is the long-range electrostatic energy for the environment and Ulong,ion is 
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the long-range electrostatic energy for a single ion in a periodic simulation box with size 

equal to the that of the whole simulation system. In the PME summation method, the charge 

density at position r in the simulation box is expressed as

ρSPME(r) = ρ(r) − ∑
i = 0

N qi
Vbox

(2.27)

where ρ(r) is the charge density computed from Coulomb’s law, qi is the atomic charge and 

Vbox is the volume of the simulation box. Equation (2.27) suggests that an implicit and 

uniform background neutralizing charge will be created if the system has a net charge. To 

account for the interactions between the point charge and the background charge in real 

space, a net charge energy correction, i.e., Ucorr is included. If the system has a net charge of 

Δq,

Ucorr = − π × Δq2

2β2 × Vbox
. (2.28)

Finally, the self energy Uself = β
π ∑i = 1

N qi
2 is not considered in the GCMC program because 

only the inter-molecular interaction energy needs to be calculated in the GCMC simulation.

2.4 Finite-box correction for long-range electrostatics

It has been known that application of PBC and PME leads to the finite-box size artifact in 

the prediction of ionic HFE. Hummer et al. and Figueirido et al. have proposed to add the 

Wigner self-interaction energy term to correct for this artifact. Hence, the ionic HFE values 

predicted from an infinitely large simulation box (ΔG(∞)) can be approximated by

ΔG(∞) ≈ ΔG(L) − 1
4πε0

× q2ζ
2εL , (2.29)

where the dimensionless constant ζ = 2.837297, ε is the dielectric constant of the solvent, q 
is the ion charge with unit of Coulomb and L is the simulation box size. It can be seen that 

for solvents with low dielectric constant, the finite-box correction to the ionic HFE is not 

negligible.

In our GCMC simulation program with implementations of PBC and PME, the short-range 

ion-solvent (LJ and electrostatic) interaction energies are calculated by using the grid-

searching method, as introduced above. The long-range electrostatic interaction energy can 

be derived from equation (2.26). Of note, the long-range electrostatic energy of an ion in a 

periodic simulation box is not zero, but instead this long-range electrostatic energy 

calculated from PME approach increases as the simulation box size is increased. It is 

expected that, at an infinitely large simulation box, the sum of the short-range and long-

range electrostatic energy is zero, i.e., Ulong(∞) = −Ushort. In GCMC simulations, the long-
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range ion-solvent electrostatic interaction energy as well as the total interaction energy from 

an infinitely large simulation box can be estimated using an equation analogous in functional 

form to equation (2.29)

U(∞) = U(L) − 1
4πε0

× q2ζ
εL , (2.30)

The correction term is derived from linear response theory, i.e. <Uelec(Q)>/2=ΔGelec. To 

validate equation (2.30), we have run 1 ns MD simulations of one single ion solvated by 

water in a cubic simulation box. 1,000 configurations are extracted from the MD 

simulations. Eight different box sizes, i.e. L=4.8 nm, 7.2 nm, 9.6 nm, 12.0 nm, 14.4 nm, 16.8 

nm and 19.2 nm are used to compute the long-range electrostatic and total interaction energy 

of an ion with its aqueous environment. Both GROMACS and the GCMC simulation 

programs are used for this calculation.

2.5 Parallelization of the GCMC simulation program

As illustrated in Fig. 1, all small molecules in the GCMC region are assigned into a few 

parallel GCMC subdomains. A molecule is assigned to a subdomain if the center-of-mass 

position of the molecule rcom and the lower and upper boundary positions rlower, rupper of the 

sub-GCMC domains satisfy rlower ≤ rcom < rupper. After the cube-atom coupling array, the 

PME BC array, and the PME Q array and are constructed, each of the GCMC subdomains 

receives a copy of these arrays and GCMC simulations are run in parallel in each of the 

GCMC subdomains. During the GCMC simulations, the BC array remains fixed while the Q 
array and the cube-atom coupling array are dynamically updated once a GCMC movement 

is accepted. Of note, our GCMC parallelization scheme indicates that a molecule within a 

GCMC subdomain cannot sense the change in coordinates of particles in other subdomains. 

As such, it is necessary to re-construct the PME Q array and the cube-atom coupling array 

periodically, typically every 1000 GCMC steps. OpenMP is used for the program 

parallelization. The validations of the parallelization scheme and the robustness of 

interaction energy calculation of the GCMC simulation program are presented in Supporting 

Information.

2.6 Ionic hydration free energy calculations

To evaluate the developed GCMC/MD method, the Bennett acceptance ratio (BAR) 

approach is used to compute the ionic HFEs for five alkali ions (Li+, Na+, K+, Rb+, Cs+), 

four halide ions (F−, Cl−, Br−, I−) and two divalent cations (Mg2+ and Ca2+) for comparison.

2.6.1 Bennett Acceptance Ratio (BAR)—In this approach, the free energy difference 

between two close thermodynamic states is derived as

Sun et al. Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2019 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A1 − A2 = −kBT ∫ e
−βU2(rN)

drN

∫ e
−βU1(rN)

drN

= −kBTln ∫ e
−βU2(rN)

drN

∫ ω(rN)e
−βU1(rN) − βU2(rN)

drN
× ∫ ω(rN)e

−βU1(rN) − βU2(rN)
drN

∫ e
−βU1(rN)

drN

= − kBTln
ωe

−βU2
1

ωe
−βU1

2

,

(2.31)

where kB is the Boltzmann constant, T is the temperature, N is the number of atoms, and 

ω(rN) is an arbitrary weighting function. The strategy in the BAR method is to find an 

optimal ω value that minimizes the expected statistical error in the calculated free energy 

difference. The optimal weighting function has the form

ω(rN) ∝ (n1
−1e

−βA1 − βU2(rN)
+ n2

−1e
−βA2 − βU1(rN)

)
−1

. (2.32)

The variables n1 and n2 are the number of trajectory configurations used in the free energy 

average for states1 and 2. If we assume that these are the same, we have

ω(rN) ∝ (e
−βA1 − βU2(rN)

+ e
−βA2 − βU1(rN)

)
−1

. (2.33)

Finally, the following equation is derived

ΔA1 2 = kBT ln 1
1 + e

−βΔU + ΔA1 2
1

∕ 1
1 + e

−βΔU + ΔA1 2
2

(2.34)

The above equation can be solved by iterating until the free energy difference converges. 

However, the free energy value cannot converge if the two states are significantly separated 

in the configurational space. In practice, multiple intermediates states represented by λ are 

needed to bridge the two-end states. And hence, the free energy difference between state A 

and B can be expressed as
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ΔA1 2 = Σ ΔAλi λ(i + 1) . (2.35)

For the present study, the simulation system contains one ion and 450 TIP3P water 

molecules, with a simulation box size of 2.4 nm. To investigate the effect of box size, we 

also perform BAR calculations using a larger box size of 4 nm, containing one ion and 2138 

water molecules. The BAR calculations are carried out at a constant isotropic pressure of 1 

atm using Parrinello-Rahman barostat and a temperature of 300 K using Nosé-Hoover 

thermostat,- as implemented in the GROMACS 5.1.0 software package. Integration of 

equation of motion is performed using leapfrog stochastic dynamics. The two-step 

procedure for decoupling LJ (cavity growth) and electrostatic (atom charging) interactions 

independently is employed. A series of λ=0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 

1.0 are used for the cavity growth simulations and λ=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 1.0 are used for the atom charging simulations. The cutoff distance for both short-range 

LJ and electrostatic interactions is 1 nm, and the long-range electrostatic interactions are 

treated using PME. Each window is simulated for 350 ps and the first 100 ps simulation is 

discarded for equilibration. It has been previously reported that the convergence can be 

reached within a few hundred picoseconds for MD simulations of ionic solutions using the 

additive CHARMM and Drude polarizable force fields.- A soft core potential with α=1, 

σ=0.3nm and λ-power of 1 is used in the cavity growth simulations in order to avoid 

singularities.

2.6.2 Grand Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) 
simulations—Eleven simulation systems are constructed and equilibrated in the NPT 

ensemble for 1 ns for subsequent GCMC/MD simulations. The cubic simulation box of 

edge-length 4.6 nm contains a single type of ion, with 11 ions and 3320 water molecules 

yielding a starting ion concentration of 0.15 M. To investigate whether the number of ions 

has an effect on the calculated free energy, we also carried out GCMC/MD simulations of 

Na+ solutions using different initial number of Na+ ions. Accordingly, the simulation 

systems have net charges with the net charge implicitly neutralized by the PME neutralizing 

background charge in the simulation systems. The iterative GCMC/MD cycles are 

performed in following steps: (1) 200,000 steps of GCMC simulation (insertion, deletion, 

translation and rotation) are run for water and ions. The initial μex for water and ions are set 

to their experimental HFE values, i.e., −5.6 kcal/mol for water and the experimental HFE 

values for ions are listed in Table 1. We have performed additional simulations for Cl− and 

Na+ using different initial μex values to show that the simulation results are not influenced by 

the chosen initial values. (2) After completion of the 200,000 steps of GCMC simulations, 

1000 steps of steepest-descent energy minimization is performed followed by a 350 ps MD 

simulation are run in the NPT ensemble. (3) Vary the values of μex for ions by dμex, and use 

this new μex value for next iteration of GCMC simulations. The magnitude of dμex is 

determined using the method introduced in the Supporting Information. (4) Perform 400 

cycles of the GCMC/MD simulations from which average values of μex are determined for 

ions. Throughout the GCMC simulations, the μex value for water is kept constant at −5.6 

kcal/mol.
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2.7 Force fields and MD simulation details

The GROMACS 5.1.0 software package is used for the energy minimization and MD 

simulations. The LJ parameters for the ions are listed in Table 1. The CHARMM TIP3P 

model is used for water. During MD simulations, the Nosé-Hoover thermostat- is used to 

maintain the system temperature at 300 K and the Parrinello-Rahman barostat is used to 

maintain the system pressure at 1 atm. The LINCS algorithm is used to constrain the water 

geometry. LJ interactions are switched off smoothly in the range of 1-1.2 nm and the PME 

method is used to treat long-range electrostatics with a real space cutoff distance of 1.2 nm, 

with the order of B-spline interpolation set to 4 and the maximum grid spacing set to be 0.12 

nm. The GROMACS long-range dispersion correction to the energy and pressure is applied.

3. Results

The primary aim of this work is developing a GCMC/MD approach in which the long-range 

electrostatic interactions are treated using the PME method, and then evaluating this 

approach for predicting ionic HFE. In the following paragraphs, we first present the ionic 

HFE results predicted with the BAR approach. The results obtained from the BAR approach 

are used to validate the developed GCMC/MD approach.

3.1 Ionic HFE predicted with the BAR approach

The absolute ionic HFEs are calculated using the BAR approach implemented in 

GROMACS. The thermodynamic cycle used for deriving the absolute ionic HFE, ΔG1, is 

illustrated in Fig. 2. ΔG1 is equal to the sum of the free energy for annihilating the ion in 

vacuum, ΔG2, and the free energy for growing a dummy particle into a fully charged ion in 

water, ΔG4. ΔG1 is also equivalent to the free energy for transferring an ion from vacuum to 

water if the vacuum/water interfacial electric potential is not considered. In this work, the 

contribution of the vacuum/water interface to ΔG1 is not considered and thus the ΔG1 value 

can be called the intrinsic absolute ionic HFE. This intrinsic absolute HFE can be directly 

compared with the experimental data from Markus, who used the tetraphenylarsonium 

tetraphenylborate (TATB) extrathermodynamic assumption to determine the ionic HFE. The 

TATB approach assumes that the TA cation and the TB anion have identical thermodynamics 

in water and the measured HFE for the TATB ion pair can be equally divided between the 

two ions. In this approach for estimation of the experimental HFE, the vacuum/water 

interface has no effect on the gaseous-aqueous partitioning of the neutral ion pair.

Accurate prediction of ionic HFE using the thermodynamic cycle illustrated in Fig. 2 

involves ad hoc corrections, and explicitly taking into account these corrections is important 

for developing robust force field parameters for ions. Here, we only concentrate on the 

finite-box correction, as the energetic contributions of other corrections, including the long-

range dispersion correction and the thermodynamic volume correction are relatively small.

The absolute ionic HFEs using the BAR approach are calculated using two different box 

sizes, L=2.4 nm and L=4 nm, and the simulation results are listed in Table 2. It can be seen 

that the box size has a dramatic effect on the ΔG2 values whereas it has negligible effect on 

the ΔG4 values.
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This box size effect associated with ΔG2 for ions in vacuum is attributed to the use of 

periodic boundary conditions and PME to treat electrostatics, i.e., an isolated ion in the 

periodic simulation box (vacuum) can interact with its periodic images via short-range and 

long-range electrostatic interactions. We used GROMACS to calculate the short-range and 

long-range electrostatic energies for a single ion in a periodic simulation box. It is found that 

the derived short-range electrostatic energy (Ushort) is insensitive to the box size change. For 

the two box sizes of L=2.4 nm and L=4 nm, Ushort= −58.52 kcal/mol for all monovalent ions 

and Ushort= −234.08 kcal/mol for all divalent ions. However, the long-range electrostatic 

energy (Ulong) is found to increase with the simulation box size. For monovalent ions, Ulong 

increases from 38.89 kcal/mol to 46.74 kcal/mol as L increases from 2.4 nm to 4 nm. For 

divalent ions, Ulong increases from 155.55 kcal/mol to 186.96 kcal/mol.

Using equation (2.30), the Wigner self-interaction corrections for ΔG2 and ΔG4 can be 

estimated. In water (ε ≈ 80), the Wigner self-interaction correction energy (Ucorr) is around 

0.24 kcal/mol for monovalent ions and 0.96 kcal/mol for divalent ions when L=2.4 nm. The 

Ucorr values decrease slightly to 0.15 kcal/mol for monovalent ions and 0.60 kcal/mol for 

divalent ions when L increases to 4 nm. Thus, Ucorr can almost be neglected in water due to 

the high dielectric constant of water. For ions in vacuum (ε ≈ 1), Ucorr=19.2 kcal/mol and 

Ucorr=76.8 kcal/mol for monovalent and divalent ions, respectively when L=2.4 nm. And 

these values decrease to 12.0 kcal/mol and 48.0 kcal/mol when L=4 nm (Table 2). This 

suggests that the ion-ion image interactions must be considered when the PME method is 

used to treat charged compounds in solvents with low dielectric constant, such as 

cyclohexane.

Here, we present an analytical method to make corrections to the finite box size artifact. 

When the PME method is used to treat electrostatics, the sum of Ushort and Ulong is expected 

to be zero in an infinitely large simulation box, i.e. Ushort + Ulong(∞) As is shown above, 

placing an ion in a finite-sized simulation box, the energy of the ion is found to be negative 

due to the underestimated long-range electrostatic energy. This suggests a linear method to 

make the finite box size correction for ionic free energy in vacuum, i.e.,

ΔG(∞) = ΔG(L) − Ulong(∞) − Ulong(L) = ΔG(L) − −Ushort − Ulong(L) . (3.1)

The linear correction energies are listed in Table 2 and it can be seen that the linear 

correction energies are almost identical to ΔG2 and the Wigner self-interaction energies. 

This suggests a relationship

Ulong(∞) − Ulong(L) ≈ 1
4πε0

× q2ζ
2L . (3.2)
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3.2 Effect of inclusion of long-range electrostatics on the ionic HFE predicted with the 
GCMC/MD approach

The developed GCMC/MD simulation approach works by continuously varying the ionic μex 

value over 400 cycles of GCMC/MD simulations. The GCMC simulation is firstly 

performed with the ionic μex set to at an assigned value followed by MD simulations 

allowing for relaxation of the entire simulation system. In the next cycle of GCMC 

simulations, the new ionic μex is determined based on the difference between the actual and 

the target number of ions in the simulation system (see methods in Supporting Information). 

The simulation protocol is similar to our previous work. A major improvement in the new 

GCMC simulation program is the implementation of the grid searching and the PME 

algorithms to calculate the ionic solute-water interaction energies more accurately. Herein, 

we compare the ionic HFEs predicted with the new PME GCMC/MD approach and our 

previous GCMC/MD approach. The finite-box correction is not considered in this 

comparison in order to demonstrate the pure effect of inclusion of long-range electrostatics 

on the simulation results.

Fig. 3 plots the evolution of the ionic μex during the 400 cycles of PME GCMC/MD 

simulations. For all the studied ions, the μex fluctuates between a minimum value (μex
min) and 

a maximum value (μex
max). The μex

min and μex
max values correspond to the excess chemical 

potentials needed to remove all ions in our simulation box from the “organized” (water 

rearranges surrounding the ion) solutions and to insert ~0.15 M concentration of ions into 

bulk-like water solutions during the GCMC simulations. The variations of the number of 

ions in the solutions are shown in Fig. S2. It can be seen from Fig. 3 that the Markus 

experimental ionic HFEs (shown in Table 1) can be approximated using a linear relationship, 

i.e.,

ΔG = (μex
min + μex

max) 2, (3.3)

where μex
min and μex

max are the averaged μex
min, μex

max values over the 400 cycles of GCMC/MD 

simulations. The obtained μex
min, μex

max and the associated ionic HFEs values are listed in Table 

3. Of note, the functional form of equation (3.3) resembles the linear response equation 

derived by Raineri et al, i.e.,

ΔG = (Uuv
0 + Uuv) 2, (3.4)

where μex
min and Uuv are the averaged solute-solvent interaction energies in the bulk-like and 

ion-organized solutions.

To investigate the effect of inclusion of long-range electrostatics on the GCMC/MD 

simulation results, we plot in Fig. 4 the evolution of the ionic μex determined from our 

previously developed GCMC/MD approach (denoted cut-off GCMC/MD). The obtained 
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μex
max, μex

max and HFE values are listed in Table 3. Compared with the PME GCMC/MD 

simulation results, the cut-off GCMC/MD predicted μex
min and μex

max values for the 

monovalent cations increase and decrease by ~10 kcal/mol, respectively. Thus, the ionic 

HFEs for the monovalent cations are not significantly affected when the long-range 

electrostatics are ignored. However, for the monovalent anions, the cut-off GCMC/MD 

predicted μex
min values increase by ~40 kcal/mol and the μex

max values increase by ~20 kcal/

mol. As a result, the cut-off GCMC/MD predicted ionic HFEs for monovalent anions are 

~30 kcal/mol higher than the corresponding results predicted with the PME GCMC/MD 

approach. For the divalent Ca2+ and Mg2+, the cut-off GCMC/MD predicted ionic HFE 

values are also increased compared with the PME GCMC/MD results. These results suggest 

that long-range electrostatics have more profound effect on the hydration thermodynamics of 

monovalent anions and divalent cations. To investigate whether the long-range electrostatics 

has such marked effect on the predicted ionic HFE using the FEP/BAR approach, we 

calculated the HFE values for Na+ and Cl− using the BAR approach without PME. The 

results are −85.09 kcal/mol for Na+ and −88.59 kcal/mol for Cl−, which are only 4.5 and 4.1 

kcal/mol, respectively, less favorable than the PME BAR results listed in Table 2. Thus, in 

the case of anions, the change in the HFE associated with the inclusion of PME in the 

GCMC/MD calculations is impacted in part by changes in the sampling of the ensemble of 

conformations.

3.3 Effect of finite box correction on GCMC simulations

Given the impact of long-range electrostatic interactions associated with the introduction of 

PME on the HFE values from the GCMC/MD calculations it is necessary to consider the 

impact of a finite box correction. Given that the acceptance rates is impacted by the 

electrostatic term, such a correction is of particular importance. Fig. 5 presents the 

interaction energy of a single Cl−, Na+ or Mg2+ with water as a function of simulation box 

size. Our PME GCMC program predicts consistent results with GROMACS, and it shows 

that the ion-water interaction energy becomes more favorable as the simulation box size is 

increased.

From equation (3.2) and the linear response theory, a relationship can be derived to couple 

the ion-water electrostatic interaction energies in a large simulation box (Uelec(large)) and in 

a small simulation box (Uelec(small))

Uelec(large) = Uelec(small) − 2 × (Ulong(large) − Ulong(small)), (3.5)

where Ulong is the long-range electrostatic energy for a single ion in a cubic simulation box. 

To verify equation (3.5), we used the simulated Uelec values from a small simulation box 

with size of 4.8 nm to predict the Uelec values for simulation box with size of 19.2 nm. The 

results are listed in Table 4. It can be seen from Table 4 that the predicted Uelec values and 

the simulated Uelec values for simulation box with size of 19.2 nm are in good agreement.
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Using equations (3.3) and (3.5), we come to equation (2.31) to predict the ion-environment 

interaction energy in an infinitely large simulation box. The obtained μex
min, μex

max and HFE 

values using the finite box corrections in the GCMC/MD simulations with PME are listed in 

Table 5. It can be seen that the finite box corrections leads to the HFEs becoming 

systematically more favorable, as expected, with the finite box correction ranging from 

approximately −15 kcal/mol for monovalent ions to approximately −60 kcal/mol for divalent 

ions.

3.4 Comparison of experimental, BAR and GCMC hydration free energies

In Fig. 6 we compare the Markus experimental HFEs with the simulated ionic HFEs using 

the FEP/BAR and GCMC/MD approaches (with PME and finite box corrections). For 

monovalent cations, the BAR approach predicts consistent results with experiment, while for 

monovalent anions, the BAR approach overestimates the ionic HFEs. For all the studied 

ions, the GCMC/MD simulations predict more favorable HFEs compared with the BAR 

approach. This is mainly attributed to the finite-box corrections in the GCMC simulations, 

which is important for GCMC simulations of divalent Mg2+, as is shown in Fig. 6(c). In 

addition, the FEP/BAR results are obtained at infinite dilution, while the GCMC/MD results 

are for a concentration of 0.15 M. Finally, we note that the level of agreement between the 

calculated and experimental HFE values is inherently limited by the force field parameters 

themselves. The emphasis in the present study is the ability of the PME GCMC/MD method 

to satisfactorily reproduce the trends obtained with the FEP/BAR calculated values.

4. Discussion and Conclusions

Combined GCMC/MD simulation methods have proven to be a powerful technique for 

solvent-free and porous adsorbent systems.- However, in condensed phase system with 

explicit solvent, obtaining adequate insertion/deletion acceptance rates poses a critical 

challenge for GCMC simulations. On one hand, the sizes of the intrinsic cavities in bulk 

water and biomolecules are usually too small to efficiently insert solutes into such system. In 

addition, for charged solutes, the insertion attempt is frequently rejected due to the strong 

electrostatic repulsion between the charged solute and the bulk-like water molecules. On the 

other hand, the difference between the interaction energy of solute with solvent and the 

solute HFE (or equivalently the solute excess chemical potential) is often too large to 

efficiently delete the solute from the system. To overcome this, we introduced the oscillating 

excess chemical potential GCMC simulation approach, in which the solute excess chemical 

potential is determined by the difference between the actual and the target number of solute 

in the simulation system. In this work, we extend that approach to more accurately treat the 

electrostatics by implementing a grid-searching method for the rapid evaluation of short-

range interactions and PME and finite box corrections for the treatment of long-range 

electrostatic interactions. Other studies using GCMC simulations to improve the sampling of 

water in condensed phase simulations include the work of Mezei and coworkers that used an 

increased chemical potential to facilitate water sampling around DNA and the replica-

exchange GCMC method proposed by Essex and co-workers. Also of interest is the recent 

use of non-equilibrium Monte Carlo to achieve the sampling of Na+ and Cl− in aqueous 

systems.
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In the simulations of ionic solutions in this work, the target value driving ion-insertion and 

ion-deletion processes are set to zero and eleven, corresponding to the ionic concentration of 

~0.15 M. By varying the excess chemical potentials for the ions, minimum and maximum 

ionic μex values may be obtained. It is found that the experimental ionic HFEs can be 

approximated using a linear relationship coupling the maximum μex for ion insertion and the 

minimum μex for ion deletion. PME combined with the finite box size corrections for long-

range electrostatics yields more favorable ionic HFEs for monovalent ions than the 

FEP/BAR results. While for divalent ions, the finite box corrections is important for deriving 

improved ionic HFE results in better agreement with BAR. Differences in the targeting of 

infinite dilute vs. 0.15 M concentrations in the FEP/BAR and GCMC/MD methods, 

respectively, and the inherent limitations in the force field parameters are noted.

This work shows that, with implementation of the grid searching and the PME methods for 

short-range and long-range interaction energy calculations, the presented GCMC/MD 

approach can be used to estimate the HFEs of ions in aqueous solution, offering a significant 

improvement in the accuracies of the ionic HFE prediction compared with our previously 

developed approach. In future work, the developed GCMC/MD approach will be applied to 

study more complex ionic systems containing biomolecules such as ion channels, DNA, 

RNA and calcium binding proteins, among others, as well as in the site identification by 

ligand competitive saturation (SILCS) functional group mapping approach.-
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Figure 1. 
In the GCMC simulation program, the three-dimensional simulation box is 

compartmentalized into a large number of small cubes with a length of 1 Å. All atoms in the 

simulation box are assigned into the cubes based on the atomic coordinates and the cube 

positions. By constructing a two-dimensional cube-atom array, all neighboring atoms 

surrounding an ion within a cutoff distance can be quickly found. In addition, a GCMC 

region can be defined if the simulation system contains biomolecules like protein or DNA. 

For parallel GCMC simulations, the GCMC region is divided into a number of GCMC 

subdomains.
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Figure 2. 
Thermodynamic cycle for the partitioning of an ion from vacuum to water. The absolute 

ionic hydration free energy is equivalent to the free energy for transferring an ion from 

vacuum to water, ΔG1. Since PME and periodicity are used for the calculation, an ion in 

vacuum can interact with its periodic image, and thus ΔG2 is not zero. ΔG4 includes the 

contributions from cavity formation (dominated by LJ interactions) and charging 

(electrostatics). The dummy particle has no interaction with water molecules such that 

ΔG3=0.
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Figure 3. 
Fluctuations of the excess chemical potential for the eleven ions during the 400 cycles of 

GCMC/MD simulations. The blue dashed line denotes the Markus experimental data while 

the red dashed line represents the predicted ionic HFE from the GCMC/MD simulations. In 

the GCMC simulation program, PME method is used for electrostatic interaction 
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calculations and the correction for electrostatic interaction energy due to the finite 

simulation box size is not considered.
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Figure 4. 
Fluctuations of the excess chemical potential for the eleven ions. The results are obtained 

using our previously developed GCMC simulation program, in which a cut-off method is 

used for electrostatic interaction energy calculations.
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Figure 5. 
Ion-water interaction energy for a single (a) Cl− (b) Na+ and (c) Mg2+. Periodic boundary 

conditions and PME are applied.
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Figure 6. 
Comparison of the experimental HFEs with the simulated HFEs from BAR and GCMC/MD 

approaches.
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Table 1.

Force field parameters and the experimental hydration free energy values for the eleven ions.

Ions LJ parameters Exp HFEc

Rmin/2 (Å) ε (kcal/mol) (kcal/mol)

Li+a 1.29591 0.04079 −113.52

Na+a 1.40811 0.82103 −87.23

K+a 1.76154 1.52302 −70.51

Rb+b 1.81203 5.73877 −65.72

Cs+a 2.09814 3.32611 −59.75

F−b 2.30010 0.05887 −111.13

Cl−a 2.26644 2.62588 −81.26

Br−a 2.60865 1.02679 −75.28

I−b 2.85549 0.93972 −65.72

Ca2+a 1.36323 2.10070 −359.70

Mg2+a 1.18372 0.26259 −437.38

a
Parameters are from the CHARMM force field as reported in the 2017 version of the CHARMM36 GROMACS toppar files following conversion 

to Rmin/2 in Å and epsilon in kcal/mol.

b
Parameters are from ref.

c
Experimental HFE values are from ref.
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Table 3.

The average μex
min, μex

max and HFE values predicted using PME GCMC/MD and cut-off GCMC/MD 

simulations. The unit is in kcal/mol. The uncertainties are standard deviations.

Ion

PME Cutoff

μex
min μex

max
HFE μex

min μex
max

HFE

Li+ −185.91±1.75 −27.61±1.08 −106.76±2.83 −179.58±3.98 −42.44±1.20 −111.01±5.18

Na+ −157.64±2.06 −21.72±1.43 −88.86±3.49 −141.92±5.70 −33.12±1.67 −87.52±7.37

K+ −124.33±1.84 −10.31±1.26 −67.32±3.10 −114.64±4.61 −24.57±1.05 −69.61±5.66

Rb+ −114.58±1.25 −7.81±1.67 −61.20±2.92 −101.86±4.20 −21.91±1.73 −61.89±5.93

Cs+ −100.72±1.55 −0.93±1.23 −50.83±2.78 −93.16±2.29 −14.82±1.94 −53.99±4.23

F− −190.53±1.63 −27.15±2.60 −108.84±4.23 −147.31±4.48 −9.03±1.74 −78.17±5.65

Cl− −153.32±1.64 −15.78±2.15 −84.55±3.79 −109.74±4.98 3.32±2.79 −53.21±7.77

Br− −136.67±1.97 −6.44±3.18 −71.55±5.15 −90.71±3.78 15.07±1.94 −37.81±5.72

I− −122.29±1.62 4.74±2.47 −58.77±4.09 −84.09±4.41 25.48±2.83 −29.30±7.24

Ca2+ −590.46±10.47 −59.35±3.60 −324.90±14.07 −551.35±2.96 −68.68±2.52 −310.01±5.48

Mg2+ −672.67±9.78 −80.46±3.71 −376.56±13.49 −611.12±3.01 −94.04±2.11 −352.58±5.12
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Table 4.

The simulated and the predicted electrostatic energies of ions interacting with water. Unit is in kcal/mol.

Ions
L=4.8 nm L=19.2 nm

Sim Uelec Sim Uelec Pre Uelec

Li+ −210.93 −229.12 −229.12

Na+ −180.03 −196.27 −194.74

K+ −145.14 −158.45 −159.86

Rb+ −128.85 −141.99 −143.56

Cs+ −115.22 −130.90 −129.94

F− −218.38 −233.12 −233.10

Cl− −172.63 −184.38 −187.34

Br− −154.40 −170.35 −169.12

I− −139.13 −153.33 −153.84

Ca2+ −642.86 −699.28 −701.80

Mg2+ −724.54 −776.62 −783.48
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Table 5

The averaged μex
min, μex

max and HFE values predicted using PME GCMC simulations with finite box corrections. 

The unit is in kcal/mol. The finite box correction contribution is the difference between the HFEs calculated 

from PME GCMC simulations with and without finite box correction.

Ions Corrected PME Finite box

μex
min μex

max
HFE correction

Li+ −200.48±1.69 −43.61±1.53 −122.05±3.22 −15.29

Na+ −173.76±1.69 −34.75±0.93 −104.25±2.62 −15.39

K+ −139.72±1.77 −26.24±1.98 −82.98±3.75 −15.66

Rb+ −129.05±1.65 −22.33±1.46 −75.69±3.11 −14.49

Cs+ −115.60±2.02 −16.03±2.15 −65.81±4.17 −14.98

F− −205.15±2.54 −43.78±1.64 −124.47±4.18 −15.63

Cl− −167.77±1.38 −31.20±1.77 −99.49±3.15 −14.94

Br− −151.53±1.47 −21.95±2.93 −86.74±4.40 −15.19

I− −137.48±2.34 −10.31±3.09 −73.90±5.43 −15.13

Ca2+ −656.00±7.30 −125.67±3.74 −390.83±11.04 −65.93

Mg2+ −735.14±8.74 −143.28±2.45 −439.21±11.19 −62.65

J Chem Theory Comput. Author manuscript; available in PMC 2019 October 09.


	Abstract
	Graphical Abstract
	Introduction
	Method development
	GCMC movement: theory and implementation
	Grid-searching method to calculate the short-range interaction energies
	Implementation of smooth particle mesh Ewald
	Finite-box correction for long-range electrostatics
	Parallelization of the GCMC simulation program
	Ionic hydration free energy calculations
	Bennett Acceptance Ratio (BAR)
	Grand Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) simulations

	Force fields and MD simulation details

	Results
	Ionic HFE predicted with the BAR approach
	Effect of inclusion of long-range electrostatics on the ionic HFE predicted with the GCMC/MD approach
	Effect of finite box correction on GCMC simulations
	Comparison of experimental, BAR and GCMC hydration free energies

	Discussion and Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5

