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Abstract

Infection of plants and insects with RNA and DNA viruses triggers Dicer-dependent production of 

virus-derived small interfering RNAs (vsiRNAs), which subsequently guide specific virus 

clearance by RNA interference (RNAi). Consistent with a major antiviral function of RNAi, 

productive virus infection in these eukaryotic hosts depends on the expression of virus-encoded 

suppressors of RNAi (VSRs). The eukaryotic RNAi pathway is highly conserved, particularly 

between insects and mammals. This review will discuss key recent findings that indicate a natural 

antiviral function of the RNAi pathway in mammalian cells. We will summarize the properties of 

the characterized mammalian vsiRNAs and VSRs and highlight important questions remaining to 

be addressed on the function and mechanism of mammalian antiviral RNAi.

Introduction

RNA interference (RNAi) refers to homology-dependent gene silencing mechanisms 

initiated by Dicer-mediated production of small interfering RNAs (siRNAs) and microRNAs 

(miRNAs) in eukaryotic organisms [1–3]. Three main lines of evidence support a natural 

antiviral function of the RNAi pathway in fungi, plants and invertebrates [4–8]. First, 

infection of fungi, plants and insects with RNA and/or DNA viruses triggers the 

accumulation of abundant virus-derived siRNAs (vsiRNAs) produced specifically by the 

Dicer family of class 3 RNase III enzymes. Second, fungal, plant and invertebrate viruses 

frequently replicate to higher levels and become more virulent in host mutants defective in 

RNAi, including those defective in either the biogenesis or the function of vsiRNAs. Third, 

virus-encoded suppressors of RNAi (VSRs) are widespread in diverse families of plant and 

insect viruses. Notably, VSR-deficient mutant viruses are defective in the infection of 

wildtype hosts, but accumulate to high levels and induce diseases in RNAi-defective host 

mutants. In this article, we review the recent evidence for an antiviral function of the RNAi 

pathway in mammals.
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Mammalian host cells produce abundant viral siRNAs after infection with 

distinct positive- and negative-strand RNA viruses

Two studies published in 2013 [9,10] have provided strong evidence for the production of 

vsiRNAs during authentic infection of mammalian cells by two positive-strand RNA viruses, 

Nodamura virus (NoV) and encephalomyocarditis virus (EMCV). The vsiRNAs targeting 

EMCV were detected in mouse embryonic stem cells (mESCs) whereas mESCs, baby 

hamster kidney 21 cells (BHK-21), and newborn mice all produced vsiRNAs in response to 

the infection with NoV mutants not expressing a functional VSR, the viral B2 protein. Deep 

sequencing of small RNAs (sRNA-seq) from the infected mammalian cells revealed that the 

most abundant population of the total small RNAs mapped to NoV and EMCV is in the 21- 

to 23-nt size range of Dicer products with a major 22-nt peak for both strands. Importantly, 

these 22-nt RNAs of both NoV and EMCV are enriched for typical siRNA duplexes with a 

20-nt perfectly base-paired duplex region and 2-nt 3′ overhangs. These findings indicate 

that the infection of mammalian cells by the two positive-strand RNA viruses triggers Dicer 

processing of viral dsRNA replicative intermediates into vsiRNAs. The Dicer-dependency of 

EMCV-derived vsiRNAs was further verified using Dicer knockout mESCs [10].

More recently, Dicer-dependent production of vsiRNAs has also been reported in human 293 

cells in response to infection with either Influenza A virus (IAV) or human enterovirus 71 

(HEV71) not expressing a functional VSR [11,12]. The accumulation of vsiRNAs was also 

detected in human alveolar basal epithelial cells (A549) and monkey Vero cells after 

infection with the VSR-deficient mutant IAV and in human rhabdomyosarcoma (RD), 

primary murine lung fibroblasts (MLFs) and newborn mice following infection with the 

VSR-deficient mutant HEV71. Table 1 summaries the key properties of the mammalian 

vsiRNAs in 21 to 23-nt size range re-calculated from the published datasets [9–12] using the 

small RNAs sequenced from fruit fly infected with a VSR-deficient virus for comparison 

[13]. Table 1 considered the influenza vsiRNAs only from human A549 cells since they are a 

better cell culture model than human 293T cells for immune studies on IAVs. EMCV 

vsiRNAs represent 0.19% of the total mapped reads from the infected mESCs [10] whereas 

0.59% and 0.24% of the total mapped reads are the vsiRNAs respectively from human A549 

cells and newborn mice after infection with a VSR-deficient virus (Table 1). Interestingly, 

most of the vsiRNAs targeting each of the four mammalian RNA viruses were processed 

from the dsRNA precursors corresponding to the terminal regions of the viral genomic or 

subgenomic RNAs [9–12]. As a comparison, we further analyzed the insect vsiRNAs 

required for virus clearance in wildtype fruit flies infected with the VSR-deficient mutant 

Flock house virus (FHV) [13] because levels of vsiRNAs frequently are much higher in 

insects when RNAi is suppressed by VSRs or in RNAi-defective host mutants to allow 

robust viral RNA replication and thus to generate abundant dsRNA precursors for dicing 

[6,8,13]. We found that the total sequenced reads mapped to FHV and fly genomes 

contained 0.43% vsiRNAs (Table 1). Thus, the relative abundance of the vsiRNAs is similar 

between insect and mammalian hosts, neither of which encode the cellular RNA-dependent 

RNA polymerase found in fungi, plants, and nematodes. Notably, the vsiRNAs triggered by 

each of the four mammalian viruses were readily detectable by Northern blot hybridization 

[9–12], indicating that the mammalian vsiRNAs are highly abundant according to the criteria 
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used in the annotation of cellular miRNAs [14]. Detection of abundant vsiRNAs in mature 

mouse, monkey and human cells suggests that the observed decrease in abundance of 

EMCV vsiRNAs upon the differentiation of mESCs may be specific to stem cell 

differentiation induced in cell culture [10].

EMCV and HEV71 are from two different genera in the Picornaviridae whereas NoV and 

IAV belong to the Nodaviridae and the Orthomyxoviridae (contain a negative-strand RNA 

genome) respectively. Together, these published studies show that four distinct positive- and 

negative-strand RNA viruses from the three families trigger the production of abundant 22-

nt vsiRNAs in cultured mammalian cells and/or newborn mice, suggesting Dicer-dependent 

production of vsiRNAs as a conserved mammalian response to RNA virus infection (Fig. 1).

Three mammalian viruses encode potent dsRNA-binding viral suppressors 

of RNAi

Among those shown to induce antiviral RNAi in the infected mammalian cells, three viruses 

each encode a VSR, including the B2 protein of NoV, non-structural protein 1 (NS1) of IAV 

and the 3A protein of HEV71 [9,11,12] (Table 2). Encoded by viruses from different 

families, these three mammalian VSRs exhibit no detectable similarity in their primary 

amino acid sequences. Interestingly, all of the 3 VSRs are dsRNA-binding proteins with 

NS1 and B2 known to bind long dsRNA by two positively charged antiparallel a helices in 

homodimer [15–20]. The multifunctional NS1 is best known as a strong antagonist of type I 

interferons (IFN-I) [21,22]. However, 3A exhibits only a minor IFN-I suppression activity 

[12] and B2 also is unlikely to be a strong IFN antagonist since B2 expression was 

associated with higher expression levels of IFN-stimulated genes (ISGs) in both newborn 

mice [9] and human cancer cells [50].

Both B2 and 3A VSRs inhibit in vitro Dicer processing of long dsRNA into siRNAs and 

their dsRNA-binding activity is essential for the suppression of Dicer processing 

[12,19,20,23] (Table 2). Early studies have shown that B2 of NoV inhibits both antiviral 

RNAi in insect cells [24] and short hairpin RNA-induced RNAi in human 293 cells [20]. 

Similarly, NS1 encoded by influenza A, B and C viruses was first identified as a VSR 

because all of them potently suppressed antiviral RNAi induced by viral RNA replication in 

Drosophila cells [24]. NS1 of IAV also can suppress transgene-induced RNA silencing in 

plants [25,26] and long dsRNA-induced RNAi in human 293T cells [27]. Similar RNAi 

suppressor activity has been reported for several other mammalian viral proteins [28,29], 

including the flaviviral capsid protein that potently suppresses RNAi in the viral mosquito 

vector [30].

Until recently [9–12], however, it was unknown whether these VSRs indeed can suppress 

antiviral RNAi induced by authentic virus infection of mammalian cells. Notably, these 

recent studies have revealed that a dominant population of vsiRNAs was not detectable in 

mammalian cells either by sRNA-seq or Northern blotting after infection with wildtype 

NoV, IAV and HEV71, which was in contrast to the production of abundant vsiRNAs 

triggered by infection with VSR-deficient mutant viruses [9,11,12]. Instead, virus-derived 

small RNAs (vsRNA) cloned from cells infected with NoV, IAV or HEV71 exhibit random 
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size distribution and strong strand bias [9,11,12] and thus are similar to the vsRNA profiles 

obtained by simple bulk sRNA-seq from mammalian cells infected with a range of wildtype 

viruses [31–37]. These findings indicate that expression of B2, NS1 and 3A VSRs 

suppresses the biogenesis of the vsiRNAs to target the cognate viruses during the infection 

of mammalian cells. Presumably, VSRs B2, NS1 and 3A all bind to the viral dsRNA 

replicative intermediates and inhibit Dicer processing of the vsiRNA precursors as has been 

demonstrated in vitro [12,19,20,23]. Incomplete viral suppression of vsiRNA biogenesis 

may explain the presence of low abundant vsiRNA duplexes with characteristic 3’ overhangs 

in the infected mammalian cells [38]. As reported previously in Drosophila cells [39], 

therefore, use of VSR-deficient mutant viruses may be necessary to characterize the 

induction and suppression of antiviral RNAi in mammalian cells.

The RNAi pathway confers antiviral activity in mammalian host cells

Mammals possess four Argonaute proteins (AGO 1–4) to mediate miRNA-guided mRNA 

decay and translational repression in RNA-induced silencing complex (RISC) [3]. Specific 

cleavage (also known as slicing) of the target RNA occurs when it extensively base-pairs 

with the miRNA or siRNA loaded in AGO2, the only mammalian AGO that retains the slicer 

activity [1–3]. Co-immunoprecipitation experiments have demonstrated the presence of 

mammalian vsiRNAs in mouse and human AGOs, including AGO2 [9–12], indicating a 

physiological role for mammalian vsiRNAs. The influenza vsiRNAs found in human AGOs 

exhibit strong preference for those with a 5’-terminal uracil (1U) [11] and thus are similar to 

cellular miRNAs [3].

NoV is transmissible to mice by mosquitoes and lethal to newborn mice and hamsters as 

well as insect hosts [40]. Flaccid paralysis of limbs preceding death and neuronal necrosis 

and degeneration of paravertebral and limb skeletal muscles in infected newborn mice are 

similar to the symptoms of mice infected with Coxsackie viruses [41]. In contrast to 

wildtype NoV infection, production of vsiRNAs to target a VSR-deficient mutant of NoV 

(NoVAB2) in BHK-21 cells and mESCs as well as newborn mice is correlated with a 

markedly reduced virus accumulation [9,10]. Rapid virus clearance was also observed in 

newborn mice infected with NoVmB2 [9], which carries a single Arg to Gin mutation at 

position 59 of B2 known to abolish B2’s activity to bind dsRNA and to suppress Dicer 

processing [19,23]. The defect of NoVAB2 in infection was efficiently rescued in BHK-21 

cells by ectopic expression of homologous and heterologous VSRs and in mESCs by genetic 

knockout of AGO2 [9,10]. These findings demonstrate the induction of an AGO2-dependent 

antiviral RNAi response in mammalian cells and indicate that viral suppression of 

mammalian antiviral RNAi facilitates infection both in vitro and in vivo.

AGO2-knockout mouse embryonic fibroblasts (MEFs) exhibit a marked loss of endogenous 

miRNAs whereas virtually all miRNAs are present at nearly identical levels in MEFs 

carrying a genetic mutation, Ago2D597A, which abolishes AGO2’s sheer activity [42–44]. 

The mutant IAV deleted of its NS1 gene (IAV/delNSl) replicates to significantly higher 

levels and induces increased cytopathy in primary Ago2D597A MEFs compared to wildtype 

MEFs [11], indicating restriction of the influenza viral infection by the slicing activity of 

AGO2 in MEFs. By comparison, abolishing the slicing activity of AGO2 is significantly 
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more effective in enhancing the accumulation of IAV/delNSl than wildtype IAV, which 

illustrates an increased susceptibility of the VSR-deficient IAV to RNA slicing by antiviral 

RNAi [11].

Similar to VSR-deficient mutants of NoV and IAV, HEV71 mutants also become defective 

in the infection of human RD and 293 cells as well as newborn mice after specific mutation 

(e.g., D23A and R34A) is introduced to abolish 3A’s activity to bind dsRNA and to suppress 

Dicer processing [12]. Notably, HEV71D23A infection of human 293 cells triggers 

homology-dependent viral RNA degradation with the specificity determined by Dicer-

dependent vsiRNAs [12]. It is unknown whether the RISC loaded with vsiRNAs directs the 

viral RNA degradation by mRNA decay or slicing. Nevertheless, the findings by Qiu and 

colleagues show that the vsiRNAs produced during authentic virus infection are active in 

antiviral RNAi, which is in contrast to cellular miRNAs that become inactive upon induction 

of the IFN antiviral response by virus infection in human 293 cells [45]. Importantly, 

HEV71D23A replicates to significantly higher levels after RNAi suppression both in human 

293 cells by either Dicer knockout or ectopic expression of homologous and heterologous 

VSRs and in murine lung fibroblasts (MLFs) by Dicer knockdown [12]. These studies 

together provide compelling evidence for an antiviral function of the mammalian RNAi 

pathway and a critical role of viral RNAi suppression in virus infection of cultured cells and 

newborn mice [9–12].

Antiviral RNAi can act independently of IFN-I antiviral response

Virus infection in mammals triggers potent IFN-regulated antiviral immunity upon the 

sensing of viral dsRNA, which not only provides the first line of defense against viral 

pathogens, but also activates the adaptive immunity [46], Levels of IFN-I and induction of 

ISGs are similar in wildtype MEFs and RNAi-defective Ago2D597A MEFs after virus 

induction [11]. Importantly, the slicing activity of mouse AGO2 still restricts virus infection 

of MEFs in the absence of IFN-I signaling, suggesting an IFN-independent antiviral function 

of RNAi [11]. Qiu and colleagues also investigated the role of IFN-I signaling in the 

induction and suppression of antiviral RNAi by HEV71 [12]. They found that Dicer-

dependent vsiRNAs remain active in antiviral RNAi in human 293 cells treated with 

Ruxolitinib, an inhibitor of JAK kinases to block IFN-I response. Notably, infection of 

mutant MLFs and newborn mice lacking a functional IFN-α/β receptor also requires active 

suppression of RNAi by 3A and Dicer knockdown in the mutant MLFs further enhances the 

accumulation of HEV71D23A. These findings together indicate that antiviral RNAi can act 

independently of the defense signaling mediated by IFN-I. Consistently, inactivation of the 

IFN-I antiviral response facilitates the biogenesis of the siRNAs from the engineered long 

dsRNA, but not of the vsiRNAs from viral dsRNA replicative intermediates, suggesting 

differential recognition of the artificial and dsRNA molecules by IFN-I and RNAi responses 

[27,47–49].

Conclusions

The induction of mammalian antiviral RNAi by distinct positive- and negative-strand RNA 

viruses in a diverse range of cell types has been reported in recent studies. Three of these 
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viruses each also encode a dsRNA-binding VSR essential for infection. These studies 

strongly suggest that mammalian antiviral RNAi is not specific to a few viruses or particular 

cell types (Fig. 1). Indeed, it has been recently shown that antiviral RNAi also provides an 

IFN-independent protection in human cancer cells so that RNAi suppression by VSR-B2 of 

NoV further enhances cancer-specific killing of an oncolytic vesicular stomatitis virus 

variant [50]. However, a recent study showed that the production of abundant vsiRNAs in 

human 293T cells was not associated with an inhibition of IAV replication [51], which was 

observed earlier [11]. Thus, suppression of IAV replication by antiviral RNAi is detectable in 

primary MEFs but not in 293T cells in contrast to the broad activity of antiviral RNAi 

against NoV and HEV71 in several infection models. Moreover, although primary 

Ago2D597A MEFs were more susceptible than wildtype MEFs to the infection with all of the 

three RNA viruses examined, similar enhanced susceptibility was not observed in the 

immortalized AGO2-knockout MEFs deficient in IFN-I signaling [48]. These observations 

further highlight an urgent need to develop infection models for the functional 

characterization of antiviral RNAi under conditions that do not compromise the function of 

cellular miRNAs.

The existence of a new mammalian antiviral immunity mechanism provides opportunities 

that may lead to a better understanding of mammalian immunology. For example, 

mammalian antiviral RNAi provides a genetic pathway for virus clearance without 

depending on the death of the infected cell; it also describes a defense mechanism that is 

activated immediately upon infection and programmed with specificity in the form of RNA. 

Many important questions remain to be addressed on the function and mechanism of 

mammalian antiviral RNAi. Most importantly, it is unknown whether antiviral RNAi is 

active and necessary in adult mammals, which activate much more potent IFN-dependent 

antiviral responses than cultured cells or newborn mice [52]. Does AGO2 confer antiviral 

defense by mediating RNA slicing or mRNA decay and translational repression? Is antiviral 

RNAi as widespread in mammals as in plants and insects?
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Highlights:

• Mammalian cells produce abundant viral siRNAs in response to distinct RNA 

viruses

• Three mammalian viruses encode potent dsRNA-binding viral suppressors of 

RNAi

• The RNAi pathway confers antiviral activity in mammalian host cells

• Antiviral RNAi can act independently of IFN-I antiviral response
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Fig. 1. 
Antiviral RNAi in mammals. During RNA virus infection of mammalian host cells, dsRNA 

replicative intermediates are processed into viral siRNAs (vsiRNAs) by Dicer, which is the 

step targeted for the suppression by several dsRNA-binding VSRs. In the absence of VSR 

expression, specific degradation of the cognate viral RNAs occurs and requires the vsiRNAs 

and AGO2, both of which are assembled into antiviral RISC in the infected cells.
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