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ABSTRACT
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which are 
collectively called pluripotent stem cells (PSCs), have emerged as a promising source for 
regenerative medicine. Particularly, human pluripotent stem cell-derived cardiomyocytes 
(hPSC-CMs) have shown robust potential for regenerating injured heart. Over the past two 
decades, protocols to differentiate hPSCs into CMs at high efficiency have been developed, 
opening the door for clinical application. Studies further demonstrated therapeutic effects 
of hPSC-CMs in small and large animal models and the underlying mechanisms of cardiac 
repair. However, gaps remain in explanations of the therapeutic effects of engrafted hPSC-CMs. 
In addition, bioengineering technologies improved survival and therapeutic effects of 
hPSC-CMs in vivo. While most of the original concerns associated with the use of hPSCs have 
been addressed, several issues remain to be resolved such as immaturity of transplanted cells, 
lack of electrical integration leading to arrhythmogenic risk, and tumorigenicity. Cell therapy 
with hPSC-CMs has shown great potential for biological therapy of injured heart; however, 
more studies are needed to ensure the therapeutic effects, underlying mechanisms, and 
safety, before this technology can be applied clinically.

Keywords: Pluripotent stem cells; Cardiomyocytes; Cell- and tissue-based therapy; 
Regeneration; Biomaterials

INTRODUCTION

Cardiovascular Disease is the most common cause of deaths globally, accounting for more 
than 17 million deaths every year and accounting for 31% of all global deaths.1) Among 
them, ischemic heart disease including myocardial infarction (MI) causes 44% of deaths 
in the US.2) MI is associated with the death of myocardial tissue to a certain extent. Despite 
significant success in the treatment of acute MI by conventional pharmacological therapies, 
percutaneous coronary intervention, or coronary artery bypass graft, more than 15–30% 
patients still progress to heart failure (HF) with continuous loss and contractile dysfunction 
of cardiomyocytes (CMs) over the years.3)4) For end stage HF, heart transplantation is 
currently the only definitive treatment; however, it is limited by lack of donors, potential graft 
rejections, and various side effects resulting from immunosuppression.5)
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The adult human heart has minimal regenerative capacity with a CM renewal rate less 
than 1% per year.6)7) Thus, the ideal approach to heart regeneration after ischemic cardiac 
injuries is to provide target cardiac cells such as CMs by cell therapy for replacing the lost 
tissues. Earlier studies showed that various adult stem or progenitor cells are effective for 
cardiac repair in animal models. However, clinical trials with bone marrow-derived cells,8-16) 
mesenchymal stem cells,17)18) and cardiac progenitor cells19) have shown inconsistent results 
while showing their safety and feasibility.20) Moreover, unlike the original premise of stem 
cell therapy for direct cell or tissue generation, the therapeutic mechanisms of adult stem 
cells were found to be humoral or paracrine effects,21-25) including exosome-derived effects on 
preexisting cardiac tissue.26)

Recently, human pluripotent stem cells (PSCs), which refer to human embryonic stem cells 
(ESCs) and induced pluripotent stem cells (iPSCs) have emerged as promising cell sources 
for cardiac regeneration owing to their genuine property to differentiate into target cells 
such as CMs and endothelial cells (ECs). In this review, we will discuss the current status 
on the use of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) for cardiac 
regeneration. We will cover progress in the methods for differentiating hPSCs into CMs, 
the regenerative or therapeutic effects of differentiated hPSC-CMs on animal models of 
myocardial injury, bioengineering technologies to improve survival and therapeutic effects of 
hPSC-CMs, and the potential hurdles for clinical therapy with hPSC-CMs.

DEVELOPMENT OF HUMAN PLURIPOTENT STEM CELLS

ESCs are derived from early embryos and have two distinct properties: a capacity for self-renewal 
and a capacity to differentiate into virtually any cell types, called pluripotency. After the first 
development of mouse ESCs in 1981,27) Thomson et al.28) successfully established human 
embryonic stem cells (hESCs) from the inner cell mass of human blastocysts in 1998. hESCs 
were then shown to be differentiated into various cell types including CMs and ECs and 
effective therapeutically.29) However, even in the form of differentiated cells, hESCs are not 
free of risks when being used therapeutically. They can form teratoma when undifferentiated 
cells are inadvertently included.30) Immune rejection due to immunological incompatibility 
between the cell and the recipient is another concern. Ethical concerns about destroying 
human embryos for generating hESCs are still unresolved.

Subsequently, Yamanaka and his colleagues31)32) made efforts to reprogram somatic cells into 
ESC-like cells, and finally succeeded in generating iPSCs using four transcription factors, 
OCT4, SOX2, KLF4, and c-MYC. The features of human induced pluripotent stem cells (hiPSCs) 
are almost identical to hESCs in the capacity for self-renewal and differentiation into multiple 
cell types. This reprogramming leads to the global reversion of the somatic epigenome into 
an ESC-like state.33) Genome-wide analysis indicated that iPSCs are very similar to ESCs.34) 
This development of hiPSCs made possible the use of patient-specific iPSCs for therapy, 
potentially eliminating the concern of immune rejections and ethical controversy associated 
with hESCs. While the use of genome-integrating viruses, such as retroviruses or lentiviruses 
in earlier studies limited its clinical applicability due to its potential for insertional mutation 
and tumor formation, successful generation of hiPSCs with non-genetic methods including 
episomal plasmid vectors35)36) adenovirus,37) Sendai virus,38) and modified mRNAs39) resolved 
this issue.
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DIFFERENTIATION OF HUMAN PLURIPOTENT STEM 
CELLS INTO CARDIOMYOCYTES IN VITRO
To be used for cardiac regeneration, CMs must be generated from hPSCs. Since hPSCs are 
pluripotent, the cells should undergo differentiation into CMs. With clinical utility in mind, 
various approaches have been developed to meet the following requirements: 1) high yield 
or enrichment of CMs, 2) use of xenogeneic element-free media and defined components 
in differentiation protocols, and 3) scalability. Two basic approaches have been widely used 
for differentiating hPSCs to CMs: an embryoid body (EB)-mediated three-dimensional (3D) 
culture40) and a two-dimensional (2D) monolayer culture on extracellular matrix (ECM) 
proteins or feeders.41)

The EB-based differentiation initially involves suspending hPSC colonies by reversing the 
culture plates to form spherical aggregates, called EBs.40) These EBs contain differentiated 
cell types from all three germ layers, and once EBs are plated onto a feeder layer or ECM, 
spontaneously contracting areas develop in 5–15% of the EBs,40)42) usually after 10 days. These 
contracting EBs contain differentiated hESC-CMs, which exhibit spontaneous electrical 
activity with intracellular calcium transients and express cardiac markers such as MYH6 and 
-7, TNNI, TNNT, MYL-2A, MYL-2V, NPPA, ACTN, NKX2-5, and GATA4.40) However, due to 
the variability between different serum lots and the poorly defined factors in serum, this 
protocol is hard to reproduce, and the efficiency is low (<1% from hESCs). To improve the 
differentiation efficiency, various measures were added to this protocol. Xu and colleagues43) 
added a Percoll gradient centrifugation step to obtain enriched (up to 70%) populations 
of hESC-CMs. The suspension culture of EB and forced aggregation methods produced a 
high number of functional CMs.44) However, these methods are technically complex, time 
consuming, and associated with line-to-line variation. This pitfall has led to the development 
of monolayer-based 2D-culture method.

The 2D system allows uniform exposure of cells to exogenous soluble factors in the media 
and yields higher and more consistent differentiation efficiency. An early approach for 2D 
culture or directed differentiation methods used mouse visceral endoderm-like cells (END-2) 
as a feeder layer which produces Activin-A and BMPs, among other factors, resulting in 
an increased contracting area in more solid aggregates.45) This protocol, while relatively 
inefficient, has been shown to generate mostly ventricular-like CMs.45) This technique was 
improved using a small molecule inhibitor of p38MAP kinase, which almost doubled the yield 
of hESC-CMs by enhancing induction of mesoderm.46) More sophisticated methods were 
developed later by modifying signaling pathways that regulate formation and patterning of 
heart from cardiac mesoderm such as NODAL/Activin-A, WNT/β-Catenin, and BMP4.47-50) 
Signals mediated through WNT/β-catenin and TGF-β family members including Activin 
and BMPs promote differentiation of ESCs into mesoderm.51-53) Once mesoderm is induced, 
however, WNT/β-catenin signaling inhibits cardiac differentiation, suggesting biphasic roles 
of WNT signaling in cardiomyogenesis.53)54) Laflamme et al.29) reported that high density 
culture of hPSCs with addition of Activin-A followed by 4 days of BMP4 generated contracting 
cells at day 12 with a purity of approximately 30% CMs. A combined density-gradient 
centrifugation enriched the yield to 80–90%. Combining Matrigel and growth factors 
(Activin-A, BMP4, FGF2), termed ‘matrix sandwich’ method,55) increased the purity (up to 
98%) and yield (up to 11 CMs/input hPSC),55) suggesting the importance of ECM for hPSC-CM 
differentiation. However, Matrigel may limit the clinical utility of the protocol because 
it potentially includes xenogeneic pathogens and has a significant lot-to-lot variation. 
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Another method using Matrigel without growth factors generated a high yield of hPSC-CMs 
~90%: however, it required manual selection of beating cells.56) More recently, Burridge and 
colleagues reported a chemically defined method using solely small molecules on synthetic 
matrices, producing CMs at >85% purity.57)

Despite remarkable improvement in the methods generating hPSC-CMs, these in vitro 
protocols can still produce heterogeneous cell populations including undifferentiated hPSCs 
or non-CMs, which may elicit off-target outcomes. Therefore, enrichment for CMs became 
a critical issue for clinical utility. The methods for enriching hPSC-CMs are diverse, and are 
covered in another review of ours58): 1) density centrifugation,43) 2) genetic modification,59) 3) 
surface protein-based enrichment,60) 4) MITO tracker-based enrichment,61) 5) Lactate-based 
enrichment,62) 6) mRNA-based molecular beacon,63) 7) microRNA-based enrichment,64) and 
8) microfluidic systems.65) At present, antibody-based and lactate-based methods are widely 
used. Another attempt was made to generate chamber-specific CMs by modulating only 
signaling pathways without using purification methods. Keller and colleagues demonstrated 
a transgene-independent method for the generation of sinoatrial node-like pacemaker cell 
(SANLPC) from hPSCs (85%) by stage-specific manipulation of developmental signaling 
pathways,66) while the beating rate paced by SANLPC were much faster (~137 bpm) than 
human resting heart rate. The same group also succeeded in generating atrial and ventricular 
CMs from distinct mesoderm populations.67) The availability of subtypes of CMs (atrial-like, 
ventricular-like,67) or sinoatrial nodal-like cells66)) will expand the applicability of hPSC-CMs 
from cell therapy to the modeling of specific cardiac disorders and drug discovery.

THERAPEUTIC EFFECTS OF HUMAN PLURIPOTENT STEM 
CELL-DERIVED CARDIOMYOCYTES ON MYOCARDIAL 
INJURY

The feasibility and efficacy of hPSC-CMs for cardiac regeneration after myocardial injury 
were tested in animal models including mouse,68) rat29)69) and pig.70)71) Earlier animal studies 
have shown that hPSC-CMs can partially remuscularize infarcted areas and attenuate adverse 
cardiac remodeling and HF, while electrical coupling with host hearts were not shown.29)69) In 
a guinea pig model, transplanted hESC-CMs showed electric coupling to native myocardium, 
suggesting that the low heart rate of guinea pig can better model the electrical activities of 
grafted hPSC-CMs.72) On the other hands, when delivered into chronic MI in rats and guinea 
pigs,73)74) hPSC-CMs did not have a significant beneficial effect on cardiac function, and had 
limited electromechanical integration. Although rodent models of MI provided information 
of functional benefit,29)69)72)75) preclinical studies with non-human primate models needed to 
be attempted to better evaluate the therapeutic effects and the safety of hPSC-derived CMs 
in cardiac injury.76)77) The first clinical-scale study was done with macaque monkeys. Here, 
intra-myocardial injection of hESC-CMs remuscularized infarcted hearts two weeks after 
ischemia reperfusion (I/R) injury. A substantial number of grafted hPSC-CMs survived over 
three months after I/R, where they formed electromechanical junctions with the host heart 
and beat in synchrony without forming teratoma or having off-target effects.78) However, the 
authors did not conclude potential benefits of hESC-CMs in human cardiac disease, mainly 
due to the small numbers of study animals (n=7) and the unrealistic number of transplanted 
cells (~10 billion CMs for human application, extrapolating from 2–3 billion CMs for 
monkey).79) Although arrhythmias were not observed in small animal studies, in monkeys 
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a transient period of ventricular arrhythmias was seen.78) More recently, Murry's group80) 
reported that the transplantation of ~750 million cryopreserved hESC-CMs improved left 
ventricular ejection fraction (LV-EF) (10.6% at 1 week and additional 12.4% at 3 months) 
with restoration of contractile function after ischemic injury in macaque monkeys. This 
study demonstrated that remuscularization of the infarcted non-human primate heart with 
hESC-CMs exerted robust and durable improvement in cardiac function without detectable 
graft-induced arrhythmias. Zhu et al.81) also examined the safety and efficacy of hPSC-derived 
cardiovascular progenitor cells (hPSC-CVPCs) on MI (cell injection 30 minutes after 
induction of MI) in cynomolgus monkeys, but could not find remuscularization of infarcted 
heart or any transplanted cells at 20 weeks after transplantation. The discrepancy might have 
come from the difference in experimental details such as the disease model (I/R vs. MI), 
timing of cell delivery (2 weeks vs. 30 minutes after ischemic injury), and the type and the 
dose of transplanted cells (~1 billion hESC-CMs vs. 10 million hPSC-CVPCs).81)

BIOENGINEERING APPROACHES TO ENHANCE 
THERAPEUTIC EFFECTS OF HUMAN PLURIPOTENT STEM 
CELL-DERIVED CARDIOMYOCYTES

One of the main problems in cell therapy is low survival of the transplanted cells.82-84) 
While a few studies demonstrated robust remuscularization, many studies showed poor 
survival of hPSC-CMs in ischemic hearts when cells were transplanted alone, with most 
of them disappearing within a month.85) As such, to improve poor retention and survival 
of transplanted cells, diverse biomaterials and tissue engineering technologies have been 
attempted over the past decade.79)96)97) Two major strategies are cell delivery with an injectable 
biomaterial and cell delivery in a form of engineered tissue patches.86)

Injection of cells encapsulated with biomaterials
Injectable biomaterials or hydrogels are most frequently used to deliver cells to injury sites 
and were the first strategy explored to improve engrafted cell retention and survival in heart.87) 
In general, such injectable biomaterials were shown to enhance cell survival and promote 
tissue regeneration.88)89) While hydrogels are commonly composed of synthetic polymers, 
native ECM components can also form hydrogels.90)91) Naturally-derived biomaterials used for 
encapsulation of stem cells for cardiac regeneration include biodegradable polypeptide (silk 
fibroin from worms and insects), polysaccharide-based materials (chitosan from crustacean 
shells,92)93) alginate from brown algae,94) agarose from red algae, hyaluronic acid, collagen), 
and fibrin derived from blood plasma.87) Synthetic biomaterials include peptide amphiphiles 
incorporating cell adhesive ligands (injectable nanomatrix gel)89) and other polymer-based 
materials. It is noted that biomaterial structures dictate degradation and controlled release of 
therapeutics into ischemic myocardium.86) Natural biomaterials have better biocompatibility 
and degradability; however, they are not controllable. Synthetic biomaterials are modular 
but elicit more inflammatory reactions. There is accumulated evidence that hPSC-CM 
encapsulation with proper injectable biomaterials improves engrafted cell survival and 
promotes cardiac repair.95) In selecting biomaterials, bioactivity96)97) and mechanical 
properties need to be considered as well. ECM hydrogels are biocompatible and have been 
used in preclinical applications for MI.98) Another study showed that functional output and 
contractility of engrafted hPSC-CMs might be dependent on substrate mechanical stiffness.99)

978https://e-kcj.org https://doi.org/10.4070/kcj.2018.0312

Cardiac Regeneration with Human PSC-derived Cardiomyocytes

https://e-kcj.org


Bioengineered artificial cardiac tissue or patch
To avoid engrafted cell death in the harsh tissue environment, especially the infarcted scar area, 
a tissue patch was generated by incorporating biomaterials and hPSC-CMs and was implanted 
onto the surface of the infarcted area. Current tissue patch approaches include hydrogel-based 
engineered heart tissue,100-103) scaffold-free cell sheets,71)104)105) and 3D-printed cardiac tissue with 
a complex ECM structure.106)107) The commonly used scaffold materials for hydrogel-based 
engineered heart tissue with hPSC-CMs are ECMs such as collagen I,100) Matrigel,108) and 
fibrin.101)102) Other natural biomaterials such as hyaluronic acid-based hydrogel were also 
attempted for engineering PSC-CMs.109) When these ECM-based heart tissue containing 
hPSC-CMs were transplanted onto ischemic heart models, inconsistent results were observed 
in improvement of cell survival and LV function depending on the injury model and the types 
of transplanted cells. One study transplanted physically integrated cardiac tissue sheets 
containing hiPSCs (hiPSC-CTSs) onto infarcted rat hearts and found a significant improvement 
of cardiac function with >40% of cells engrafted at 4 weeks after transplantation.105) On the 
other hand, the transplantation of collagen-based heart tissue containing hESC-CMs in nude 
rats one month following I/R injury showed no significant improvement of LV-EF compared to a 
patch containing nonviable hESC-CMs,100) raising a question about the necessity for hPSC-CMs 
in the patch. Other studies with fibrin-based heart tissue combining multiple cells such 
as hiPSC-CMs + hiPSC-ECs (5:2 ratio)101) or hiPSC-CMs + hiPSC-ECs + hiPSC-SMCs (4:2:2 
ratio)102) improved contractile function and engrafted cell survivals (~10%) one month after 
surgery. Recently, Bursac and colleagues demonstrated that a patch consisting of hydrogel 
containing fibrinogen and Matrigel and a combination of cells (~86% of hiPSC-CMs, ~14% of 
fibroblasts + SMCs) exhibited electrical and mechanical function similar to those of the adult 
myocardium.103) When transplanted, however, the cells within the patch remained in the patch, 
not migrating into the heart. Scaffold-free cell sheets with hiPSC-CMs were created to improve 
cardiac contractility in a porcine model of ischemic cardiomyopathy71) and a rat model110) of 
acute MI. However, the beneficial effects of the cardiac cell sheet were only transient due to the 
lack of oxygen and nutrient supply into the transplanted sheets. To solve this problem, another 
study combined hiPSC-CMs sheets with an omental flap.104) Three months after transplantation 
of this sheet with an omental flap into infarcted porcine heart, cardiac contractile function 
was significantly improved. A 3D printing technology has attracted attention for cardiac tissue 
engineering. A multiphoton-excited 3D printing technique produced ECM-based scaffolds 
containing hiPSC-CMs, hiPSC-ECs, and iPSC-SMCs (2:1:1 ratio), termed cardiac muscle patch 
(hCMP).107) When transplanted onto the heart, hCMPs increased contraction speed and calcium 
handling in a mouse MI model. Although these tissue-engineered patches have multiple 
benefits for cell delivery and retention in host ischemic myocardium, this approach still has 
limitations such as non-migration of cells into the host heart, the need for open-chest surgery, 
arrhythmic risks associated with large graft size, and biodegradability of included biomaterials. 
This bioengineered cardiac tissue approach would better fit into the treatment of chronic MI or 
HF in which more mechanical support is needed.

CHALLENGES TO THE USE OF HUMAN PLURIPOTENT 
STEM CELL-DERIVED CARDIOMYOCYTES FOR CLINICAL 
THERAPY

However, there are still other hurdles along the way to clinical application of hPSC-derived 
CM for cardiac regeneration.
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Cellular heterogeneity
Current differentiation protocols produce a mixture of non-CMs and different subtypes of 
CMs, such as ventricular, atrial, and nodal CMs.111)112) As mentioned above, various sorting or 
enriching methods were developed to generate a pure population of CMs. Although ventricular 
CMs are predominant in the culture,113) this subtype diversity and contamination of non-CMs 
may induce graft-related arrhythmias and aberrant tissue formation. While antibody-based 
and metabolism-based methods are most widely used114) at present, the efficiency is variable 
according to the cell line and cells become weak when metabolically selected.

Immature phenotype
hPSC-derived CMs show immature characteristics with less-organized sarcomeric structures 
and calcium handling properties.115-117) Studies reported that hPSC-derived CMs are closer to 
fetal CMs than adult CMs in terms of maturity. hPSC-CMs have round morphology (vs. rod-
shaped),118) use glucose metabolism (vs. fatty acid),115) and do not have T-tubules.119)120) Several 
methods to enhance maturation of hPSC-CMs in vitro have been developed. Prolonged in 
vitro culture (80–120 days) induced a phenotype of adult CMs including increase of cell size 
and contractile properties.113)121) Three-dimensional culture with electrical stimulation through 
biowire generated a mature type of CMs.117) Overexpression of the let-7 family of microRNA 
in hESC-CMs enhanced cell size, sarcomere length, and contractile force.122) microRNA-499 
also promoted ventricular specification of hESCs and microRNA-1 served to facilitate 
electrophysiological maturation.123) ECM was also reported to mature hPSC-CMs, including 
decellularized adult cardiac ECMs.124)125) In addition, in vivo maturation of hPSC-CMs were 
demonstrated in engrafted hPSC-CMs in rat hearts with faster maturation in the infarcted 
adult rat hearts compared to neonatal rat hearts.126) However, hPSC-CMs transplanted into 
pig hearts did not show sufficient maturation after long-term follow-up. Thus far, no one 
can say what the optimal stage of hPSC-CMs is for cardiac transplantation. It is generally 
accepted that a certain intermediary maturation state may be ideal,127) since adult CMs do not 
survive transplantation.128)

Arrhythmogenecity
To function appropriately, the engrafted hPSC-derived CMs at the ischemic myocardium 
should integrate electrically with host myocardium to beat in synchrony and avoid 
arrhythmias. Multiple factors including functional immaturity of transplanted hPSC-CMs 
and lack of electrical integration can induce arrhythmia.79)129) In small animal models, 
arrhythmia was not frequently reported presumably due to the rapid heart rate of rodents.74) 
However, in large animal models, hPSC-CMs transplantation induced a transient period 
of ventricular arrhythmias.78)130) Since the transplanted hPSC-CMs are immature and have 
various CM subtypes, the large grafts have higher risk of life-threatening arrhythmia. 
However, more recent studies demonstrated that even in swine102) or non-human primate 
models of MI,78)80) transplantation of hPSC-derived CMs can only induce non-sustained 
and less frequent ventricular arrhythmias. Further studies are needed to address the risk of 
arrhythmia associated with hPSC-CM transplantation.

Tumorigenicity
Undifferentiated PSCs can form teratoma when injected into the heart of 
immunocompromised animals.30) It is reported that iPSCs have a higher survival rate than 
adult stem cells, and hiPSCs develop teratoma more efficiently and faster than hESC.131) 
However, it is still controversial whether hPSC-derived differentiated cells can form teratoma. 
Even if the risk of teratoma formation is one of the major safety concerns for cell therapy with 
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hPSC-derived cells, to date, there is no evidence for teratoma formation after transplantation 
of hPSC-derived CM80) or ECs.132) However, the potential for teratoma formation by hPSC-derived 
cell grafts should be taken seriously133) because 1) animal xenograft models may not accurately 
predict the fate of grafted cells in humans, 2) it is hard to guarantee the complete absence 
of undifferentiated cells in large scale cell production for the patient, and 3) current assays 
may not correctly assess tumorigenic potential. While there are efforts to develop surrogate 
markers for cell transformation and to determine the threshold level of residual stem cells 
which pose a risk for teratoma development, ultimately long-term follow-up studies in 
animals and pilot clinical trials can answer this question.

CONCLUSION

At present, hPSC-CMs are the only realistic option for meaningful remuscularization of injured 
heart. Scientists made substantial progress in the development of generating hPSC-CMs, even 
approaching clinical quality and scale, toward the understanding of the biology of hPSC-
CMs and their behaviors in vivo following transplantation, and the engineering methods 
to enhance the cell survival and therapeutic effects. However, many concerns remain to be 
resolved before their translation into clinical use. While development of human iPSCs avoids 
the ethical concerns for the use of human ESCs, potential side effects associated with the 
pluripotency of stem cells and the appropriate stage of hPSC-CMs for clinical use must be 
addressed before hPSC-CMs become a clinical reality.
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