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Abstract

The orientation and stability of the reconnection x line in asymmetric geometry is studied using 

three-dimensional (3-D) particle-in-cell simulations. We initiate reconnection at the center of a 

large simulation domain to minimize the boundary effect. The resulting x line has sufficient 

freedom to develop along an optimal orientation, and it remains laminar. Companion 2-D 

simulations indicate that this x line orientation maximizes the reconnection rate. The divergence of 

the nongyrotropic pressure tensor breaks the frozen-in condition, consistent with its 2-D 

counterpart. We then design 3-D simulations with one dimension being short to fix the x line 

orientation but long enough to allow the growth of the fastest growing oblique tearing modes. This 

numerical experiment suggests that reconnection tends to radiate secondary oblique tearing modes 

if it is externally (globally) forced to proceed along an orientation not favored by the local physics. 

The development of oblique structure easily leads to turbulence inside small periodic systems.

1. Introduction

Magnetic reconnection plays the critical role in the plasma transport and magnetic energy 

release at Earth’s magnetopause, the sharp boundary separating Earth’s magnetosphere and 

solar wind plasmas. To understand the global convection of plasmas and magnetic flux 

around Earth, it is imperative to know where reconnection will take place on this boundary 

layer (Dungey, 1961). With purely southward interplanetary magnetic fields in the solar 

wind, it is clear that the dayside reconnection will occur along the equatorial plane. The 

resulting locus that connects these reconnection locations is called the reconnection line 
(e.g., Trattner et al., 2004). However, the location and orientation of the reconnection line 

become less clear when the interplanetary magnetic field points in a clock angle different 

than southward (i.e., the Sun-Earth direction is the rotation axis). Observations suggested 

a”tilted” reconnection line in this situation (Daly et al., 1984; Dunlop, Zhang, Bogdanova, 

Lockwood, et al., 2011; Dunlop, Zhang, Bogdanova, Trattner, et al., 2011; Fear et al., 2012; 
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Kawano & Russell, 2005; Phan et al., 2006; Pu et al., 2007; Scurry et al., 1994; Trattner et 

al., 2007; Wild et al., 2007). A similarly tilted reconnection line was illustrated in global 

magnetohydrodynamics simulations by tracing the global magnetic separator (Komar et al., 

2013). Predictions of the reconnection line location on the magnetopause were previously 

made by mapping out locations that maximize local quantities, such as the shear angle 

(Trattner et al., 2007), current density (Alexeev et al., 1998), and Poynting flux divergence 

(Papadopoulos et al., 1999). Another approach was based on the vacuum superposition of 

Earth dipolar and solar wind magnetic fields (Cowley, 1973; Dorelli et al., 2007; Siscoe et 

al., 2001).

In this work, we approach this problem from the local aspect of reconnection by studying 

the orientation of the reconnection x line in slab geometry. Even with this simplified 

geometry, understanding this 3-D nature of magnetic reconnection is already challenging 

and a strict theoretical treatment does not exist. Researchers have used the same principle 

that determines the local x line orientation to map out the reconnection location on the 

global magnetopause (Komar et al., 2015). The result of this study suggests that the tangent 

of a global reconnection line will eventually align with the local x line orientation. The 

question to solve and the coordinate system employed in this study are further illustrated in 

Figure 1. Magnetic fields on two sides of the boundary layer (like Earth’s magnetopause) 

can shear at an arbitrary angle $. Here we consider the boundary normal to the z direction 

and the Bz component to be negligible. If we take a 2-D cut depicted by the black line in 

Figure 1a, the in-plane component of magnetic fields on the two sides are antiparallel as 

illustrated in Figure 1b, and thus reconnection can occur on this plane. However, this 2-D 

plane is not the only possible choice. We take another 2-D plane in Figure 1c, and there are 

also in-plane antiparallel magnetic fields for reconnection as illustrated in Figure 1d 

although the in-plane field strength changes on this plane. Therefore, the question to ask is, 

given different magnetic field and plasma conditions on two sides of the current sheet, on 

which plane will reconnection proceed? Since the reconnection x line (marked by the orange 

dashed line in Figures 1a and 1c) is always perpendicular to the corresponding 2-D 

reconnection plane, the goal is equivalent to determining the orientation of the x line. We 

will quantify the x line orientation by the angle 6 respected to the y0 axis (for simplicity, we 

choose y0 to be the direction where the guide field By0 is uniform). Hypotheses to this well-

defined question were proposed. They include minimizing the in-plane current (Gonzalez & 

Mozer, 1974; Sonnerup, 1974), maximizing the reconnection outflow speed (Swisdak & 

Drake, 2007), maximizing the reconnection rate (Aunai et al., 2016; Hesse et al., 2013; Liu 

et al., 2015; Schreier et al., 2010), or maximizing the oblique tearing growth rate (Liu et al., 

2015). On the other hand, other than a few studies in literature (Liu et al., 2015; Schreier 

etal., 2010), there are not many attempts to study this fundamental nature of magnetic 

reconnection using first-principle 3-D simulations. To resolve the reconnection x line in the 

electron scale will require a fully kinetic description. Thus, we use both 3-D and 2-D 

particle-in-cell (PIC) simulations to explore this issue. After knowing the optimal orientation 

favored by the local physics, we further study the response of the system when the x line is 

forced to misalign with the optimal orientation. This result reveals the potential format of the 

interplay between the global and local controls.
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The structure of this paper is outlined in the following. Section 2 describes the simulation 

setup. Section 3 measures the x line orientation in the large 3-D simulation. Section 4 

identifies the nonideal term in Ohm’s law that breaks the frozen-in condition. Section 5 

shows the comparison with companion 2-D simulations and theories. Section 6 studies the 

response of the x line when it is forced to proceed at an orientation not favored by the local 

physics. Section 7 summarizes and discusses our results.

2. Simulation Setup

In this paper, kinetic simulations were performed using the electromagnetic PIC code VPIC 

(Bowers et al., 2009). The employed asymmetric current sheet (Aunai, Hesse, Zenitani etal., 

2013; Hesse etal., 2013; Liu etal., 2015; Pritchett, 2008) has the magnetic profile, 

B0 = B0(0.5 + S)x0 + B0y0 with S = tanh z − 3di /L , which corresponds to a shear angle 

∅ ≅ 82.87° across the sheet. This profile gives B2 × 0 = 1.5B0 and B1 × 0 = 0.5B0 where the 

subscripts “1” and “2” correspond to the magnetosheath and magnetosphere sides, 

respectively. The initial current sheet has a half thickness L = 0.8d, and it is shifted from z = 
0 to z = 3di, to accommodate the larger structure expected in the weaker field side; the 

opening angle of the reconnection exhaust boundary on this side should be larger (Liu et al., 

2018). The plasma has a density profile n = n0 1 − S + S2 /3  that gives n2=n0/3 and n1=n0. 

The uniform total temperature is T = 3B0
2/ 8πn0  that consists of contributions from ions and 

electrons with ratio Ti/Te=5. The mass ratio is mi/me=25. The ratio of the electron plasma to 

gyrofrequency is ωpe/Ωce = 4 where ωpe ≡ 4πn0e2/me
1/2

 and Ωce ≡ eB0/mec. In the 

presentation, densities, time, velocities, spatial scales, magnetic fields, and electric fields are 

normalized to n0, the ion gyrofrequency Ωcl, the Alfvénic speed V A ≡ B0/ 4πn0mi
1/2, the ion 

inertia length di ≡ c/ωpi, B0 and V AB0/C, respectively.

The x line orientation will be quantified by the angle 6 respect to the y0 axis illustrated in 

Figure 1. A clockwise rotation gives a negative θ. We can rotate the simulation box along 

the z axis by θbox so that x = cosθboxx0 − sinθboxy0 and y = sinθboxx0 + cosθboxy0. The 

resulting magnetic field in the new coordinate will be

Bx(z) = Bx0(z)cosθbox + By0sinθbox,
By(z) = − Bx0(z)sinθbox + By0cosθbox .

(1)

In a 2-D system, the orientation of the x line is fixed in the out-of-plane direction. This 

machinery allows us to study reconnection at a given x line orientation θ = θbox.

The primary 3-D case has θbox = 0°,and it has a domain size 

Lx × Ly × Lz = 256di × 256di × 24di, and 4,096×4,096× 384 cells. The boundary conditions are 

periodic both in the x and y directions, while in the z direction they are conducting for fields 

and reflecting for particles. We use 200 particles per cell. Adopting the methodology in Liu 

etal.(2015),we localize the perturbation in both thexandy directions to initiate reconnection. 
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Companion 2-D and 3-D simulations with a much shorter y extent Ly = 32di  at a few 

representative oblique angles θbox are designed to compare and contrast with the primary 3-

D case.

3. X Line Orientation

Magnetic reconnection is initiated at the center of the simulation domain. The reconnection 

x line forms and spreads. In a slab geometry, a reconnection x line is best defined by the line 

of vanishing Bz, which is sandwiched between newly generated reconnected field Bz. The 

peak current density also serves as a good proxy to study the x line orientation when the x 

line is quasi-2-D (Liu et al., 2015). The total current density |J| at y = 0 and time 184/Ωci is 

shown in Figure 2a. To study the orientation of this x line, we then take the x-y cut of a few 

quantities across the location of the intense current at z/di ≃ 3.5. The current density in 

Figure 2b captures the distinct x line that is microscopically narrow but macroscopically 

long on the x-y plane. A movie that shows the evolution of |J| can be found in the supporting 

information. The x line in this case is surprisingly laminar and quasi-2-D, unlike most 3-D 

simulations where turbulence impacts the current sheet. The large guide field has suppressed 

the drift-kink instability (Karimabadi et al., 2003). The mild variability of the x line occurs 

when the intense current spreads and merges with the current intensified by the background 

tearing modes at two ends of this primary x line. For reference, the orientations of the 

asymptotic magnetic fields on both sides are marked by the yellow dashed arrows. The field 

strength is proportional to the arrow length. A straight line at orientation −13° is also plotted 

for comparison. This is the x line orientation previously determined by the simulation in a 4 

× 4 × 1.5 smaller spatial domain (illustrated by the green dashed box at the upper right 

corner of Figure 2b) and 3 times shorter evolution time (60/Qci) (Liu et al., 2015). In 

conjunction with Liu et al. (2015), the comparison demonstrates that this well-defined x line 

sustains the same orientation for at least (184 – 60)/Ω.cl = 124/Ω.cl, and we do not expect this 

orientation to change in a larger simulation. While the x line extent in Liu et al. (2015) is 

≃ 20di, the x line in this larger simulation spread to a spatial length ≃ 200di, suggesting that 

the x line extent in this regime is purely limited by the system size and there is no intrinsic 

length limitation in the 3-D system. In a slab geometry, the reconnected magnetic field Bz 

normal to the current sheet most faithfully captures the x line because it marks the change of 

the field-line connectivity. The Bz reversal in Figure 2 shows a similar orientation. The 

Alfvenic flow reversals serve as the strong indicative evidence of magnetic reconnection in 

in situ observations (e.g., Burch et al., 2016). The locus of outflow reversal locations, as 

captured by Vex and Vix in Figures 2d and 2e, also suggests a similar orientation. Also, note 

that in Figure 2c the clear stripe structure of Bz arises from the dominant oblique tearing 

modes that spontaneously grow from the ambient current sheet. The associated plasmoids 

are observed in Figure 2a for |x| ≳ 75d, outside of the outflow region of the primary 

reconnection x line. These stripes make a similar orientation at −13°, and this fact has an 

implication for the x line stability that will be discussed later.
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4. Break of the Frozen-in Condition

The sharp spatial gradient adjacent to the electron-scale diffusion region makes the ambient 

plasmas nongyrotropic. Figure 3a shows the nongyrotropy calculation (Aunai, Hesse & 

Kuznetsova 2013)Dng ≡ 2 ∑i j Ni j
2 / Tr (P) where the nongyrotropy tensor N = P − Peg

measures the difference between the full pressure tensor and its gyrotropic approximation. 

Here Peg ≡ Pe ⊥I + (P
e

− Pe ⊥)bb with P
e

≡ b ⋅ Pe ⋅ b being the electron pressure parallel to 

the local magnetic field and Pe ⊥ ≡ [ Tr Pe − P
e

]/2 being the pressure perpendicular to the 

local magnetic field. The intense Dng traces the diffusion region and the sharp outflow 

exhaust boundaries. To assess the break of the electron frozen-in condition, we analyze the 

composition of the nonideal electric field (along the vertical white dashed line) using the 

electron momentum equation (i.e., Ohm’s law)

ene E + Ve × B/c + ∇ ⋅ Pe + me∇ ⋅ neVeVe + me
∂
∂t neVe = 0 . (2)

In order to beat the PIC noise in this calculation, it is customary to ensemble average 

quantities. Since the meaning of “anomalous dissipations” arising from an ensemble average 

(either in a given space extent; Che et al., 2011; Le et al., 2017; Price et al., 2016 or time 

duration; Le et al., 2017) remains unclear (Le et al., 2018), here we average the entire 

equation without further splitting the nonlinear terms into a product of averaged quantities. 

The ensemble-averaged quantities are marked by the angle bracket in Figure 3b. Q ⋅ b
indicates that the entire quantity Q is time averaged using 1,000 frames within duration 

1.7/Ω.ci, then it is dotted with the averaged unit magnetic vector b ≡ B / B . This shows the 

(time-averaged) quantity in the (time-averaged) parallel direction.

The peak nonideal electric field E + Ve × B/𝒞 in the parallel direction is primarily supported 

by the pressure tensor ∇ ⋅ Pe (green), and it closely resembles that in the corresponding 2-D 

simulation (Hesse et al., 2016; Lu et al., 2013). To further identify the key contribution in the 

full pressure tensors, it is useful to evaluate the divergence of its gyrotropic approximation. 

A similar decomposition is also analyzed in the observations of Magnetospheric Multiscale 

(MMS) mission (Genestreti et al., 2018; Rager et al., 2018). Outside of the diffusion region, 

∇ ⋅ Peg ⋅ b  (brown) is a good approximation of ∇ ⋅ Pe ⋅ b. The contribution from the 

gyrotropic approximation vanishes near the location of the peak nonideal electric field, 

indicating that the primary contribution to the pressure gradient comes from the 

nongyrotropy. This is consistent with the idea made by the Dng measurement in Figure 3a. 

We can further decompose the gyrotropic pressure gradient into 

∇ ⋅ Peg ⋅ b = ∂ P
e

− (P
e

− Pe ⊥)∂  In B  where ∂ ≡ b ⋅ ∇. The simulation result suggests 

that the gyrotropic contribution can be approximated by ∇ ⋅ Peg ⋅ b ≈ ∂ P
e

. That is, the 
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parallel gradient of the parallel component of the pressure tensor (magenta diamonds). The 

validity of this approximation is also observed in previous 3-D simulations (Liu et al., 2013).

5. Companion 2-D Simulations and Theories

Unlike the 3-D system where the x line has sufficient freedom to choose an optimal 

orientation, in 2-D systems the orientation of the x line is always fixed to the out-of-plane 

direction because of the translational invariance along this direction. Taking advantage of 

this artifact, we can study the property of reconnection in a specified orientation. On 

different oblique planes, the strength of the in-plane magnetic field varies according to 

equation (1). The in-plane component of magnetic field reverses sign for θbox ϵ [−56.3°, 

26.6°], and reconnection could operate on any of these oblique planes. In Figure 4a, we 

show the evolution of reconnection rates on few oblique planes ranging from θbox = −25° to 

10°. These rates are measured by calculating the change of the in-plane magnetic flux in 

between the X and O points. The measurement suggests that the reconnection rate is 

maximized at the orientation around −13° (red curve in Figure 4a), consistent with the 

orientation manifested in the 3-D simulation. This comparison between 3-D and 2-D 

systems demonstrates that reconnection proceeds near the maximal reconnection rate. (As an 

aside, this tendency of maximizing the rate revealed in 3-D simulations echoes the 

hypothesis used to derive the normalized asymmetric reconnection rate 0.1 in recent work 

Liu et al., 2018.)

Prompted by this agreement, we now compare our results to the prediction from different 

rate models. Cassak and Shay (2007) derived an expression of reconnection rate based on 

conservation laws, Erec ∝ Bx1Bx2
1/2 Bx1 + Bx2

−1/2 Bx1ρ2 + Bx2ρ1
−1/2. Later, Birn et al. 

(2010) included the effect of compression and enthalpy in the calculation. Hesse etal. (2013) 

proposed that the reconnection rate is proportional to the available magnetic energy based on 

the reconnecting component Erec ∝ Bx1
2 Bx2

2 , which always leads to a maximal rate at the 

bisection angle. Recently, Liu etal. (2018) modeled the reconnection rate as a function of the 

opening angle made by the upstream magnetic field. A prediction is attained by maximizing 

the model rate under the geometrical constraint imposed at the magnetohydrodynamics 

scale. Finally, since the stripe made by the dominant oblique tearing modes (presumably the 

fastest growing tearing modes) appears to be parallel to the x line orientation (Figure 2c), we 

also derive the growth rate of collisionless oblique tearing modes in Appendix A. It is not 

too surprising to see the dominant tearing mode sharing an orientation similar to that of the x 

line at its nonlinear state, because a tearing mode is the linear stage of spontaneous 

reconnection. As demonstrated in the next section, the fastest growing oblique tearing 

becomes active when the x line is forced to be oriented at an angle different from the optimal 

orientation.

These predicted reconnection rates are plotted in Figure 4b as a function of the x line 

orientation θ. To facilitate the identification of the optimal angle, each curve is normalized 

to its maximum. For reference, θ = −13° (the x line orientation) and 0° (the y0 axis) are 

marked by the vertical dashed lines. We also plot the peak reconnection rates measured in 

Figure 4a as magenta diamonds. The linear growth rates of oblique tearing modes are plotted 
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as a cyan dashed curve. The growth rate based on a thick current sheet maximizes at 

θ ≃ − 8°. However, secondary tearing modes often grow from the nonlinear current sheet of 

de scale thickness and the tearing-mode simulation in a de scale sheet (Liu etal., 2015) 

showed the dominant mode with an orientation close to θ ≃ − 13°. After accounting fora 

narrow sheet at de scale, a modified theory (also derived in Appendix A) is plotted as the 

orange dashed curve. Two of the closest predictions of the x line orientation for this case are 

provided by Hesse etal. (2013) at the bisection angle θ ≃ − 14.87° and the maximum of the 

modified tearing growth rate at θ ≃ − 13.8°. To distinguish which model works better in 

general will require a thorough parametric study. Nevertheless, these predictions range from 

0 ~ −8° to −25° and are clearly off they0 axis at 0 = 0°. The observed x line orientation falls 

within this predicted range.

6. Orientation Versus Stability—A Numerical Experiment

At Earth’s magnetopause, the initial reconnection line could be preconditioned by the global 

geometry and external forcing when a relatively planar solar wind touches the bell-shaped 

magnetosphere at the dayside. The local tangent of such a reconnection line may not 

necessarily align with the optimal orientation favored by the local physics. It is thus 

interesting to explore the stability of reconnection in a 3-D system when the x line does not 

point to the optimal orientation. As mentioned earlier, when the Ly boundary is extremely 

short, the quasi-2-D system fixes the x line to the y direction and completely suppresses any 

mode that has a finite ky. In the following numerical experiments, we make Ly short to fix 

the x line in the y direction but long enough to allow the development of oblique tearing 

modes, which can spontaneously lead to competing reconnecting modes at different 

orientations.

In order to fit one oblique tearing mode of wavelength A at orientation θ inside the 

simulation domain, it requires Lv ≥ λ/sinθ (see Appendix B), and this wavelength needs to 

satisfy 2π / < kc = [ 1/2 + botanθ 2 + 1]1/2/L for the unstable condition of tearing modes (i.e., 

Δ′ > 0 calculated in the Appendix A). For an oblique tearing mode to grow at the optimal 

orientation θ = − 13° in the initial current sheet of L=0.8di, it requires Ly > 15.5di. The fastest 

growing mode typically has a wave number around kc/2, and this will require Ly > 31di. 

Thus, we choose Ly=32di, that should provide sufficient room for the oblique tearing mode 

to grow at this optimal orientation if its growth is desired. This y extent is 8 times shorter 

than the primary 3-D case, as illustrated by the green dashed box marked in Figure 2c. In 

addition, we apply a perturbation that is uniform in the y direction to initiate the x line.

In the first case, we keep θbox = 0. The evolution of reconnection is shown in Figure 5. The 

color shows the electron velocity Vey. The most pronounced feature is the turbulence in 

Figures 5c and 5d, which is absent in the large 3-D case (Figure 2). Here we explain what 

gives rise to this turbulence. First of all, note that the primary x line points more or less in 

the y direction as initiated by the perturbation and soon enforced by the periodic boundary 

condition in the y direction. However, secondary tearing modes emerge on top of the 

primary x line in Figures 5a and 5b. These tearing modes are oblique to the primary x line in 
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the y direction, as illustrated by the Bz structure on the x-y plane in Figures 8a and 8b. Not 

too surprisingly, this structure is parallel to the optimal orientation at θ = − 13° as marked by 

the white dashed line. The system radiates secondary tearing modes to adjust the orientation, 

but this attempt is destined to fail because of the large-scale orientation enforced by the 

periodic y boundary. The fast-streaming electrons resonated by tearing modes form intense 

electric current, which needs to close itself since ∇ ⋅ J ≃ ∇ ⋅ ∇ × c2B/4π ≃ 0 in the nonrel-

ativistic limit. The intense current structure leaves one y boundary at an oblique angle will 

come back from the other side farther downstream, forming a tearing chain along the entire 

separatrix and constantly feeding complexity back to the periodic system. In contrast, the x 

line and separatrix are quiet in the primary 3-D case (Figure 2).

In the second case, we rotate the simulation box to θbox = − 13° so that the y axis is along 

the optimal x line orientation. The evolution is shown in Figure 6. A secondary tearing mode 

appears in Figure 6a and soon disappears in the outflow. This secondary tearing mode forms 

structure parallel to the y direction, as expected, and it is easier to be advected out coherently 

and be merged in the outflow. The reconnection x line is thus considerably less turbulent. 

Oblique modes of smaller spatial scale later develop along the separatrix further downstream 

(Figure 6c). These modes could be lower hybrid drift modes or weaker oblique tearing 

modes. They eventually spread out and reach the x line (Figure 6d), perhaps, due to the 

combination of the x and y periodic boundaries. In the third case shown in Figure 7, we 

rotate the simulation box to θbox = − 35°. Secondary tearing modes emerge and linger 

around the x line. This case further confirms that the secondary tearing modes do emerge 

along the optimal x line orientation, as shown in Figures 8e and 8f. Note that since the 

primary outflow speed driven by the preselected x line only varies as a function of the x 
location, segments on an oblique structure at different x locations are thus advected in 

different speeds (before the entire structure enters the region of a uniform Alfvenic outflow). 

Thus, the tilt angle of the oblique structure can become larger further downstream.

In short, these numerical experiments suggest that when the primary x line is forced to point 

at an orientation not favored by the local physics, the system radiates oblique tearing modes 

to adjust itself. The resulting oblique structure makes reconnection difficult to regain a 

coherent quasi-2-D structure inside a small periodic box.

7. Summary and Discussion

We studied the x line orientation and its stability using PIC simulations, showing that the x 

line in a large 3-D system (i.e., a proxy of an open system) proceeds along the orientation 

that maximizes the reconnection rate. The resulting diffusion region is laminar and the 

nongyrotropic feature of the pressure tensor breaks the frozen-in condition. In contrast, 

when the x line is externally forced to misalign with this optimal orientation, secondary 

oblique tearing modes develop to adjust the orientation. Inside a small periodic system, the 

oblique structure can hardly be expelled and merged. The fast-streaming electrons resonated 

by tearing modes quickly spread over the entire system, constantly feeding complex 

structure back to the periodic system and leading to turbulence. Based on these numerical 
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experiments, we conclude that the reconnection x line needs not be as turbulent as observed 

in small periodic simulations.

At Earth’s magnetopause, a global reconnection line that misaligns with the optimal 

orientation favored by the local physics is expected to radiate secondary oblique tearing 

modes. However, the relatively large system may provide a sufficient room for the x line to 

adjust its orientation and to resume its natural, quieter state. To accurately model this 

reaction would require more realistic initial conditions, boundary conditions, and global 

external drives that are not yet feasible in a full PIC simulation. One possibility is that a 

misaligned reconnection line will breakup into smaller segments, which each are ideally 

aligned. This could explain localized bursts of reconnection in connection with flux transfer 

events. Note that the turbulence driven by the lower hybrid drift instability (LHDI) was 

discussed in MMS observation (Ergun et al., 2016; Graham et al., 2017) and the associated 

event studies using 3-D PIC simulations (Le et al., 2017; Price et al., 2016). For the 

parameters studied in this case, the LHDI appears to be relatively weak at the x line as 

shown in Figure 2a or 3a. The effect of LHDI on the x line is not the focus in this work, but 

the potential boundary effect inside a small periodic system also deserves future 

investigation. Note that this work does not imply that the generation of secondary flux ropes 

is entirely excluded when the x line develops along the optimal orientation. For instance, 

flux ropes were observed in the vicinity of the x line during tail reconnection (Wang et al., 

2015,2010). Instead, this work suggests that an x line is inclined to generate secondary 

tearing modes when it misaligns with the optimal orientation.

We emphasize that an important nature of magnetic reconnection is revealed in this 3-D 

simulation; the comparison between the observed orientation and companion 2-D 

simulations in Figure 4a shows that reconnection tends to proceed at or, at least, near the 

maximal reconnection rate. This fact can be crucial for the explanation of the fast rate value 

of order 0.1; a recent model (Liu et al., 2017,2018) suggests that the reconnection rate 

profile as a function of the opening angle made by the upstream magnetic field is relatively 

flat near this optimal state, and it has a value of order 0.1.

In summary, this study advances our understanding of the 3-D orientation and stability of the 

asymmetric reconnection x line. This result could help interpret the local geometry of 

reconnection events observed by MMS and, perhaps, help determine an appropriate LMN 

coordinate (Denton et al., 2018). The question we are exploring is also relevant to the 

upcoming European Space Agency-Chinese Academy of Sciences joint mission, Solar wind 

Magnetosphere Ionosphere Link Explorer, which will study the development of 

reconnection lines at Earth’s magnetopause using X-ray and ultraviolet imagers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A:

Collisionless Tearing Growth Rate

In addition to obtaining an optimal orientation by maximizing the reconnection rate, it is 

also interesting to consider the competition of linear tearing modes that lead to spontaneous 

reconnection.

We consider the collisionless tearing stability of this configuration for an arbitrary 

wavevector k = kxx + kyy corresponding to oblique angle θ ≡ tan−1 ky/kx  and resonance 

surface zs = − L × arctanh 1/2 + bgtanθ + 3di, at F ≡ k • B = 0. In the outer region, the 

magnetohydrodynamic model is used to obtain an eigenmode equation (Furth et al., 1963) of 

the form Ψ ′′ = k2 + F′′/F Ψ , where ψ(z) is the perturbed flux function at the oblique plane 

and k2 ≡ kx
2 + ky

2. By combining the approximate solutions for kL ≪ 1andkL ≫ and 

k2 ≡ kx
2 + ky

2 in the same manner as in Baalrud et al. (2012), we get the drive for tearing 

perturbations (Furth et al., 1963) Δ′ ≡ lim
ϵ 0

(1/ψ)[dψ /dz]z5 − ϵ
Zs + ϵ

≃ α2/k F−∞
−2 + F∞

−2 − 2k

where α ≡ (dF /dz)z = zS
. Plugging in our configuration, it gives

Δ′ ≃
2 1/2 + bgtanθ 2 + 1

kL2 − 2k . (A1)

The upper bound of the unstable wave number is kcL <∼ (1/2 + b, tanθ)2 + 1 1/2
. Using the 

standard matching approach (Daughton et al., 2011; Drake & Lee, 1977) to the kinetic 

resonance layer gives

γ ≃
de

2Δ′
ls

kvthe, (A2)

where vthe ≡ 2Te/me
1/2 is the electron thermal speed and de = c/wpe is the local electron 

inertial length at the resonant surface. ls is the scale length of the magnetic shear defined in 

k = k ⋅ B/ B ≈ [∂(kB/ B )/ ∂z]z = zs
z − zs ≡ k z − zs /ls. It is derived to be
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ls =
Lbg 1 + tan2θ

1/2

1 − 1/2 + bgtanθ
2 cosθ

.

The dominant mode typically has a wavelength kL kcL/2, and it is roughly 0.5. Based on this 

wave number (kc/2), the growth rate at the different oblique angle is shown by the dashed 

cyan curve in Figure 4b, which has a maximum at θ ≃ − 8°.

The width of the resonant surface A is determined by the resonant condition (Drake & Lee, 

1977) γ ≃ k V the = kΔ/ls vthe and it should be limited by the thickness of the current sheet L. 

Thus, by comparing with equation (A2) we can derive Δ′de ≃ Δ/de ≤ L/de. For L/de ≤ 1, we 

have Δ′de ≤ 1. On the other hand, equation (A1) with k ≃ kc/2 suggests Δ′de ≃ 1/ L/de ≥ 1 in 

the same limit. It is thus clear that the theory breaks down for a narrow sheet L/de < 1. As a 

quick remedy, we argue Δ′de ≃ 1, and thus, γ ≃ dekvthe/ls. This modified rate fora de scale 

sheet is plotted as the orange dashed curve in Figure 4b, which has a maximum at 

θ ≃ − 13.8°, comparable to the oblique angle ≃ − 13°  of the dominant mode observed in a 

de scale sheet (Liu et al., 2015).

Appendix B:

The Minimum Box Size Required for an Oblique Mode

To perfectly fit an oblique mode of angle 0 and wavelength X inside a box of periodic y 
boundary, as shown in Figure B1, it requires Ly = Nλ/sinθ where N is a positive integer. For 

Ly < λ/sinθ, the mode can at least partially manifest its orientation. For Ly < λ/sinθ, such a 

mode is impossible to grow due to the effect of the periodic boundary.

Figure B1. 
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The system size Ly that perfectly fit an oblique mode of angle θ and wavelength λ.
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Key Points:

• The orientation of asymmetric reconnection x line is studied using large 3-D 

particle-in-cell simulations

• Companion 2-D simulations indicate that the 3-D system selects a state of, or 

at least near, the maximal reconnection rate

• The system tends to radiates secondary oblique tearing modes when the 

primary x line is forced to misalign with this optimal orientation
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Figure 1. 
Illustration of the question to solve.
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Figure 2. 
Quantities at time 184/Ωci. In (a) the total current density |J| on a 2-D plane where y = 0. The 

white arrows show the in-plane electron velocities. In (b) the x-y cut of |J| across the 

location of the intense current near the x line. Similarly, in (c), the reconnected field Bz; in 

(d), the electron outflow Vex; and in (e), the ion outflow Vix. On top of the figures, yellow 

arrowed lines in (b) illustrate the magnetic fields on two sides of the current sheet, and white 

dashed lines in (b)-(e) have 9 = −13°.
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Figure 3. 
In (a) the measure of the nongyrotropy (Dng) of the pressure tensor. In (b) the decomposition 

of the nonideal electric field. The charge e and electron mass me are normalized to unity in 

our presentation.
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Figure 4. 
In (a) the evolution of the reconnection rate (E) measured on a sample of oblique planes at 

different θbox. In (b), “Hesse et al.,” “Cassak-Shay,” “Birn et al.,” and “Liu et al.” are the 

predicted reconnection rates from different models. “Tearing” shows the tearing growth rate 

derived in Appendix A and “Tearing-de” is the modified growth rate in a de scale sheet. The 

measured rates from (a) are plotted as magenta diamonds. Each curve is normalized to its 

maximum value.
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Figure 5. 
The evolution of reconnection in a companion 3-D simulation using Ly = 32di, and θbox = 

0°. The color shows the electron flow speed in the y direction (Vey).
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Figure 6. 
The evolution of reconnection in a companion 3-Di simulation using Ly = 32d, and θbox = 

−13°. The color shows the electron flow speed in the y direction (Vey).
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Figure 7. 
The evolution of reconnection in a companion 3-D simulation using Ly = 32di, and θbox = 

−35°. The color shows the electron flow speed in the y direction (Vey).
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Figure 8. 
The Bz structure in the x-y plane that contain the x line in companion 3-D simulation using 

Ly = 32di.In (a) and (b) θbox = 0°, in (c) and (d) θbox = −13°, and in (e) and (f) θbox = −35°. 

The white dashed lines mark the orientation (θ = −13°) favored by the local physics.
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