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Autophagy is an enigmatic cellular process in which double-
membrane compartments, called “autophagosomes, form de novo
adjacent to the endoplasmic reticulum (ER) and package cytoplas-
mic contents for delivery to lysosomes. Expansion of the precursor
membrane phagophore requires autophagy-related 2 (ATG2), which
localizes to the PI3P-enriched ER–phagophore junction. We combined
single-particle electron microscopy, chemical cross-linking coupled
with mass spectrometry, and biochemical analyses to characterize
human ATG2A in complex with the PI3P effector WIPI4. ATG2A is
a rod-shaped protein that can bridge neighboring vesicles
through interactions at each of its tips. WIPI4 binds to one of
the tips, enabling the ATG2A-WIPI4 complex to tether a PI3P-
containing vesicle to another PI3P-free vesicle. These data suggest
that the ATG2A-WIPI4 complex mediates ER–phagophore association
and/or tethers vesicles to the ER–phagophore junction, establishing the
required organization for phagophore expansion via the transfer of
lipid membranes from the ER and/or the vesicles to the phagophore.
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Macroautophagy (hereafter autophagy) is a catabolic process
essential for the maintenance of nutrition homeostasis and

the elimination of cytotoxins, such as damaged organelles, in-
vading bacteria, and aberrant protein aggregates (1, 2). During
autophagy, cytoplasmic contents, including cytotoxins, are engulfed
in the autophagosome and are broken down by lysosomal hydro-
lases upon autophagosome–lysosome fusion (3). The materials
resulting from the degradation, such as amino acids, are recycled.
The engulfment of cytoplasmic contents is enabled by the de novo
formation of the autophagosome. This process involves three dy-
namic membrane reorganization steps: (i) nucleation of the pre-
cursor membrane, called the “isolation membrane” or “phagophore,”
(ii) expansion of the phagophore into a cup-shaped structure, and
(iii) closure of the open end of the cup-shaped membrane. Despite
extensive study, the molecular mechanisms associated with these
steps remain elusive due to lack of information regarding the
functional roles of the autophagy-related (ATG) proteins (4).
Upon autophagy induction, early ATG factors such as ATG1/

ULK kinase, ATG9 membrane protein, and VPS34 PI3 kinase
mediate nucleation of both the early phagophore and the ome-
gasome (5–8). The latter is a PI3-enriched membrane unit ob-
served as an omega/ring-shaped subdomain of the endoplasmic
reticulum (ER) by fluorescence microscopy (5) or a cluster of
ER-associated thin tubular membranes by EM (9). Subsequently,
the omegasome recruits ATG18/WD-repeat proteins interacting
with phosphoinositides (WIPIs) (ATG18 in yeast and WIPI1-4
in mammals) (10–15), the PI3P effector that belongs to the
PROPPIN (β-propellers that bind polyphosphoinositides) family
(16, 17), and the binding protein ATG2, the largest member of
the ATG family. Recruitment of these cofactors leads to the
expansion of the early phagophore into a cup-shaped membra-

nous sac. During expansion, the omegasome remains associated
with the edge of the open end of the cup-shaped phagophore (5),
and ATG18/WIPI and ATG2 also remain concentrated at this
ER–phagophore junction (18, 19). When the phagophore has
expanded sufficiently, the omegasome starts to shrink and finally
disappears as the phagophore is sealed (5). Neither ATG2 nor
ATG18/WIPI remains associated with the mature autophago-
some (10). The precise spatiotemporal correlation between the
localization of ATG2 and ATG18/WIPI and the phagophore/
omegasome membrane dynamics suggests that these proteins play
direct roles in phagophore expansion at the ER–phagophore in-
terface. Indeed, depletion of ATG2A/B in mammalian cells, which
does not affect omegasome formation, leads to an accumulation of
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small immature phagophores and small autophagosome-like ves-
icles that are distant from the ER (20).
Although the precise function of ATG2 is unknown, previous

studies in yeast suggest that ATG2 may be a peripheral membrane
protein (21, 22) that binds directly to membranes (10, 23). In ac-
cordance with this described affinity for membranes, mammalian
ATG2A/B also localizes to lipid droplets (LDs) and thereby reg-
ulates their size (13, 24) as well as localizing at the ER–phagophore
junction. These observations collectively suggest that ATG2 may
directly mediate a membrane reorganization process, although
functional studies have not yielded results to support such claims.
The sequences of ATG2 proteins span ∼1,600–2,300 residues

across eukaryotes and contain evolutionarily conserved regions
at the N and C termini as well as in the middle of the poly-
peptide. These domains have been assigned in the Pfam database
(25) to the Chorein_N (ID: PF12624), ATG_C (ID: PF09333),
and ATG2_CAD (ID: PF13329) families, respectively (Fig. 1A).
Chorein_N and ATG_C share sequence similarity with the N and
C termini of VPS13 (24, 26), a paralog of VPS13A/Chorein (27).
The 200 N-terminal residues containing Chorein_N and the
ATG_C region of ATG2A have been reported to be required for
the localization of ATG2A to autophagosome-forming sites and
LDs, respectively (28). ATG2_CAD contains a highly conserved
cysteine-alanine-aspartic acid triad, but its role in autophago-
some formation is unknown. In addition, a short region (residues
1,723–1,829) preceding ATG_C is also conserved but is not

registered in the Pfam database. This short region is required for
the localization of ATG2A to both phagophores and LDs and in
isolation localizes to LDs (13, 28). We hereafter refer to this
region as the “C-terminal localization region” (CLR). The CLR
has been predicted to contain an amphipathic α-helix, indicative
of association with membranes (28). Apart from these domains,
the regions flanked by Chorein_N and ATG2_CAD and by
ATG2_CAD and ATG2_C in yeast ATG2 were reported to
share similarities with the mitochondrial protein FMP27, whose
function is unknown, and with the Golgi-localized protein of
maize APT1, which has been suggested to be involved in mem-
brane trafficking, respectively (Fig. 1A) (23, 29). A fragment
containing the APT1 region of yeast ATG2 was shown to interact
with membranes containing phosphatidylinositol phosphates,
including PI3P (23). However, whether these similarities also
apply to higher eukaryotic species is unclear.
To better understand the role of ATG2, we characterized hu-

man ATG2A in complex with WIPI4 using structural and bio-
chemical methods. Using EM and chemical cross-linking coupled
with mass spectrometry (CXL-MS), we show that ATG2A has an
elongated structure with a WIPI4-binding site at one tip (end). We
determined that ATG2A is a bipartite membrane-binding protein
that bridges two membranes through interactions at each tip of
its elongated structure. Furthermore, we demonstrate that the
ATG2A-WIPI4 complex can mediate asymmetric tethering be-
tween liposomes with and without PI3P. Placed in the context of
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Fig. 1. Structural analyses of the human ATG2A-WIPI4 complex and the ScATG2-ATG18 complex by negative-stain EM. (A) Diagram of the primary structure
of ATG2. The lengths of human ATG2A/B and ScATG2 are indicated. The regions conserved among all species are indicated by ovals with solid outlines. The
similarities suggested in ScATG2 to FMP27 and APT1 proteins are indicated as ovals with dashed outlines. (B) Affinity capture experiment with ATG2A
immobilized on the beads and WIPI4 in solution. (C) Superose 6 size-exclusion chromatography profile of the mixture of ATG2A and an excess amount of
WIPI4. (D and E) 2D class averages of the ATG2A-WIPI4 complex (D) and ATG2A alone (E). (F and G) Reconstructed 3D structures of the ATG2A-WIPI4 complex
(F) and ATG2A alone (G). (H) 2D class averages of the ScATG2-ATG18 complex. Green asterisks in 2D class averages in D and H indicate the locations of
WIPI4 and ATG18, respectively.
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the current literature, our findings indicate that the ATG2-WIPI4
complex tethers the PI3P-enriched omegasome to a neighboring
membrane(s), such as the ER, phagophore, and other vesicles that
may be recruited as a membrane source.

Results
Reconstitution and Overall Structure of the Human ATG2A-WIPI4
Complex. To enable the structural characterization of ATG2
and investigate its interactions with WIPI/ATG18, we expressed
and purified human ATG2A and WIPI4, a pair of proteins
that have been reported to interact strongly (12–14), from
baculovirus-infected insect cells. The binding was confirmed by
an affinity capture experiment in which WIPI4 bound to beads
preimmobilized with ATG2A but not to beads lacking ATG2A
(Fig. 1B). Furthermore, during size-exclusion chromatography
the mixture of ATG2A and WIPI4 comigrated as a single peak
(Fig. 1C), thus supporting their ability to form a stable complex.
Negative-stain EM studies with the purified ATG2A-WIPI4
complex showed that the particles were monodisperse and
homogeneous in size and shape (SI Appendix, Fig. S1). The 2D
class averages of the stained particles revealed that the ATG2A-
WIPI4 complex is composed of a rod-shaped protein associated
with a small, distinct, bead-like feature at one end of the molecule
(Fig. 1D). The structural details visible in the 2D averages suggest
that the rod-shaped portion of the images corresponds to the
multidomain protein ATG2A. The bead-shaped feature can be
provisionally attributed to WIPI4 since the overall shape and size
is consistent with its predicted β-propeller fold (30–32). Compar-
ison of these class averages with 2D averages of ATG2A alone
supports this proposed organization (Fig. 1E) and establishes that
ATG2A and WIPI4 form a 1:1 stoichiometric complex upon
reconstitution.
3D reconstructions of the ATG2A-WIPI4 complex and free

ATG2A further support the 2D analyses, resolving a rod-shaped
ATG2A about ∼200 Å in length with a width of ∼30 Å. One end
of the rod is hook-shaped with a cleft in the middle (Fig. 1 F and
G). The WIPI4 density exhibited characteristics consistent with a
β-propeller and directly contacts ATG2A through a thin density
(Fig. 1F). This contact likely serves as a hinge through which
WIPI4 can adopt a range of orientations relative to ATG2A, as
observed in both 2D analyses (Movie S1) and 3D reconstructions
(SI Appendix, Fig. S1). Collectively, these results establish the
overall structure of ATG2A in complex with WIPI4. WIPI4 is
flexibly associated with ATG2A, inducing no significant confor-
mational change in ATG2A.

The Overall Shape Is Conserved in the Yeast ATG2-ATG18 Complex.
The significance of the interactions between mammalian WIPIs
and ATG2A/B has not been thoroughly studied. Much of our
knowledge regarding this interaction comes from studies of the
Saccharomyces cerevisiae (Sc) ATG2-ATG18 complex. Thus, we
investigated whether the structural organization of the human
ATG2A-WIPI4 complex described above is conserved in the
yeast complex. ScATG2 is smaller than mammalian ATG2A
(Fig. 1A) and appears to bind ATG18 weakly (SI Appendix, Fig.
S1), which makes EM studies of the yeast complex more chal-
lenging than studies of its human counterpart. Nevertheless, we
obtained 2D class averages of the ATG2-ATG18 complex (Fig.
1H), which show an elongated object with a bead-like density at
one end, very similar to the human complex. These results
confirm that the overall structure of the ATG2-ATG18 complex
is evolutionarily conserved from yeast to human and indicate
that functional studies in yeast are relevant in the context of
structural work with the human version.

Identification of the WIPI4-Binding Site and Insights into the Chain
Topology of ATG2A. We used an integrative approach to gain fur-
ther structural information about the ATG2A-WIPI4 complex.

First, we sought to establish a coarse-grained chain trace of
ATG2A and identify the sites of interaction between WIPI4 and
ATG2A by CXL-MS. However, there were some foreseeable
technical obstacles in performing a CXL-MS analysis of the
ATG2-WIPI4 complex. For example, the overall 3D organization
of the ATG2A-WIPI4 complex, comprising an elongated ATG2A
and the small binding interface between ATG2A and WIPI4,
would limit the number of residue pairs that can be cross-linked.
Furthermore, the protein complex was prone to aggregation at
higher concentrations, limiting the highest protein concentration
achievable without introducing aggregation to a moderate level for
a CXL-MS analysis. Therefore, to maximize the number of the
cross-linked pairs, we performed two cross-linking reactions: a
standard amine-coupling reaction with disuccinimidyl suberate
(DSS), which cross-links pairs of lysines up to ∼30 Å apart (33),
and another reaction with the coupling reagent 4-(4,6-dimethoxy-
1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM)
and a linker, pimelic acid dihydrazide (PDH), which cross-links
pairs of acidic and lysine residues with zero-length (ZL) or two
acidic residues via PDH (34). We used relatively low concentra-
tions of the cross-linkers to suppress nonspecific intermolecular
cross-linking that would cause protein aggregation (Methods).
Despite these technical challenges, mass spectrometry of these
samples successfully identified 20 cross-linked peptide fragments
overall (Fig. 2A and SI Appendix, Table S1).
One cross-link of DSS and one cross-link of PDH were iden-

tified within WIPI4, and both are consistent with the WIPI4
homology structure model (SI Appendix, Fig. S2), validating our
experiments. Three cross-links were intermolecular between
ATG2A and WIPI4: one DSS cross-link between Lys1539 of
ATG2A and Lys89 on blade 2 of WIPI4 and two ZL cross-links
between Asp1376 or Glu1378 of ATG2A and Lys134 on blade
3 of WIPI4 (SI Appendix, Fig. S2). These data agree with pre-
vious work reporting that yeast Atg18 interacts with ScATG2
through blade 2 and loop 2, which connects blades 2 and 3 (30,
35), and with another study showing that a truncation construct
(residues 1–1561) of ATG2A containing the WIPI4 cross-linked
residues is able to bind to ATG18 in a yeast two-hybrid assay
(36), suggesting evolutionary conservation of this interaction
mode. Furthermore, these data also suggest that the WIPI4-
bound tip comprises amino acids that are located in a central
region of the primary structure. Fifteen cross-links were col-
lected within ATG2A: 11 short- to midrange (11–93 residues)
DSS/PDH/ZL cross-links, which are indicative of locally folded
subdomains (Fig. 2A), and five long-range (293–1,160 residues)
DSS cross-links between the residues in ATG_C and Lys720/725/
1539. SDS/PAGE analysis of the DSS cross-linking reveals an
intense band at ∼250 kDa (SI Appendix, Fig. S3). Because the
mass of the ATG2A-WIPI4 complex is ∼250 kDa, and the
∼250 kDa band is the single major band, it seems likely that
the five long-range DSS cross-links are intramolecular (SI Ap-
pendix, Fig. S3), indicating that the folded ATG2A polypeptide
adopts a nonlinear chain topology. However, a faint smear in the
∼500- to 600-kDa range is also observable, which may result
from two cross-linked ATG2A-WIPI4 complexes, raising the
possibility that the long-range cross-links could be inter-ATG2A
molecules. Attempts to identify cross-links from in-gel digestion of
the monomeric band were unsuccessful, probably due to limited
recovery of cross-linked peptides from the gel, preventing us from
drawing an unambiguous conclusion.
To map the conserved regions of ATG2A as well as the

WIPI4-interacting site, a 42-kDa maltose-binding protein (MBP)
was fused to ATG2A at the N terminus and separately inserted
into the ATG2_CAD (after residue 1224) (Fig. 2A). 2D image
analyses of negatively stained samples revealed that the MBP
fused to the N terminus localized to the tip opposite the WIPI4-
bound tip of the elongated ATG2A (Fig. 2B). The MBP inserted
into the ATG2_CAD localized to the same tip that binds WIPI4
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(Fig. 2B). These data suggest that the previously described
conserved regions are located at opposite ends of the ATG2A
rod-like complex and thus have different functional roles.
Hereafter, we refer to the tips of the ATG2A complex as the “N
tip” and the “CAD tip.” Our identification of the CAD region is
consistent with our CXL-MS experiments, as the CAD region is
in close proximity to residues that cross-linked with WIPI4. To
further confirm this localization, we also inserted MBP into three
positions adjacent to the residues cross-linked to WIPI4 (after
residues 1344, 1373, and 1503). As expected, all these MBP in-
serts were found to be in close proximity to WIPI4 in negative-
stain 2D class averages (Fig. 2B).
To identify the C-terminal region, we fused an MBP to the C

terminus and also inserted an MBP between the CLR and
ATG_C (after residue 1829). In contrast to our previous labeling
experiments, the MBP molecules in these C-terminal regions
were not identifiable in most 2D classes. The remaining subset of
particles (∼12% particles with MBP at the position 1829–
1830 and ∼4% particles with MBP at the C terminus) (Fig. 2B)
show an additional globular density attached to ATG2A-WIPI4
that we attribute to MBP. However, in both constructs this MBP

density was observed adjacent to both tips of ATG2A-WIPI4
(Fig. 2B). These data do not allow unambiguous localization of
the C-terminal regions but rather suggest that the C terminus of
ATG2A is flexible with respect to the rest of the molecule. In the
CXL-MS experiments, three lysine residues in ATG2_C cross-
linked to two residues in the middle of the ATG2A sequence
(720/725 and 1539) (Fig. 2A). If these cross-links are indeed
intramolecular, then this also supports the notion that the C
terminus of ATG2 is flexible and can reach the WIPI4-bound tip.
Given that our EM structural analysis revealed that WIPI4 was

flexibly attached to ATG2A and that β-propellers often bind to
peptides, we hypothesized that the WIPI4 binding site is in a
flexible linear region of ATG2A. To test this hypothesis, we
generated a fragment of ATG2A (residues 1358–1404) containing
two of the intermolecularly cross-linked residues (Asp1375 and
Glu1378) as a fusion to the B1 domain of streptococcal protein G
(GB1) protein. The GB1-fused peptide comigrated with WIPI4 in
a size-exclusion chromatography column and eluted earlier than
WIPI4 alone (Fig. 2C). A control using only GB1 and WIPI4
shows no comigration, demonstrating that this linear region is
indeed capable of binding to WIPI4.
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Based on these results, we fit a WIPI4 homology model into
the 3D EM density with blade 2 facing ATG2A (30, 35) and the
membrane-binding surface of WIPI4, including the two PI3P
recognition sites (blades 5 and 6) (30–32), on the opposite side of
ATG2A (Fig. 2D).

ATG2A Associates with Membranes Through Its Tips.Next, we sought
to characterize membrane binding by ATG2A by performing a
liposome flotation assay using a Nycodenz density gradient (37).
Small unilamellar vesicles (SUVs) and large unilamellar vesicles
(LUVs) were prepared by sonication and extrusion methods,
respectively. These vesicles were mixed with ATG2A in the
presence of Nycodenz, floated to the top of a gradient by cen-
trifugation, and subsequently collected and further analyzed.
ATG2A rose to the top of the gradient only in the presence of
liposomes (Fig. 3A), confirming direct membrane binding. The
recovery of ATG2A proteins was substantially higher with SUVs
than with LUVs [14- to 32-fold with 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC) vesicles], suggesting that ATG2A prefers
binding to highly curved membranes. Additionally, incorporation
of negatively charged lipid (1,2-dioleoyl-sn-glycero-3-phospho-L-
serine; DOPS) into the liposomes increased ATG2A–liposome
association by 1.3- to ninefold, suggesting some electrostatic
contribution to this interaction.
To better understand how ATG2A associates with mem-

branes, we performed negative-stain single-particle EM analysis

on the ATG2A-WIPI4 complex bound to SUVs. Because
ATG2A is a thin, somewhat featureless rod, we foresaw diffi-
culties in clearly visualizing such proteins on large membrane
surfaces. Therefore, we added WIPI4 to serve as a molecular
marker, allowing us to determine unambiguously the orientation
of ATG2A bound to the liposomes. We used SUVs composed of
DOPC and DOPS, but not PI3P, to avoid any effects introduced
by the WIPI4–PI3P interaction. Because SUVs produced by
sonication were highly heterogeneous in size, we generated more
homogenous SUVs using a dialysis methodology (38). We per-
formed a flotation assay with WIPI4 and these SUVs and con-
firmed that WIPI4 does not bind to these SUVs (SI Appendix,
Fig. S4). In the raw micrographs of the ATG2A-WIPI4-SUV
complex (Fig. 3B), we observed elongated objects resembling
ATG2A associated with either one or two liposomes as well as
clustered liposomes. 2D analyses focused on the elongated ob-
ject produced averages containing features consistent with the
previously observed ATG2A-WIPI4 complex, including the
characteristic hook and cleft (Fig. 3C). The 2D classes could be
categorized into three major structural classes of the protein–
SUV complexes. In the first class, WIPI4 and the CAD tip of
ATG2A are bound to the membrane, with the long axis of
ATG2A aligned roughly orthogonal to the membrane, posi-
tioning the N tip away from the membrane. In the second class,
ATG2A is bound to the membrane through the N tip, with the
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Fig. 3. Interaction between ATG2A and liposomes and its visualization by EM. (A) Liposome flotation assay with 50 nM ATG2A. The liposomes composed of
99% DOPC and 1% 1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine perchlorate (DiD) (indicated as “−PS”) or 74% DOPC, 25% DOPS, and 1% DiD
(+PS) were prepared by sonication (SUVs) or extrusion (LUVs) using 100- or 400-nm filters. The inputs (4%) and the top layers after centrifugation (24%) were
loaded onto SDS/PAGE. The percentage of ATG2A recovered in each of the top fractions was quantified and is shown below the gel image. (B) Micrographs of
the negative-stained ATG2A-WIPI4-SUV complex. Colored arrowheads and arrows denote an elongated object that emanates perpendicularly (blue arrowheads)
or tangentially (yellow arrowheads) from an SUV or is tethering two SUVs (green arrows). (C) 2D class averages of the ATG2A-WIPI4-SUV complex shown without
(Upper) and with (Lower) a manually placed 3D model of ATG2A (shown in yellow). The green dot marks the WIPI4 density.
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WIPI4 directed away from the membrane. These data indicate
that both tips of ATG2A can interact with membranes in-
dependently of each other. Strikingly, particles belonging to the
third class can be described as a combination of the first and
second classes: ATG2A is bound to one liposome through the
CAD tip and to another through the N tip, spacing neighboring
liposomes ∼10–15 nm apart. These EM data thus suggest that
ATG2A is a bipartite membrane-binding protein that can bridge
two membranes.

ATG2A Tethers SUVs. To confirm the membrane-tethering activity
of ATG2A, we examined the effect of the presence of ATG2A
on the size distribution of liposomes using dynamic light scat-
tering (DLS). The DLS profile of the SUVs shifted markedly to
larger sizes upon incubation with ATG2A (Fig. 4A), whereas
those of the LUVs (100 and 400 nm) did not change (Fig. 4 B
and C). To confirm that the increase in the SUV particle size was
due to liposome clustering mediated by the protein, we added
proteinase K to the final sample of the ATG2A-SUV mixture
and monitored its effect. Upon incubation, the observed particle
size decreased to its original dimensions (Fig. 4 D and E),
demonstrating that homotypic tethering mediated by ATG2A
resulted in the clustering.
We also performed a fluorescence-based liposome-tethering

assay, in which biotin-incorporated liposomes were mixed with
liposomes containing fluorescent lipids and separated by strep-
tavidin beads (39). The fluorescence intensity of the beads re-
ports the degree of tethering occurring between these two types
of liposomes. The results show that the fluorescence signals of
the liposomes, regardless of size, were increased by the presence
of ATG2A (Fig. 4F), but the difference between the signals in
the presence or absence of ATG2A was approximately five times
larger in the SUVs than in the LUVs. These data suggest that
ATG2A is capable of tethering liposomes, with a preference for
SUVs. Taken together, the results from flotation assays, DLS,
and fluorescence measurements establish that ATG2A can
tether small liposomes (i.e., membranes with high curvature).

The ATG2A-WIPI4 Complex Tethers PI3P-Containing and Non–PI3P-
Containing Membranes. We reasoned that in the homotypic teth-
ering experiments described above ATG2A was unable to tether
LUVs (Fig. 4 B, C, and F) due to its weak affinity to LUVs (Fig.
3A). Notably, the liposomes used in these experiments lacked
PI3P. Because the PI3P effector WIPI4 robustly binds to PI3P-
containing LUVs (31), we hypothesized that the ATG2A-
WIPI4 complex could also efficiently bind PI3P-containing

LUVs, thereby facilitating tethering of these liposomes. To test
this hypothesis, we used DLS. As shown in Fig. 5 A and B, nei-
ther WIPI4 nor ATG2A individually changed the size distribu-
tion of the LUVs. Thus, the presence of PI3P does not appear to
increase the affinity between ATG2A and LUVs. In contrast, the
LUV particle size increased markedly in the presence of both
proteins (Fig. 5 C and D), demonstrating that the WIPI4–PI3P
interaction triggers the clustering of PI3P-containing LUVs.
Our structure of the ATG2A-WIPI4 complex in which

WIPI4 is located adjacent to only one of the two membrane-
binding sites (the CAD tip) suggests that the ATG2A-WIPI4
complex could asymmetrically bridge two membranes, one con-
taining PI3P to one without PI3P, via WIPI4 and the N tip, re-
spectively. To test the capacity for such heterotypic tethering
directly, we performed fluorescence tethering assays with LUVs
containing PI3P and biotinylated lipids and with LUVs lacking
both. WIPI4 on its own did not change the fluorescence signal
compared with the control (Fig. 5E). Addition of ATG2A
showed only a slight increase in signal, similar to that observed
using non–PI3P-containing LUVs (Fig. 4F), demonstrating that
the presence of PI3P does not improve ATG2A’s poor ability to
tether LUVs. In stark contrast, the signal increased markedly in
the presence of the ATG2A-WIPI4 complex, with rises in fluo-
rescence that were on par with those observed for the homotypic
tethering between non–PI3P-containing SUVs (Fig. 4F). Taken
together, these data demonstrate heterotypic membrane tether-
ing by the ATG2A-WIPI4 complex.

The CLR Fragment Binds to Membranes in an Amphipathic α-Helical
Conformation. The observation that the CLR in isolation localizes
to LDs (13) raises the possibility that the CLR is a membrane-
binding domain, as many proteins localize to LDs through direct
interaction with the lipid monolayer surface (40). To further
characterize the role of CLR in membrane binding, we gener-
ated a CLR fragment as an MBP fusion construct, since MBP
was required to maintain the solubility of the CLR fragment. In a
liposome flotation assay, MBP-CLR was recoverable in the top
fraction only in the presence of liposomes, whereas MBP alone
was not detected in the top fraction, demonstrating direct
membrane binding by the CLR (Fig. 6A). MBP-CLR did not
exhibit any preferences for membrane curvature, as it associated
with both SUVs and LUVs.
Because LD-localized proteins often interact with the LD

membrane through their amphipathic α-helices (40), we sought
to examine the secondary structure of the CLR. We purified
a CLR-SUV complex by removing the MBP tag from the
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Fig. 4. Membrane tethering by ATG2A. (A–C) The DLS
profiles of SUVs (A), LUVs (100 nm) (B), and LUVs
(400 nm) (C) in the absence (cyan) or presence (ma-
genta) of 200 nM ATG2A. All liposomes consisted of
75% DOPC and 25% DOPS. The samples were in-
cubated for 1 h before the measurements. (D) The final
sample of A was mixed with proteinase K and
remeasured after 1 (yellow) and 2 h (purple) incuba-
tion. (E) Auto-scaled autocorrelation functions of the
four DLS measurements with SUVs (B and D) are plot-
ted. (F) Fluorescence liposome-tethering assay. Lipo-
somes consisting of 73.3% DOPC, 25% DOPS 0.2%
biotinylated lipids, and 1.5% rhodamine-PE were
mixed with liposomes of the same size consisting of
73% DOPC, 25% DOPS, and 2% 1,1′-Dioctadecyl-
3,3,3′,3′-tetramethylindodicarbocyanine perchlorate
(DiD) in the presence of 200 nM ATG2A. The fluo-
rescence reports the number of DiD-containing li-
posomes associated with the biotinylated liposomes.
For each experiment, the average of three repeats is
shown; whiskers indicate the SD.
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SUV-bound MBP-CLR by proteolytic cleavage, followed by li-
posome flotation (Fig. 6B). The CD spectrum of the purified
CLR-SUV complex shows a profile typical of an α-helix, with local
minima at 208 and 220 nm (Fig. 6C). The helical content pre-
dicted from the CD spectrum is 61%. A secondary structure
prediction suggests that the CLR may contain three α-helical re-
gions, and helical wheel drawings of these regions show that all three

(referred to as “H1,” “H2,” and “H3”) may form amphipathic
α-helices (Fig. 6D). To determine which region is responsible for
membrane binding, we generated each region as an MBP fusion and
tested its membrane-binding ability. The results of the flotation assay
revealed that H2 and H3, but not H1, bind to LUVs consisting
of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and
1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS). H3
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(100 nm) consisting of 75% DOPC, 15% DOPS, and
10% PI3P in the absence (A–C: cyan) or the presence
of 200 nM WIPI4 (A), 200 nM ATG2A (B), or both
proteins (C). (D) Auto-scaled autocorrelation functions
of the four DLS measurements. (E) Fluorescence-based
liposome tethering assay. The higher the fluorescence,
more associations there are between the liposomes
with and without PI3P. LUVs consisting of 73.3%
DOPC, 15% DOPS, 10% PI3P, 0.2% biotinylated lipids,
and 1.5% rhodamine-PE were mixed with LUVs consist-
ing of 73% DOPC, 25% DOPS, and 2% 1,1′-Dioctadecyl-
3,3,3′,3′-tetramethylindodicarbocyanine perchlorate in
the presence of the indicated proteins. For each exper-
iment, the average of three repeats is shown; whiskers
indicate the SD.
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appears to have a higher affinity for membranes than H2, based
on its higher recovery. We then replaced four residues in the
hydrophobic side of H2 and eight residues in the hydrophobic
side of H3 with aspartic acids. These mutations abolished the
membrane-binding capability of each fragment (Fig. 6E), sup-
porting the likelihood that H2 and H3 bind to membranes via
an amphipathic α-helix.

The CLR Is Not Responsible for Membrane Tethering by ATG2A. To
determine whether the membrane-binding property of the CLR
plays a role in membrane tethering, we incorporated all the
mutations described above (a total 12 mutations to aspartic acid)
into the full-length ATG2A protein and characterized this mu-
tant (ATG2A12xD). We tested membrane binding by flotation
assay using liposomes containing PO lipids (POPC and POPS),
which were prepared by sonication or extrusion with a 30- or 100-
nm filter to eliminate potential artifacts (nonspecific binding)
caused by DO lipids and sonication. ATG2A bound to all types
of liposomes tested but exhibited higher affinity for smaller li-
posomes (Fig. 7A). These results with DO lipids are consistent
with those observed for wild-type ATG2A. The higher prefer-
ence for sonicated liposomes over the 30-nm liposomes suggests
that ATG2A binds to membrane surfaces with local defects
rather than sensing overall membrane curvature, as sonication
introduces surface defects (37). Our results with ATG2A12xD

were very similar to those with the wild type, indicating that these
mutated residues are not essential for membrane binding. We
then performed membrane-tethering assays with ATG2A12xD

and found that these mutations do not affect tethering activity.
That ATG2A12xD clusters SUVs and also mediates the PI3P- and
WIPI4-dependent homotypic and heterotypic tethering as effi-
ciently as the wild type (Fig. 7 B–G) leads us to conclude that the
CLR is not involved in membrane tethering.

Discussion
Recent related studies by Zheng et al. (41) on the rat ATG2B-
WIPI4 complex described the overall shape of the ATG2B-WIPI4
complex by negative-stain EM as well as PI3P-independent
membrane binding by ATG2B. They also identified the WIPI4-

binding site of ATG2B by a combination of CXL-MS and muta-
genesis. Our findings are in agreement with this published work,
and their mutational studies reinforce our identification of the
WIPI4-binding site on ATG2A. Here, however, we structurally
and biochemically demonstrate that ATG2A is capable of teth-
ering membranes, which provides valuable insights into autopha-
gosome biogenesis. Gómez-Sánchez et al. (42) also recently
characterized the ScATG2 protein and its interaction with ATG18
and ScATG9. Their discovery that ScATG2 binds to membranes
by recognizing surface defects is in agreement with our obser-
vation that ATG2A binds most strongly with sonicated lipo-
somes. Additionally, their conclusion that ScATG2 is a mediator
of ER–phagophore association complements our structural and
biochemical data that demonstrate membrane tethering by the
ATG2A-WIPI4 complex.
The membrane organization of the ER–phagophore junction,

a site intricately tied to the omegasome, is poorly understood
due to its highly complex and dynamic nature. Thus, predicting
the precise location of ATG2A within this junction is a chal-
lenge. In Fig. 8 we illustrate possible pairings of membranes that
may be tethered by the ATG2A-WIPI4 complex at the ER–

phagophore junction. The PI3P-enriched omegasome has been
suggested to be a cluster of tubular membranes with a diameter
of ∼30 nm (9), similar to the diameters of the SUVs used in this
study (Fig. 8A). Our 2D averages of the ATG2A-WIPI4-SUV
complex show that the CAD tip and WIPI4 can simultaneously
contact the same membrane (Fig. 3B). Thus, it is most logical to
assume that the ATG2A-WIPI4 complex associates directly with
the omegasome through the CAD tip as well as through WIPI4
(Fig. 8B). With the CAD tip attached to the omegasome, the
N tip could bind to either the ER or the phagophore edge,
resulting in a tethering of the omegasome to the ER and/or the
phagophore. Alternatively, the N tip may bind to membrane
vesicles, such as ATG9 vesicles or COPII vesicles, since ATG2
has been reported to interact with ATG9 and SEC23 (a com-
ponent of COPII vesicles) (18, 21, 42). These vesicles have been
proposed to transform into early phagophores and also may
serve as membrane sources for phagophore expansion (6, 43–
47). Therefore, tethering of these membrane vesicles to the
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Fig. 7. The CLR is not involved inmembrane tethering.
(A) Flotation assay with the ATG2A12xD mutant and li-
posomes composed of 74% POPC, 25% POPS, and 1%
1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine
perchlorate. The liposomes were prepared by sonica-
tion or extrusion using 30- or 100-nm filters. The re-
sult of SDS/PAGE is shown as in Figs. 3A and 6A. (B
and C) DLS homotypic membrane-tethering assay
with ATG2A12xD. The DLS profiles (B) and the auto-
correlation functions (C) of the 75%DOPC/25%DOPS
SUVs in the absence and presence of ATG2A12xD are
shown. (D) Fluorescence homotypic membrane assay
with ATG2A wild-type and ATG2A12xD performed and
presented as in Fig. 4F. (E and F ) DLS homotypic
membrane-tethering assay with PI3P-incorporated
LUVs (100 nm). The DLS profiles (E) and the autocor-
relation functions (F) are shown. (G) Fluorescence
heterotypic tethering assay with ATG2A12xD performed
as shown in Fig. 5E. The experiments with the wild-
type ATG2A repeat the data shown in Fig. 5E but
were performed at the same time as the experiments
with mutants. Although the fluorescence values are
different from those in Fig. 5E, the results from both
experiments with the wild type are consistent with
each other.
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omegasome by ATG2 would be consistent with the requirement
for ATG2 for phagophore expansion (13, 18, 19, 28).
Although the precise manner by which ATG2 interacts with

this multitude of vesicular components is largely unknown,
Gómez-Sa ́nchez et al. (42) report that a short region of ScATG2
mediates ATG9 interaction. This region, located in the reported
APT1 domain (23), is partially conserved in ATG2A and starts at
residue 1589 (Figs. 1A and 2A). The closest MBP insertion site
among our MBP-tagged constructs was at the position 1503–
1504, and this MBP was observed adjacent to WIPI4 and the
CAD tip in the 2D class averages (Fig. 2B). It is difficult to
determine how far this ATG9-binding region is located from the
CAD tip, as the 85 residues between the MBP insertion site and
the start of the ATG9-binding region could span a long distance
if it is flexible. If the ATG9-binding site is located closer to the
CAD tip, then the CAD tip, ATG18/WIPI, and ATG9 could all
be localized to the omegasome. Indeed, under conventional
fluorescence microscopy, ATG9 colocalizes with ATG2 and
ATG18/WIPI at the ER–phagophore junction (18, 19). However,
according to the superresolution fluorescence microscopy data,
the ATG9 compartment and the omegasome are independent
units located in close proximity (6). If the ATG9-binding site is
rather closer to the N tip, the ATG2–ATG9 interaction could help
stabilize the omegasome–ATG9 compartment association. In ei-
ther case, there is currently insufficient information to produce a
meaningful and complete structural model describing how ATG2,
ATG9, and ATG18/WIPI are involved in membrane tethering
at the ER–phagophore junction. Higher-resolution structural in-
formation about these protein complexes and their interactions
with membranes, along with more precise localization of these
proteins at the ER–phagophore junction, will be required to elu-
cidate such a model (48).
Our negative-stain EM analysis of the SUV-bound ATG2A-

WIPI4 complex suggests that the primary regions in or adjacent
to the N terminus and ATG2_CAD are responsible for mem-
brane binding and tethering (Fig. 3B). Demonstrating membrane
interaction of each tip using isolated fragments is particularly
challenging, as these fragments are exceptionally recalcitrant to
purification. Similarly, obtaining ATG2A proteins containing

deletions at these regions has also proven extremely difficult.
Such issues have prevented further investigation into the role
that these regions play in the membrane-tethering process. On
a related note, we also attempted to characterize two other
previously studied ATG2A constructs having a deletion of the
CLR or ATG_C (13, 28) but again failed to obtain sufficient
amounts of protein to perform in vitro assays. Although the
challenges that have been met during the preparation of these
truncated proteins may be attributed to suboptimal constructs
or expression and purification conditions, we cannot rule out
the possibility that the regions targeted for deletion are integral
to the structural stability of the protein. Therefore, site-
directed mutagenesis, rather than truncations, would serve
as a better strategy for probing the molecular mechanics of
membrane tethering, but such studies would require an accu-
rate atomic model of the complexes. While we are unable to
provide direct demonstrations of membrane interaction by
each tip in isolation, the following evidence supports our
conclusions.
First, the N terminus of VPS13 has been shown to interact

with membranes containing negatively charged lipids (49).
Thus, the N terminus of ATG2, which shares sequence simi-
larity with VPS13’s N terminus, could also be a membrane-
interacting domain. Second, the APT1 domain located be-
tween ATG2_CAD and the CLR in ScATG2 has been shown to
interact with PI3P-containing membranes (23). Although re-
cent reports (41, 42) and the data we presented here show that
ATG2(A/B) bind membranes irrespective of the presence of
PI3P, it is still possible that the same region in human ATG2A
is responsible for membrane interaction. In that case, the res-
idues of this region, rather than those of ATG2_CAD, may
form the CAD tip.
In this work, we focused on characterizing another conserved

region, the CLR. Our data show that the CLR fragment binds to
membranes through its two amphipathic α-helices, which is
consistent with the LD localization of the CLR fragment (13).
However, the mutations in this region that disrupt membrane
interaction of the fragment did not affect the membrane-
tethering activity of the full-length protein (Fig. 7). Recently, a
similar set of mutations has been shown to reduce cellular
autophagic activity (28). We confirmed that this mutant protein,
referred to as “AH-E” (28), is also active in membrane tethering
in vitro (SI Appendix, Fig. S5). Thus, the CLR is likely to possess
another role essential for phagophore expansion. The membrane-
tethering activity of ATG2A described in our work cannot alone
explain how the phagophore expansion, a process that must
involve either lipid transfer or new lipid synthesis, would occur.
We speculate that the biochemical function of the CLR may
hold the key to this long-standing mystery in autophagosome
biogenesis.
SomeATG factors, such as the ATG1 kinase complex, the ATG12-

ATG5-ATG16 complex, and ATG8-phosphatidylethanolamine (PE)
conjugate, have been reported to mediate membrane tethering in
vitro (39, 50, 51). While these factors are distinct in their molec-
ular organization, they all use protein self-oligomerization to
tether neighboring membranes: The ATG1 and ATG12-ATG5-
ATG16 complexes both self-dimerize so that two molecules of
their membrane-interacting subunits (ATG1 and ATG5, respec-
tively) can associate independently with two separate membranes
to tether two vesicles (39, 50, 52). ATG8 is associated with a
membrane via its covalent linkage to a PE molecule in the
membrane, and multimerization of ATG8 molecules on separate
vesicles leads to clustering of the vesicles (51). In contrast,
ATG2A has a capacity of bridging two membranes without the
requirement for self-oligomerization. ATG2A is rather similar to
multisubunit tethering complexes, such as the Dsl1, HOPS, COG,
and TRAPPIII complexes, all of which tether two membranes
through the tips of their elongated shapes (53). The roles of the
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Fig. 8. Proposed models of the ER-phagophore/isolation membrane asso-
ciation mediated by the ATG2-WIPI/ATG18 complex. (A) Illustration of the
ER–phagophore junction based on current knowledge from cell biological
studies. Each gray line represents a lipid bilayer. (B) Structural model of the
ATG2-WIPI/ATG18 complex tethering the omegasome to its neighboring
membranes (ER, phagophore edge, ATG9 vesicle, or COPII vesicle). The dark
red color of ATG2 represents conserved regions as in Fig. 2A. The WIPI/
ATG18-binding region of ATG2 is represented as a black line emanating
from the middle region of ATG2 to indicate the flexible attachment of
WIPI/ATG18.
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variety of autophagic membrane tethers in autophagosome bio-
genesis must be different from one other, as they function at
different steps. In the earliest step of biogenesis, the ATG1 kinase
complex multimerizes ATG9 vesicles, triggering nucleation of a
phagophore. The membrane tethering by the ATG12-ATG5-
ATG16 complex, which is the E3-ligase–like factor for ATG8-PE
conjugation, and tethering by ATG8-PE have also been suggested
to occur during the nucleation step (44, 50, 51). There is also
evidence that ATG8-PE is involved in the final step of phag-
ophore membrane closure (54, 55). ATG2A, which is required for
phagophore expansion during the intermediate steps of the
autophagosome formation, may be an important collaborator of
these other membrane tethers and requires future study.

Materials and Methods
Experimental procedures for protein expression and purification, affinity
capture binding assays of the ATG2-WIPI4 and ATG2-ATG18 complexes, re-
constitution of the ATG2A-WIPI4-SUV complex for negative-stain EM analysis,
negative-stain EM, liposome flotation assay, CXL-MS analysis, DLS analysis,
fluorescence liposome tethering assays, and CD spectroscopy are described in
SI Appendix, Supplementary Materials and Methods.
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