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The initial amount of pathogens required to start an infection
within a susceptible host is called the infective dose and is known
to vary to a large extent between different pathogen species.
We investigate the hypothesis that the differences in infective
doses are explained by the mode of action in the underlying
mechanism of pathogenesis: Pathogens with locally acting mech-
anisms tend to have smaller infective doses than pathogens with
distantly acting mechanisms. While empirical evidence tends to
support the hypothesis, a formal theoretical explanation has
been lacking. We give simple analytical models to gain insight
into this phenomenon and also investigate a stochastic, spa-
tially explicit, mechanistic within-host model for toxin-dependent
bacterial infections. The model shows that pathogens secreting
locally acting toxins have smaller infective doses than pathogens
secreting diffusive toxins, as hypothesized. While local patho-
genetic mechanisms require smaller infective doses, pathogens
with distantly acting toxins tend to spread faster and may cause
more damage to the host. The proposed model can serve as a basis
for the spatially explicit analysis of various virulence factors also
in the context of other problems in infection dynamics.
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The dose of pathogens needed to start an infection in an indi-
vidual host varies between different pathogen species. The

minimum amount is usually called the infective dose, although
smaller doses are not guaranteed safe (1). The variation in
infective doses is especially large between different bacterial
pathogens (2, 3). Pathogens also vary in their pathogenetic
mechanisms, that is, the ways in which they evade the immune
defenses, use the nutrient-rich environment within the host, and
eventually cause disease (4–8). A rough distinction can be made
between pathogens that exert their effects locally, for example via
membrane contact with (a certain target on) the host cells, and
pathogens that produce diffusible toxins which may have their
target at a distance from the invading pathogen (2–5). Microbial
pathogens are well represented in both categories.

Schmid-Hempel and Frank (2) proposed that the differences
in the infective dose among pathogen species are explained by
their mechanism of pathogenesis. Namely, locally acting patho-
genetic mechanisms are linked to smaller infective doses than
mechanisms that depend on diffusible toxins, which may act at
a distance from their source. Indeed, many pathogens, such as
Shigella, that exert their harmful effect by contact to host cells
or by entering host cells are highly infectious, requiring only tens
or hundreds of bacteria to cause disease (9). Conversely, many
toxin-producing bacterial pathogens have infective doses rang-
ing from 104 (e.g., Bacillus anthracis) to 106 cells (e.g., Vibrio
cholerae) (10, 11).

However, insight into the underlying reasons for the observed
variation is lacking (7, 12). While the dose–response hypothesis
of Schmid-Hempel and Frank (2) held against statistical testing
for 43 human pathogens in a study by Leggett et al. (3), so far
there has been no theoretical model to elucidate why the mode
of action produces variation in the infective dose. In this work,
we present mathematical models that explain this phenomenon.

Furthermore, Schmid-Hempel and Frank (2) also hypothesized
that pathogens with distantly acting pathogenetic mechanisms
are more virulent in the sense that they cause more damage
to the host; but Leggett et al. (3) found no support for this
relationship. We also address this hypothesis.

Studying the mechanism of pathogenesis in relation to the
infective dose and damage to the host requires accounting
for the interactions between the invading pathogens and the
immune effectors of the host, which can be extremely com-
plex (8). The pathogen–immune system interaction has been
modeled in both simplistic (13, 14) and detailed (15, 16) set-
tings. However, prior models rarely take into account the
spatial aspects of pathogenesis explicitly (but see, e.g., ref.
17). Indeed, while the importance of spatial effects has been
widely recognized in ecology and evolutionary biology, much
of the work in spatial epidemiological models has focused on
between-host interactions (18–21); the spatial aspects of within-
host interactions have received less attention, although spatial
interactions of microbial communities have been investigated
(22–25).

Microbes affect their environments in various ways via dif-
fusible metabolites (6, 7) and use a wide array of strategies for
defending themselves against the host immune system (4–8).
Many bacteria, such as Yersinia pestis and Helicobacter pylori,
secrete toxins which target the host’s immune system to sup-
press or modulate it (5). With this in mind, we focus on bacterial
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pathogens with toxins that inhibit the immune response of the
host (2, 6, 7).

In this work, we develop three models of toxin-dependent
pathogenesis: a nonspatial model, a spatial diffusion model, and
a stochastic individual-based model. We consider microorgan-
isms that have the ability to harm the host when spreading. How-
ever, our models do not make an explicit distinction between
parasites (organisms that have adapted to live and feed on a
host organism) and pathogens (microorganisms capable of caus-
ing damage to the host) in general. We model the following
scenario: The initial dose of the pathogen enters to a small inoc-
ulation area, from where it can spread out to the available space
within the host that we call the focal area. The pathogen repro-
duces by consuming the host’s tissue (nutrients) and thereby
causes damage to the host. Once the immune system detects
the pathogens, immune effectors attempt to eliminate them. We
assume that the host had no prior exposure to the pathogen
and limit our attention to the initial phases of the pathogene-
sis in which the host’s innate immunity reacts, but its acquired
immune response has not yet developed. If the pathogen is
cleared out quickly, then little damage is inflicted upon the
host; if the pathogen manages to overcome the innate immune
defenses and consumes most of the nutrients in the focal area,
then the infection may proceed to further stages of pathogene-
sis and cause disease. In general, virulence is an elusive concept
with a multitude of different definitions (2, 26–28). In the eco-
evolutionary sense, it can refer to the pathogen-induced decrease
in host fitness (28), but also simply to the relative capacity to
inflict damage in the host (26, 27). We use the latter definition
and quantify virulence as the amount of tissue consumed by the
pathogen.

One of the key benefits of our models is that we can examine
the influence of the different spatial scales in the toxin’s mode of
action, from local (e.g., the pathogen transmits toxins to host cells
on membrane contact) to distant action (the pathogen secretes
diffusible systemic toxins), while keeping all other properties of
both the host and the pathogen the same. Obviously, this would
be difficult—if not impossible—to achieve in empirical work.
Moreover, our individual-based stochastic model accounts for
demographic stochasticity (29) causing random variation in the
outcome of an infection. By recording the distribution of out-
comes, we can estimate the risk of serious infection in different
scenarios.

Our spatial models support the first hypothesis: Increasing
the spatial scale of toxin diffusion increases the infective dose.
Regarding the second hypothesis, the stochastic model exhibits
a threshold phenomenon: Given a high enough initial dose, a
pathogen with a diffusible toxin can spread faster and can even-
tually consume (marginally) more of the host tissue than a locally
acting pathogen. We also investigate how the spatial aggregation
of the initial inoculum influences the difference between locally
and distantly acting pathogens.

Modeling Toxin-Dependent Pathogenesis
First, we start with a simple analytical model and extend it into a
spatial diffusion model. These models show that the pathogen
dynamics exhibit an Allee effect and that increasing dilution
and diffusion of the toxin increases the infective dose. Next, we
consider an individual-based simulation model which allows us
to examine the effects of demographic stochasticity, incorpo-
rate explicit resource-consumer dynamics for the pathogen, and
model the immune response more mechanistically.

Simple Analytical Models. Suppose that the pathogen (P) follows
logistic population dynamics in the absence of the immune sys-
tem (due to nutrient-limited growth) with intrinsic growth rate
b and carrying capacity scaled to 1. Immune effectors (I ) elim-
inate the pathogens at rate k . To fight the immune system, the

pathogens secrete toxin molecules at rate s , which are removed
from the host system at a constant rate m . The toxin particles
decapacitate the immune effectors at rate e . When decapaci-
tated, the immune effectors cannot eliminate any pathogen until
they recover, which happens at rate r . Finally, we assume that
the total amount of immune effectors I0 remains constant such
that the amounts of active and decapacitated immune effectors
are I and I0− I , respectively.
Nonspatial model. Assuming that the toxin and immune effec-
tors reach a fast quasi-equilibrium (see SI Appendix, section A
for details), the pathogen dynamics are given by

dP

dt
= bP

[
1−P − ξ

1 +χP

]
,

where ξ= kI0
b

and χ= es
rm

are dimensionless parameters. If ξ < 1,
the pathogen grows even when the immune system is fully acti-
vated, and the pathogen can invade the system without the toxin.
On the other hand, if ξ > 1 and χ>χ0(ξ), where χ0 depends
only on ξ, the model exhibits an Allee effect. If the initial density
of the pathogen is below the Allee threshold, the pathogen goes
extinct; above the threshold, the pathogens collectively produce
enough toxin to facilitate growth. Moreover, the Allee threshold
increases with decreasing χ, i.e., with increasing the removal rate
m . Thus, the more the toxin dilutes or leaks out of the system, the
higher initial dose the pathogen requires to spread; and if m is
higher than a critical value, χ>χ0(ξ) is violated and the spread
of the pathogen becomes impossible.
Diffusion model. The above model can be extended into a spa-
tial reaction–diffusion model. We consider the limiting cases of
slow and fast toxin diffusion in 1D space to show (SI Appendix,
section B) that (i) with slow diffusion, the spread or extinction of
the pathogen is independent of the initial dose, assuming that the
pathogen attains a traveling-wave solution, and (ii) with fast dif-
fusion, the initial dose must exceed a threshold for the pathogen
to invade the host. A highly diffusing toxin leaks to parts of
the host where the pathogen is not yet present. A high initial
dose is then needed to overcome the dilution effect found in the
nonspatial model.

Stochastic Individual-Based Spatial Model. The diffusion model
captures key characteristics of within-host infection dynamics,
but it is confined to traveling-wave solutions in 1D and considers
only the limiting cases of slow and fast toxin diffusion; it neglects
demographic stochasticity, which is important for initially small
pathogen populations; and it oversimplifies the reaction of the
immune system. To overcome these limitations, we constructed
a more realistic spatiotemporal point process model to simulate
the dynamics of toxin-dependent pathogen infection. The model
is a continuous-time Markov process, where the state of the sys-
tem at any time t is given by the spatial locations (in continuous
space) of every individual particle.
Elementary reactions. In the individual-based model, the entity
types are as follows: pathogens (P); toxin (T); tissue (H); and
immune effectors in seeking (IS), killing (IK), and decapacitated
(ID) states. The dynamics of the pathogen and toxin are given by
the reactions

P + H b−→P + P pathogens consume tissue and reproduce,

P + IK k−→ IK immune effectors eliminate pathogens,

P s−→P + T pathogens secrete toxins,

T m−→∅ toxins become inactive and are removed,

where the symbols above the arrows indicate the rates at which
the reaction occurs and ∅ denotes that the reaction does not
produce any new particles.
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The immune response is typically not immediate but gradual,
as the immune system needs time to react to a new threat. To
model this, we assume a two-tier activation mechanism, where
the active immune effectors can be in two different states: “seek”
(initial stage of activation, IS) and “kill” (second stage of activa-
tion, IK). The toxin reacts with immune effectors in the initial
stage of activation, sending them to an inactive or “decapaci-
tated” state (ID). The response dynamics of the immune system
are governed by the following reactions:

IS + P a−→ IK + P IEs detect pathogens and go to “kill” state,

IK
q−→ IS IEs in “kill” state switch to “seek” state,

T + IS e−→ ID toxins decapacitate immune effectors,

ID r−→ IS decapacitated immune effectors recover.

Spatial interactions. Each individual particle is characterized by
its location x in the focal area H and a mark denoting its type.
The state of the system at time t ≥ 0 is given by the set of loca-
tions ΩX (t) of each particle type X . Reactions occur only if the
particles are sufficiently close to each other, and when a new
pathogen or toxin particle is produced, it is placed in the neigh-
borhood of its parent. In general, a kernel K : H×H→ [0,∞)
describes how the locations of two particles influence the reac-
tion rate. We used top-hat kernels, which assign a constant rate
for points that are within distance ` from each other and zero
otherwise (see Materials and Methods and SI Appendix, section C
for further information).
Movement. The tissue particles and the decapacitated immune
effectors are immobile, and all other particles move by jump
processes such that a particle of type X at location x moves to
a small neighborhood of point y at rate DX (x, y) per unit area.
The maximum distance of a single jump is given by the length-
scale parameter `X of the top-hat kernel DX ; in other words,
particles jump randomly to a point within radius `X . We assumed
that jumps occur for each mobile particle at total rate 1, but the
particles differ in the length of their jumps. We took `P = `IK = 1
and `IS = 10 such that the seeking immune effectors move fast to
locate the pathogens, and once they encounter pathogens, they
“slow down” to eliminate them. To investigate local vs. distant
action in pathogenesis, we varied the length-scale parameter `T
of toxin movement; increasing `T yields more distantly acting
mechanisms.

Results
The Experimental Setup. In our experiments, we varied (i) the
initial dose of the pathogen, (ii) the mode of action (local vs.
distant) of the pathogen via the toxin movement scale parameter
`T, and (iii) the radius κ of the initial inoculation area. All other
parameters were kept constant; SI Appendix, section D, Table S2
gives the parameter values used and a sensitivity analysis of the
model. Before the inoculation, the focal area (a torus of size
100× 100) was occupied only by tissue particles and immune
effectors in seek state. The dynamics of the model were simu-
lated until either all pathogens were eliminated (by the immune
system) or all of the tissue was consumed (by the pathogen). For
each combination of the initial dose (21 different doses ranging
from 1 to 105 pathogens), inoculation area (radii 1, 4, 8, and 16),
and toxin movement scale (1, 2, 4, 8, 16, or 32), we ran at least
2,000 simulation replicates for the first 20 doses and 1,000 repli-
cates for the highest dose of 105 pathogens. Fig. 1 illustrates how
the model evolves over time.

We measured the total number of tissue particles consumed
by the pathogen by the end of the simulation. Note that this also
gives the total number of pathogens produced during the infec-
tion, as each consumed tissue particle yields one new pathogen
individual in our model. We then analyzed the distribution of

Local action 
low dose

Distant action 
low dose

Distant action 
high dose

t = 10 t = 30 t = 50 t = 100

Local action 
high dose

Fig. 1. Snapshots of four simulation experiments at four different time
points. The low dose was 200 and the high dose was 10,000 pathogens inoc-
ulated at time t = 0 onto a circle of radius κ= 1. Local action denotes a toxin
movement scale of `T = 1 and global action refers to `T = 32. The gray dots
represent tissue particles, red points pathogens, green points toxin particles,
blue points activated immune effectors that are consuming the pathogens,
and black points immune effectors that have been decapacitated by a toxin
particle.

the outcomes and calculated dose–response relationships for the
infective dose and tissue consumption.

Local vs. Distant Action. Figs. 2 and 3A summarize the results of
this experiment for the smallest inoculation area (κ= 1). The
experiment clearly demonstrated a strong effect of the initial
dose and the mode of action on the infection process. With local
action (toxin movement scale `T = 1), the amount of tissue con-
sumed by the pathogen is high and not very sensitive to the initial
dose. In contrast, with distant action (high `T), there is a thresh-
old effect. With low initial doses, most infections die out without
consuming much of the tissue, and the average fraction of tissue
consumed is low; with high initial dose, however, most infections
spread such that the pathogen consumes most of the host tis-
sue, indicating a severe infection. As the curves in Figs. 2 and 3A
show, the expected amount of tissue consumed increases dras-
tically when the initial dose exceeds a threshold. For distantly
acting toxin (`T = 32), the expected fraction of tissue consumed
exceeds 0.5 only if there are several thousand pathogens in the
initial inoculum.

The strong difference between the local and distant mecha-
nisms is also evident when we look at the dynamics of the system.
Fig. 1 gives examples of four simulations that illustrate how the
infection develops under two different initial doses and modes
of action; in SI Appendix, Movies S1–S4 give animated versions
of these scenarios. Fig. 1 shows that a 50-fold increase in the
initial dose does not drastically change the qualitative behavior
of the system with a locally acting toxin. However, for distant
action, there are substantial differences in the progress of the
infection; the immune system readily clears the pathogen in low-
dose scenarios, whereas in high-dose scenarios, the pathogen
spreads out.

Note that pathogens with local action do not always consume
more tissue (and thus reproduce more) than pathogens with
distant action. While at low initial doses a locally acting toxin
clearly outperforms distant action, the trend reverses at high ini-
tial doses; with an initial dose of 104, all but the most distantly
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Fig. 2. (A–F) The dose–response relationships for different modes of action.
The toxin movement scale `T quantifying the mode of action increases across
the panels. The radius of the inoculation area is κ= 1. The logarithm of
the initial dose of the pathogen is on the horizontal axis, and the verti-
cal axis shows the fraction of available tissue particles consumed by the
pathogen during the course of the infection. The contour plots show the
distribution of the stochastic outcomes; for a particular dose, darker areas
indicate more typical outcomes. The lines give the average dose–response

curve fitted to the Hill equation f(x) = a + b · (x/c)p

1+(x/c)p . At low doses, local

action (A) leads to a higher tissue consumption on average than the more
distantly acting mechanisms (B–F); at high doses, the situation is reversed.
For locally acting mechanisms, almost all doses lead to a high response,
whereas with distant mechanisms, only high doses lead consistently to a
high response. The dotted lines show the dose for which at least 75% of
tissue is consumed on average. Below this dose, most infections with distant
mechanisms fail, whereas above this dose, most infections invade the host
(compare shading).

acting toxin provide on average better pathogen growth than the
most locally acting toxin (Fig. 3A).

Effects of Spatial Aggregation. Varying the size of the inocula-
tion area (κ) demonstrates that spatial aggregation has a strong
effect; increasing the initial inoculation area leads to more tis-
sue consumed on average for all toxin movement scales and
all initial doses (naturally with the exception of the initial dose
of a single pathogen; Fig. 3 A–D). The dose–response curves
change such that the difference between locally and distantly
acting toxins is diminished by spreading out the initial inocu-
lum. It, however, remains true that for distantly acting toxins,
most infections lead to little tissue consumed when the ini-
tial dose is below a threshold, whereas most infections spread
well when the initial dose is above the threshold; the threshold
shifts toward smaller initial doses with increasing κ (SI Appendix,
Figs. S7–S9).

A large inoculation area implies less competition between the
pathogens in the early phase of the infection, when demographic
stochasticity critically affects the outcome. With a large inoc-
ulation area, the pathogens behave to some extent as if there
were several independent inocula, and if one of these manages
to spread, the infection takes hold. This benefits pathogens with
both locally and distantly acting toxins. Pathogens with locally
acting toxins, however, lose the benefit of high local toxin con-
centration. As a result, pathogens with distant action benefit
more from decreasing spatial aggregation and thus get closer to
pathogens with local action in Fig. 3.

Speed of Infection. The speed at which the pathogen spreads in
the host depends on both the initial dose and the mode of action
(Fig. 4). In high-dose scenarios, pathogens using a distant mech-

anisms tend to spread more quickly than pathogens with a local
mechanism, whereas the opposite holds in low-dose scenarios.

Discussion
Schmid-Hempel and Frank (2) hypothesized that the variation
in observed infective doses is explained by the pathogen’s mode
of action, that is, whether the underlying mechanism of patho-
genesis is locally acting or distantly acting. Leggett et al. (3)
showed that empirical evidence supports the hypothesis, but
the mechanism behind the phenomenon has not been shown
previously. Our models demonstrate that the mode of action
can give rise to the variation in infective doses: All else being
equal, pathogens with locally acting toxins have smaller infective
doses than pathogens with highly diffusive toxins. The empiri-
cal evidence in prior studies (2, 3) relies on data from various
different pathogen species and strains with varying phenotypes
and pathogenetic mechanisms, whereas our models show that
the effect can emerge from varying the diffusibility of the toxin
while keeping all other properties of the pathogen and the host
the same. The analytical models show that when the toxin is
highly diffusive, the initial pathogen population grows and estab-
lishes only if the initial dose is sufficiently high; with a low
initial dose, the pathogen is eliminated by the initial immune
response. In contrast, with low diffusion, the pathogen can grow
also if the initial dose is small. In the individual-based simulation
model we observe similar results: At low initial doses, pathogens
with locally acting toxins inflict on average more damage (Figs.
2 and 3). Assuming that more damage in the early phase of
the infection implies a higher chance to develop symptomatic
disease, this yields that pathogens with locally acting mecha-
nisms have lower infective doses than pathogens with highly
diffusive toxins.

The way in which the toxin benefits the pathogen induces
an Allee effect (30–32), because the toxin concentration has to
be sufficiently high to protect the pathogen from the immune
system. Toxin production is thus a cooperative defense mecha-
nism (7, 33, 34) for the pathogen. All else being equal, a highly
diffusible toxin spreads to a large area and has a less concen-
trated effect, thus not protecting a small initial inoculum of the
pathogen effectively. The Allee effect yields a threshold for the
initial dose that increases with the diffusibility of the toxin espe-
cially when the initial inoculum is aggregated (Fig. 3). For distant
action the dose response exhibits a switch between the initial
inoculum typically failing to typically spreading (Fig. 2 and SI
Appendix, Figs S7–S9).

The benefit from a locally acting toxin is more or less immedi-
ate, but with distant action, the benefits are not realized until the
pathogens manage to spread far enough. A small initial pathogen
population may simply die out before reaching far, but the dif-
fusible toxin may speed up the pathogen’s spread if the infection
takes hold (Fig. 4). Our model predicts that the infective dose
decreases when the pathogens are initially more spread out, and

A Radius 1 B Radius 4 C Radius 8 D Radius 16

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
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Fig. 3. (A–D) Effects of spatial aggregation on the dose response. Each
panel shows the fraction of tissue particles consumed by the pathogen,
averaged over all simulation replicates, as a function of the initial dose, for
different toxin movement scales. The spatial aggregation of the initial dose
decreases (the radius of the inoculation area κ increases) from left to right
across A–D.
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Fig. 4. (A and B) Progression of the infection as a function of the initial
dose and the mode of action (toxin movement scale). The plots show the
mean time until 50% (A) and 90% (B) of the initial tissue are consumed
(with inoculation radius κ= 1), averaged over replicates where the infection
spreads as far.

this is particularly so in case of distant action (Fig. 3 and SI
Appendix, Figs S7–S9). Typically, the initial dose of the pathogen
is clumped, but the degree of aggregation can vary depending on
the route of infection (skin wound, digestion, inhalation, and so
on). Pathogens that are initially scattered over a large area may
invade the host easier, especially in case of distantly acting toxins.

Schmid-Hempel and Frank (2) also suggested that pathogens
with distantly acting mechanisms, and thus high infective doses,
tend to be more virulent. While this may at first sound tauto-
logical, since a higher dose of a certain pathogen can readily be
expected to increase the severity of the infection, this need not be
so across different pathogenic species. In our stochastic model,
the amount of harm to the host (3, 27) can be identified with
the amount of host tissue consumed. Therefore, we can examine
the second hypothesis of Schmid-Hempel and Frank (2) in this
sense. We observed that the expected amount of tissue consumed
as a function of the initial dose increases strongly for distantly
acting pathogens; at high initial doses, it (marginally) surpasses
the locally acting pathogens (Fig. 3). We also observed that once
the initial dose passes a threshold, distantly acting pathogens
spread faster than those with local action (Fig. 4). Inflicting more
damage and, in particular, spreading faster may hinder adequate
host defenses (such as the development of the specific immune
response) before the infection spreads beyond the focal area
(e.g., before a skin infection becomes systemic). This can lead to
more harm, so that the second hypothesis of Schmid-Hempel and
Frank (2) is in this way supported by our model. Note, however,
that the empirical study of Leggett et al. (3) found no support for
the second hypothesis.

More work is needed to understand how the mode of action
influences the epidemiology of pathogens by, e.g., developing
models that link within-host dynamics to between-host dynamics
(35). Our models do not consider the life history traits, ecology,
or evolution of the pathogen species and thus cannot answer
the question, Why do pathogens exhibit such vastly different
strategies of local vs. distant action (7, 12)? Indeed, a locally
acting mechanism may at first seem to be more beneficial to
the pathogen, since the gains from the toxin are immediate and
the infective dose can be small. This can even be seen as a
“stealth attack strategy” (5), as localized mechanisms may lower
the chances of the immune system detecting the pathogen. Our
model suggests that while pathogens with distantly acting toxins
have higher infective doses, they can spread faster than locally
acting pathogens with the same initial dose given that the dose is
sufficiently high.

In general, locally acting toxins can be seen to resemble non-
shareable private goods, whereas diffusible toxins are shareable
public goods. Indeed, bacteria produce various kinds of public
goods, that is, beneficial diffusible factors and metabolites, into

their surrounding environment (6). There is evidence that habi-
tat structure may drive the selection between the use of private
and public goods (24, 36, 37). Moreover, many pathogenetic bac-
teria with distantly acting toxins are environmentally transmitted
(e.g., V. cholerae), opportunistic or facultative (e.g., Staphylo-
coccus aureus), or coincidentally pathogenic (e.g., Clostridium
tetani) and therefore can be subject to different selective forces
than obligate parasites. This suggests that some species with dis-
tantly acting toxins may be in general less adapted to an obligate
parasitic lifestyle.

Our model treats the host immune system–pathogen inter-
actions in a simplistic way; we exclude many known bacterial
defenses (5, 7, 8) and ignore the vast complexity of the immune
system. Nevertheless, our model captures many general proper-
ties of an immune response where the immune system gradually
identifies and eliminates the pathogens. The way immune effec-
tors act in our model best resembles the role of macrophages
in the innate immune response. Despite the simplifications, we
observe that the growth of the initial inoculum strongly depends
on its size when the toxin acts distantly, i.e., when the pathogen
depends on a public good. The importance of intra- and inter-
specific cooperation in overcoming the immune system has been
postulated in several experimental (7, 38) and modeling studies
(39–41). Our results indicate that pathogens with distant action
depend more on cooperative effort in infection formation, but
locally acting pathogens may cause severe infections starting
from a few individuals.

Understanding the underlying mechanisms of pathogenesis
and host–parasite interactions has been identified as one of
the key issues in evolutionary ecology and immunology (5, 7),
which can potentially help in developing novel therapeutic
agents and combat increasing antibiotic resistance. Our work
shows that techniques from spatial ecology can illuminate the
within-host dynamics of pathogens with different pathogenetic
mechanisms.

Materials and Methods
The focal area, i.e., the spatial domain H, was a torus of size 100× 100.
The initial state of the system at time t = 0 consisted of tissue particles
and immune effectors in seek state, whose distribution followed complete
spatial randomness with densities ρH = 3/2 and ρIS = 1/2 per unit area,
respectively. The initial inoculum of the pathogen was spatially aggregated,
and a total of B pathogens were randomly distributed within the inocu-
lation area, in a disk of radius κ. All other particle types were absent at
t = 0.

For the spatial reactions and movement, we used top-hat kernels, which
assign the value h/(π`2) for points that are within distance ` from each
other and 0 otherwise; here h is the total rate, i.e., b, k, s, e, a for the
reactions and 1 for the movement of all mobile particles (tissue and
decapacitated immune effectors are immobile).

Specifically, a pathogen at location x∈ΩP(t) consumes a tissue particle
at location y∈ΩH(t) at the rate given by the consumption kernel C(x, y).
Once a pathogen consumes a tissue particle, it immediately produces a new
pathogen, whose location is determined by the pathogen movement kernel
DP. The immune effectors in kill state eliminate pathogens in their vicin-
ity according to the kernel K, such that a pathogen at location x∈ΩP(t)
is killed at rate

∑
y∈ΩIK(t) K(x, y). To counteract the immune system, the

pathogens secrete toxins according to the kernel S, such that the rate at
which toxin particles are secreted to the vicinity of point y is

∑
x∈ΩP(t) S(x, y)

per unit area. The toxin is inactivated and disappears at rate m. A toxin
particle at y∈ΩT(t) decapacitates an immune effector in seek state at
x∈ΩIS(t) at rate E(x, y). The toxin particle is consumed when it decapac-
itates an immune effector. An immune effector in seek state at x∈ΩIS(t)
transitions into the kill state at rate

∑
y∈ΩP(t) A(x, y), where A is the acti-

vation kernel. The immune effectors in kill state revert to the seek state
at the per-capita rate q and decapacitated immune effectors recover back
to the seek state at rate r. Note that if there are many pathogens nearby,
an immune effector in the seek state transitions to the kill state at a
high rate.

The simulations were based on a Gillespie-style algorithm (42) adapted
to spatial point processes. Each simulation replicate was run until either
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all pathogens or all tissue particles disappeared. We recorded the par-
ticle locations ΩX (t) of each particle type X every ∆t = 1 time units.
The source code for the implementation is available on Zenodo (DOI
10.5281/zenodo.1421750). See SI Appendix, sections C—F for further details.
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