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Abstract

Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is substantially influenced by
genetic factors. Alpha-1 antitrypsin deficiency demonstrates that rare coding variants of large effect can influence COPD
susceptibility. To identify additional rare coding variants in patients with severe COPD, we conducted whole exome
sequencing analysis in 2543 subjects from two family-based studies (Boston Early-Onset COPD Study and International
COPD Genetics Network) and one case–control study (COPDGene). Applying a gene-based segregation test in the family-
based data, we identified significant segregation of rare loss of function variants in TBC1D10A and RFPL1 (P-value < 2x10–6),
but were unable to find similar variants in the case–control study. In single-variant, gene-based and pathway association
analyses, we were unable to find significant findings that replicated or were significant in meta-analysis. However, we found
that the top results in the two datasets were in proximity to each other in the protein–protein interaction network
(P-value = 0.014), suggesting enrichment of these results for similar biological processes. A network of these association
results and their neighbors was significantly enriched in the transforming growth factor beta-receptor binding and
cilia-related pathways. Finally, in a more detailed examination of candidate genes, we identified individuals with putative
high-risk variants, including patients harboring homozygous mutations in genes associated with cutis laxa and
Niemann–Pick Disease Type C. Our results likely reflect heterogeneity of genetic risk for COPD along with limitations of
statistical power and functional annotation, and highlight the potential of network analysis to gain insight into genetic
association studies.

Introduction
Chronic obstructive pulmonary disease (COPD) is a hetero-
geneous and complex disease with a significant genetic
component to its susceptibility (1). Using genome-wide asso-
ciation study (GWAS), a number of COPD susceptibility loci
have been identified including FAM13A (2), HHIP (3,4) and
CHRNA3/CHRNA5/IREB2 (5–7). Complementary studies have
identified more than a hundred loci associated with lung
function, many of which likely also affect risk of COPD (8,9).
However, identified loci only explain 5–10% of the heritability
of COPD or quantitative measures of lung function traits (8,10).
GWAS effectively tests common variants, but the well-known
examples of alpha-1 antitrypsin deficiency (11), cutis laxa
(12–16), and the more recently described association between
telomere-related genes (17–19) indicate that, as has been shown
for other diseases (20–24), rare coding variants also contribute to
COPD risk.

We previously analyzed exome sequencing data of 49 fam-
ilies with severe, early-onset COPD, and, although we found
several candidate genes, none showed convincing evidence of
replication (25,26). We further showed using simulations that
genetic heterogeneity may be a major contributor to this failure
to replicate (26). In this study, we applied additional sequencing
and analytic strategies to increase the sample size and the

power of the analysis. We applied a recently developed family-
based method, gene-based segregation (GESE) (25), to a larger
family-based dataset enriched for severe COPD, and also per-
formed single-variant, as well as set-based tests using SKAT-O
for both genes and pathways in the family-based and in an
additional case–control study. We tested for enrichment of our
results in gene expression and monogenic models of disease,
and examined the overlap between case–control and family-
based results using network analysis. Finally, we investigated
a set of candidate genes identified in previous genetic studies,
including Mendelian syndromes, for potentially deleterious rare
variants.

Results
GESE test on the International COPD Genetics Network
and Boston Early-Onset COPD pedigrees

Baseline characteristics of the studied subjects are shown in
Table 1. Additional information on the probands can be found
in Supplementary Table S1. To identify causal variants in our
exome sequencing data with the characteristics of Mendelian
variants for COPD (e.g. alpha-1 antitrypsin deficiency), we
applied our recently described GESE test (25) to the family-
based data. We focused on ultra-rare [minor allele frequency
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Table 1. Baseline characteristics

COPDGene ICGN-BEOCOPD
Datasets ESP Baylor

Case Control Case Control Severe Cases1 Moderate Cases Resistant controls1 Other Controls Other
N 192 188 293 316 853 431 101 118 512

# Females 92 103 117 146 412 199 53 68 30
# Males 100 85 176 170 441 232 48 50 21
Age, year 58.2 (5.1) 69.5 (5.6) 68 (6.4) 61.9 (5.6) 56.1 (12.2) 59.4 (12.1) 55.5 (11.3) 37.0 (20.4) 53.9 (24.4)
Pack-years 45.0 (26.2) 45.0 (23.5) 51.0 (29.0) 50.6 (19.1) 43.8 (31.0) 37.4 (25.6) 30.8 (21.9) 0.0 (7.6) 24.0 (39.9)
FEV1% predicted 30.0 (15.9) 98.2 (12.8) 30.2 (15.8) 92.7 (14.3) 30.0 (17.6) 65.5 (14.1) 98.0 (15.3) 96.3 (14.6) 77.4 (10.6)
FEV1/FVC 0.33 (0.10) 0.78 (0.07) 0.35 (0.12) 0.76 (0.07) 0.33 (0.14) 0.56 (0.13) 0.76 (0.06) 0.81 (0.10) 0.71 (0.12)

N, Number of subjects
Median (IQR) is presented for age, pack-years, FEV1% predicted, and FEV1/FVC ratio for each dataset.
1Only severe cases (GOLD Grades 3 and 4) and resistant controls (see text) were included in the GESE test of the family-based data. All subjects were included in the
association analysis of the family-based data.
2A total of 51 subjects in the ICGN-BEOCOPD data had lung function values not consistent with either case or control status.

Table 2. Results of the GESE analysis on the BEOCOPD-ICGN dataset

GENE P-value GESE P-value Number of segregating families

TBC1D10A* 1.1E-06 2
RFPL1* 1.6E-06 4
DHODH*# 6.9E-05 2
CYP4F12* 1.0E-04 4
ANAPC7* 1.5E-04 1
RGS5*# 1.5E-04 2
CD101*# 1.7E-04 5
KCNMB4*# 1.8E-04 1
ARMC12* 2.1E-04 4
VPS41*# 3.9E-04 5

Variants included are loss-of-function variants with MAF < 0.1%. The third
column shows the number of families each gene is segregating in (present in all
the cases and not in the controls). Genes marked with * show expression in the
lung (defined as at least 50% of samples with FPKM >0.5 in the Lung Genomics
Resource Consortium RNA-seq samples). Genes marked with # are differentially
expressed by FEV1% predicted in lung tissue (65).

(MAF) < 0.1%] predicted loss-of-function variants. Two genes
were significant after Bonferroni correction for the total of 18 268
genes: RFPL1 (P-value = 1.60e-06) and TBC1D10A (P-value = 1.10e-
06). RFPL1 segregated in four families, including two singleton
families and two families with affected sibling pairs of severe
COPD. TBC1D10A segregated in a parent-offspring pair and a
singleton family. TBC1D10A is intolerant to loss-of-function
variants (ExAC intolerance probability = 0.98 (27)). The top 10
genes from this analysis are shown in Table 2. All 10 of these
genes are expressed in the adult lung (see Methods, enrichment
P-value = 0.17), and the expression of 5 out of 9 of those genes
was associated with forced expiratory volume in 1 second
(FEV1)% predicted, a measure of COPD severity, in our lung tissue
data (enrichment P-value = 0.024). We further sought supportive
evidence for association of these genes in the COPDGene case–
control dataset. However, no subjects harbored loss of function
variants in these genes. We additionally tested for evidence of
higher burden of rare (MAF < 0.1%), non-synonymous variants
in the cases, and did not find convincing evidence of association
(RFPL1, P-value = 0.576; TBC1D10A, P-value = 0.081).

Single-variant association analysis in the case–control
and family data

Next, we performed single-variant association analysis. We
tested both rare coding variants (moderate effect by SNPEff

and MAF < 5%) as well as all variants. We found no significant
results (Supplementary Tables S2 and S3) in either our primary
analysis using COPDGene as the discovery cohort (using a
Bonferroni significance level of 1.32e-06 for non-synonymous
variants with MAF < 5% and 5.07e-07 for all variants), or using
the family-based data (3.55e-07 for non-synonymous variants
with MAF < 5% and significance level 1.86e-07 for all variants).
However, top variants in the case–control analysis included
rs8040868 (MAF = 0.41) and rs1051730 (MAF = 0.35) in CHRNA3
(28) with P-value = 5.05e-05 and 7.39e-05, respectively, which
reside at a previously described GWAS locus (Supplementary
Table S2). Top variants in the family-based analysis included
rs2232710 (MAF = 0.012; P-value = 4.05e-05) in SERPINA10
(in high D’ with the alpha-1 Z allele, which causes alpha-1
antitrypsin deficiency—note that severe alpha-1 antitrypsin
deficiency, including ZZ homozygosity, was an exclusion criteria
for these studies) and rs10507051 (MAF = 0.063; P-value = 1.28e-
04) in VEZT (Supplementary Table S3), near a locus associated
with COPD in a recent GWAS of lung function (8). We also
considered whether any variants were significant in meta-
analysis by combining results from the two studies [case–
control status in the COPDGene data, and lung function in
the Boston Early-Onset COPD–International COPD Genetics
Network (BEOCOPD-ICGN) data] using the Stouffer method.
Meta-analysis did not identify significant variants among the
rare coding variants (significance level, 2.82e-06) or among all
variants (significance level, 7.08e-07) (Supplementary Table S4,
Supplementary Table S5); top results overall included variants
in CHRNA3 and SERPINA10.

Gene- and pathway-based analyses in case–control
and family data

Next, we performed gene-based analyses. In the analysis using
SKAT-O and predicted deleterious variants with a MAF < 1%,
we found no significant genes in the COPDGene data. The top
10 genes are shown in Supplementary Table S6. We found no
significant enrichment of genes expressed in lung (enrichment
P-value = 0.97) among the top 10 genes. However, four genes have
expression associated with FEV1% predicted (P-value = 0.087),
including the top two genes VNN1 and PLA1A. EGFL8, the
third-ranked gene in the list, is located near the AGER locus
which was previously associated with risk of COPD (8,9). In
the pathway analysis using the KEGG (29) database, we found
one significant pathway using the burden test, the Jak–STAT

https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy269#supplementary-data
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signaling pathway (P-value = 6.78e-05) (30). However, association
with this pathway was not replicated in the family-based
analysis (P-value = 0.54) using the burden test. Top results from
family-based analyses can be found in Supplementary Table S7.
We also conducted a meta-analysis of the COPDGene dataset
and the BEOCOPD-ICGN dataset; however, no gene achieved
significance (Supplementary Table S8).

Enrichment and network-based approach to overlap

Given our lack of significant associations using standard asso-
ciation tests, we sought evidence that our top case–control and
family-based results were enriched for associations with COPD.
We tested for enrichment of overlap of genes yielding nominal
significance (i.e. P-value < 0.01) between the case–control and
the family-based association results using a standard hyperge-
ometric approach. The enrichment P-value was 1, which was
consistent with our lack of overlap and meta-analysis findings.

While we did not observe overlap between the top results in
the case–control analysis and the family-based analysis using
a simple hypergeometric test, we were interested in studying
common biological pathways shared by the two sets of top genes.
Recently, network-based methods have demonstrated the ability
to identify related diseases in the protein–protein interactome
(31). We hypothesized that application of this method to two
independent association results for COPD would (a) identify
whether there were overlapping association signals, despite the
lack of replication, and (b) identify genes or pathways of highest
priority. We computed the network-based separation (31) defined
as the normalized average shortest path between members
from the two modules to see whether top genes from the case–
control and family-based analyses were close to each other in
the protein–protein interaction (PPI) network. For the analysis of
rare and deleterious variants, we found genes with P-value < 0.01
from the case–control analysis and the family-based analysis
had significantly overlapping neighborhoods with negative
separation score (score = −2.29, P-value = 0.014). To explore the
neighborhood of these genes and the common pathways that
connect the top genes, we added the first neighbors of the top
genes in the PPI. These genes (top genes, along with all of their
first-degree neighbors—a total of 522 genes) formed a largest
connected component (LCC) of 513 genes, which means almost
all the top genes and their first neighbors were connected.
Figure 1 shows the network module containing the LCC formed
by the top genes from the two analyses and their first neighbors.
There were 19 genes with P-value < 0.01 in the family-based
data, which had 274 first-degree neighbors in the LCC network;
there were 14 genes with P-value < 0.01 in the COPDGene
data, which had 216 first-degree neighbors. Between the two
groups of 274 and 216 first-degree neighbors, 10 overlapped,
thus these genes together formed a network module of 513
genes. 14 genes at loci previously associated with COPD or lung
function (out of 329 genes in the curated set, see Methods)
were in this set (enrichment P-value = 0.065, Supplementary
Material). Additional examination of these genes in murine
models showed that the 513 genes were significantly enriched
for genes associated with the respiratory system (enrichment
P-value = 0.045) and were enriched for genes involved in normal
murine lung development in three common inbred strains of
mice (enrichment P-value = 1.35e-02, 1.96e-03 and 2.40e-03,
respectively; see Methods). From this result, we postulate that
there is a large disease network module exists likely including
a subset of these 513 genes for severe COPD, and only part
of this disease module was observed using either analysis

alone due to limited power. However, since the two sections
of disease module share similar function and pathways, they
were significantly close to each other in the PPI network.

To further explore the functions of this network, we also
looked at the pathways enriched for these 513 genes using
ToppFun in the ToppGene Suite (32), and found a large number of
Gene-ontology pathways were significantly enriched. To exam-
ine more specific pathways, we examined GO pathways with
fewer than 100 genes in total. The top two pathways meeting
these criteria were ‘GO:0005160: transforming growth factor beta
(TGFB) receptor binding’ and ‘GO:0030991: intraciliary transport
particle A’. A total of 14 out of 53 genes in the TGFB receptor
binding pathway were present in the network module. Multiple
lines of evidence, including genetic association (which has iden-
tified TGFB2) and other genomic and mechanistic studies have
implicated this pathway in risk to COPD (33–35). Twelve of these
fourteen genes are expressed in human lung tissue (two genes
have missing data). The right panel in Figure 1 shows the small
network formed by genes in this pathway and ACVR2B, which
was the top-ranked gene from this set of genes in the association
analysis and was also the second largest hub in the network.
For the ‘intraciliary transport particle A pathway’ (36), 7 out of 8
genes were in the network, which are shown in the left panel in
Figure 1. A total of 6 out of 7 genes were expressed in human lung
tissue (one gene had missing data). TULP3 was in the top-ranked
genes from the family-based analysis and was the largest hub in
the module. TULP3 is a known target of the Hedgehog pathway.
Notably, GWASs and follow-up functional studies have identified
an important role for HHIP in the development of COPD (7); TULP3
has been shown to change expression after HHIP silencing (37).
Also, WDR35 and IFT140 were associated with respiratory system
abnormalities in mouse models (WDR35 leads to lung hypoplasia
and mutations in IFT140 produces severely misshapen lungs).
Additional top results from this GO analysis can be found in
Supplementary Table S9. Thus, our network results highlight
ACVR2B and TULP3, which may be prioritized for further exami-
nation of functional rare variants.

Evidence of association for candidate genes

A substantial proportion of rare variants identified for com-
plex disease are located at loci that also harbor common risk
variants (38,39). In addition, several Mendelian syndromes have
COPD, emphysema or obstructive lung disease as a manifesta-
tion of disease. Therefore, in addition to looking at exome-wide
results, we examined a list of the 329 curated genes (see Meth-
ods, Supplementary Table S10) (1,7–9,12–19,40–45). This included
regions identified from 105 SNPs from GWAS analyses (8,9) and
29 Mendelian genes with manifestations that include COPD or
emphysema in their resulting syndromes (Supplementary Mate-
rial). We examined functional and rare variants with MAF < 5%
and found multiple genes to be nominally associated with COPD
status or FEV1% predicted value, including CHRNA5, AGER and
CYP2A6 (Supplementary Table S11). To identify whether there
was any independent evidence of rare variant effects at these
loci in the COPDGene cohort, we conditioned on the risk allele
for the 104 SNPs identified by GWAS. Several genes were still
nominally significant after conditioning on the GWAS SNPs,
including CYP2A6 (full results shown in Table 3); whether these
rare variants have independent effects on COPD susceptibility at
these loci will likely need to be addressed by additional, larger
studies.

We also looked closely at the 29 genes causing Mendelian
syndromes including emphysema or obstructive lung disease

https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy269#supplementary-data
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Figure 1. Network of the two sets of top genes with P-value < 0.01 in the case–control and family-based analyses focusing on rare, deleterious variants. The nodes

in red are the top genes identified in the COPDGene case–control analysis; the nodes in pink are the first neighbors of the red nodes; the nodes in blue are the top

genes identified in the BEOCOPD-ICGN family-based analysis; the nodes in light blue are the first neighbors of the blue nodes. Genes that are in both sets are colored in

purple. Edges connecting genes to the largest hub TULP3 are colored in red. These genes form one large well-connected component. Larger sized nodes indicate hubs

(circle) and genes reported to be associated with COPD or lung function (diamond). Hubs include TULP3, VNN2, ACVR2B, KCNA5 and GRB2, which are the top genes with

the most number of degrees in this network. A total of 14 out of 513 genes are near GWAS loci for COPD or lung function (CHRM3, DNLZ, EFEMP1, EFEMP2, EGFL8, GANAB,

GNG3, PARN, PIP4K2B, NOTCH4, RUVBL1, SEC16A, TARS, TEKT5, THSD4). The zoomed-in panel on the left shows the genes in the intraciliary transport particle A pathway

(GO:0030991). The zoomed-in panel on the right shows the genes in the TGFB-receptor binding pathway (GO:0005160) and ACVR2B.

as part of their syndrome. To determine whether there was
enrichment in these genes in our dataset, we performed a
burden test including only variants with MAF < 0.1% in ExAC
and predicted deleterious by FATHMM, SIFT and CADD (>15).
We found that the burden-based tests gave a P-value = 0.80 in
the COPDGene case–control study, and a P-value = 0.018 for the
family-based EOCOPD and ICGN data. Thus, we observed some
significant accumulation of deleterious variants in these genes
in the family-based data, suggesting that ultra-rare variants in
these Mendelian genes contributing to lung function may be
related to severe COPD risk in our family-based datasets.

To examine these variants individually, we intersected
variants in these genes with Clinvar, using an annotation of

significance level 4 (likely pathogenic) and above, and addi-
tionally included variants in published reports associated
with respiratory disease in TERT (17–19,41–43). We found 47
of these variants in our datasets. These variants are listed
in Supplementary Table S12 along with their counts among
cases and controls separately. Given the strong evidence of
pathogenicity for variants in SERPINA1 and telomere-related
genes, these findings are shown in Table 4. We also assessed
the carriers of these rare variants using a recessive model of
inheritance, and those variants with homozygous genotypes
present in any dataset are listed in Table 5. Among our findings
for Mendelian genes were two previously identified cases from
COPDGene with heterozygous TERT variants (19), and evidence

https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy269#supplementary-data
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Table 3. Nominally significant gene-based results in COPDGene for 329 candidate genes after conditioning on the lead GWAS SNP

Gene (Conditioned on) lead GWAS SNP #SNV SKATO (unadjusted) SKATO (conditional)

SEC16A rs10870202 38 9.52E-04 1.05E-03
CDC7 rs1192404 5 5.87E-03 6.78E-03
CCDC38 rs12820313 5 7.20E-03 7.66E-03
CYP2A6 rs12459249 11 6.87E-03 1.15E-02
TRIP11 rs7155279 24 1.53E-02 2.47E-02
CNGB1 rs12447804 26 3.27E-02 2.89E-02
PBLD rs7095607 3 6.99E-02 3.43E-02
RRP15 rs10429950 2 3.75E-02 4.07E-02
TNXB rs2070600 63 5.95E-02 4.39E-02
CYFIP2 rs10515750, rs1990950 4 4.13E-02 4.46E-02
EGFL8 rs2070600 9 8.11E-02 4.60E-02
CHRNA5 rs17486278 5 1.83E-02 1.22E-01
AGER rs2070600 12 4.89E-03 1.36E-01

The SKAT-O tests included functional (MODERATE effect defined by SnpEff) and rare (MAF < 5%) variants in the COPDGene study.

Table 4. Selected set of likely pathogenic variants annotated by ClinVar in SERPINA1 and telomere-related genes

COPDGene BECOPD-
ICGN

GENE SNP Case Cont Case Cont MAF IMPACT CLNSIG Disease association
RTEL1 20:62324513:T:C 0 1 . . 6.11E-05 missense_variant 5 Telomeropathy
SERPINA1 rs28929474 29 12 60 8 1.83E-02 missense_variant 5|5 Alpha-1 antitrypsin deficiency
SERPINA1 rs17580 53 29 148 32 3.04E-02 missense_variant 5 Alpha-1 antitrypsin deficiency
SERPINA1 rs28929470 4 6 5 1 4.95E-03 missense_variant 5 Alpha-1 antitrypsin deficiency
SERPINA1 rs28931570 2 4 8 2 1.62E-03 missense_variant 4|5 Alpha-1 antitrypsin deficiency
SERPINA1 rs121912714 . . 3 0 7.04E-04 missense_variant 4 Alpha-1 antitrypsin deficiency
TERT rs61748181 40 33 92 16 4.97E-02 missense_variant 5|2 Telomeropathy
TERT 5:1278865 1 0 . . 7.49E-05 missense_variant 5 Telomeropathy
TERT 5:1280427 1 0 . . . missense_variant . Telomeropathy
TERT rs35719940 27 22 . . 2.11E-02 missense_variant 5|2|2 Telomeropathy

5|5|5|3|2|
TERT rs34094720 4 7 . . 1.53E-02 missense_variant 2 Telomeropathy
TERT rs141425941 1 1 . . 2.68E-04 missense_variant 5 Telomeropathy
TINF2 rs142777869 2 1 1 0 7.25E-04 missense_variant 5 Telomeropathy

Case, Cont: number of alternative alleles carried by the cases and controls in each dataset. Note that in the family-based data, there are approximately six times
more cases than controls. IMPACT, functional impact of each variant annotated by SnpEff. CLNSIG and Disease association are annotations from ClinVar; 2 = benign,
3 = likely benign, 4 = likely pathogenic, 5 = pathogenic.

for an increased burden (cases > controls) for the SERPINA1 Z
and PI P (Lowell) (rs121912714) (Table 4). For recessive variants,
we identified rs140130028, a splice-donor variant in NPC2, which
is a gene for Niemann–Pick disease type C2, a disease previously
associated with emphysema (46) (Table 5). One pair of sibs with
severe COPD in the ICGN study was homozygous for this variant;
two of their half-siblings carried one copy, one with severe COPD.
None of these subjects had known Neimann–Pick disease. Also,
variant rs61748181 in TERT was present as homozygous in seven
unrelated cases in the datasets (Table 5). While this association
did not reach candidate-wide significance (P-value = 0.167), this
variant was experimentally demonstrated to induce telomere
dysfunction (47) and predicted to be disease causing by Mutation
Taster (48). For variants not annotated by Clinvar or annotated
with a significance level of 3 (uncertain significance) or below,
we filtered based on MAF < 0.1% in ExAC v0.3 non-Finnish
Europeans and predicted deleterious effects by FATHMM, SIFT
or CADD (>15). There were in total 346 such variants in our
datasets. One of these variants occurred in homozygous form
in a proband with severe COPD in the BEOCOPD study. This
variant is an ultra-rare splice-acceptor variant in ATP6V0A2

(novel in ExAC database) (Table 4), a Mendelian gene for cutis
laxa. A chest CT scan of this subject showed severe emphysema,
however, no phenotypic information related to dermatological
characteristics was available. In addition, 66 variants were
predicted to be deleterious by all three annotations: FATHMM,
SIFT and CADD (>15), and had supportive evidence in our
datasets (with greater counts in cases than in controls,
Supplementary Table S13). Multiple variants have supportive
evidence in both case–control and family-based datasets. For
example, rs141310608 in EFEMP2 is present in two cases in
COPDGene study and two cases in BEOCOPD-ICGN study, while
none in controls. Also, there are multiple ultra-rare variants in
COL3A1 are carried by cases and none by controls. We have also
listed the variants that are predicted to be deleterious by all
annotations, but are present in more controls than cases; these
variants are less likely to be high penetrance COPD susceptibility
variants (Supplementary Table S14). We also applied a more
liberal filtering criteria (MAF < 0.05, CADD >10 or predicted to
be deleterious by SIFT and FATHMM) for TERT, RTEL1,CFTR and
SERPINA1. Detailed information about these genes can be found
in Supplementary Tables S15, S16 and S17, respectively.

https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy269#supplementary-data
https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy269#supplementary-data
https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy269#supplementary-data
https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy269#supplementary-data
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Table 5. Homozygous variants in COPD-related Mendelian genes

COPDGene BECOPD-ICGN

GENE SNP Case Cont Case Cont MAF IMPACT CLNSIG Disease association
ATP6V0A2 12:124206896* 0 0 1 0 . Splice_acceptor_variant . Cutis laxa
CFTR rs1800076 0 1 3 0 2.48E-02 missense_variant 2|2|5 Cystic fibrosis
NPC2 rs140130028 . . 2 0 0.00551 splice_donor_variant 5 Niemann-Pick disease type C2
SERPINA1 rs17580 1 1 4 1 3.04E-02 missense_variant 5 Apha-1-antitrypsin deficiency
TERT rs61748181 5 0 2 0 4.97E-02 missense_variant 5|2 Telomeropathy
TERT rs35719940 1 0 . . 2.11E-02 missense_variant 5|2|2 Telomeropathy

Variants with homozygous genotypes in 29 Mendelian genes and were annotated with significance 4 and above by ClinVar, or have potential deleterious effects
(MAF < 0.1% and predicted to be deleterious by FATHMM, SIFT and CADD (>15). Case, Cont: number of alternative alleles carried by the cases and controls in each
dataset. Note that in the family-based data, there are approximately 6 times more cases than controls. IMPACT, functional impact of each variant annotated by SnpEff.
CLNSIG and Disease association are annotations from ClinVar; 2 = benign, 3 = likely benign, 4 = likely pathogenic, 5 = pathogenic.

Discussion

COPD is a common and heterogeneous disease; under the
common-disease–common-variants hypothesis, we expect
that multiple common variants should contribute to a large
proportion of COPD risk. However, even though a number of
COPD GWAS loci have been discovered through large-scale
collaborative efforts, most of the estimated heritability remains
unexplained. Examples such as alpha-1 antitrypsin deficiency,
cutis laxa and, more recently, telomeropathies are associated
with COPD and emphysema (17–19). These results motivated us
to search the entire exome for large effect variants that could
represent a Mendelian subtype of COPD, in the hope of finding
new treatment strategies for a subset of the patients. In this
study, we examined multiple cohorts representing the largest
exome sequencing study of COPD to date ascertained under an
extreme phenotype approach (where samples were enriched for
sever COPD and normal controls heavily exposed to smoking
but with normal pulmonary function), to screen through the
entire exome to identify rare coding variants controlling risk to
COPD. Results failed to identify new genes, pathways or variants
consistently significant across all of our analyses, suggesting
that single-variant or single-gene effects of a contribution as
large as alpha-1 antitrypsin deficiency are unlikely to exist
(26). Yet, a network-based analysis identified a significant
relationship between the two modules formed by the top results
of the two analyses. These two sets of top genes, along with
their first neighbors in the PPI network, form a well-connected
network component. This LCC was significantly enriched in
genes involved in fetal lung development in mouse models
(49). Additionally, this module sheds light on related functions
or pathways where such rare variants may be contributing to
risk to COPD. For example, multiple studies have suggested the
TGFB pathway is associated with COPD (50), and the TGFB2 locus
was associated with COPD in GWAS (51). Our study identified
ACVR2B as a potential candidate; of interest, ACVR1B, an activin
receptor which interacts with ACVR2B (52) was identified in a
network-informed genetic association study of COPD (53) and in
an integrative analysis of emphysema distribution (54).

Our finding lends further support to the TGFB pathway and
also suggests that rare variants related to ACVR2B may con-
tribute to COPD risk. Similarly, the identification of TULP3 lends
further support to the identification of HHIP as a causal gene at
this GWAS locus and the importance of the hedgehog pathway
in the development of COPD. The identification of cilia-related
pathways is intriguing given the importance of cilia to lung
function (55), including reports from a smaller exome study of

resistant smokers (56) and reports of shortened cilia in smokers
and in COPD patients (36).

Finally, we identified subjects carrying homozygous geno-
types of rare and deleterious variants in Mendelian genes for
cutis laxa and Niemann–Pick disease, which are themselves
intriguing candidates for causing severe COPD. These findings
illustrate the potential relevance of using filtering-based tech-
nique for identifying syndromic forms of COPD. While we do not
have enough power to individually test these or other individual
rare variants here, our results may provide support for future
studies in these recognized candidate genes.

COPD is known to be a highly heterogeneous disease, with
varying contributions of emphysema and small airway disease.
We did not examine specific subsets of COPD, as detailed
phenotyping was not available in all cohorts. Multiple analysis
methods are available for rare variant analysis ((57)), and the
optimal methods are still not clear. Our sequencing of a large
number of affected individuals in families was appropriate for
methods such as GESE, which leverages a large reference dataset
(ExAC); an alternative approach using association would require
large-scale exome harmonization of controls with normal lung
function, preferably with heavy cigarette smoke exposure. Our
results highlight the importance of integration with other types
of data (e.g. gene expression, PPI) to better understand the results
from one data type. However, our analysis does not attempt
to identify the confidence of individual genes in this network;
we cannot rule out the possibility that this network includes
many genes that are false positives, and our pathway analysis
should be considered descriptive and exploratory. Additional
investigation, including genetic studies, integration of multi-
omics data, and careful functional studies will be needed
to further infer biological mechanisms and potential disease
causality for our identified genes.

In summary, in an exome sequencing study of COPD, we
were unable to identify exome-wide significant associations,
but through network analysis we identified candidate genes in
related pathways and a disease module driven by rare variants.
Our study is consistent with a potential contribution of multiple,
heterogeneous rare variants in COPD, and demonstrates the
insight that network-based methods can offer.

Materials and Methods
The COPDGene study

The COPDGene study is a multi-center epidemiologic and
genetic study of 10 192 current or ex-smokers, which has been
previously described (58). COPDGene subjects were sequenced
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in two sets. The first set sequenced as part of the NHLBI Exome
Sequencing Project (ESP; named COPDGene ESP) included severe
COPD cases with Global Initiative for Chronic Obstructive Lung
Disease (GOLD) Grades 3 or 4 (post-bronchodilator FEV1 < 50%
predicted and FEV1/FVC < 0.70), and aged < 65 years old, with
substantial emphysema (>15% at −950 HU) by quantitative chest
CT scan. Controls were selected to be resistant smokers with
frequency-matched pack-years of cigarette smoking, normal
lung function (FEV1 > 80% predicted and FEV1/FVC > 70%),
aged > 65 years old and no significant emphysema (< 5% at −950
HU). The second set sequenced at Baylor (named COPDGene
Baylor) included severe COPD cases (GOLD Grades 3 or 4) with no
age requirement. Controls were selected to be resistant smokers
with normal lung function with ages >55 years.

The BEOCOPD study and the ICGN study

The family-based data contained samples selected from the
BEOCOPD (59) and the ICGN study (45). Probands from BEO-
COPD were selected to be physician-diagnosed COPD cases with
FEV1 ≤ 40% predicted, aged ≤ 53 years. All first-degree relatives,
older second-degree relatives and additional affected family
members were enrolled. Probands in the ICGN study were sub-
jects with known COPD and were required to have FEV1 < 60%
predicted, FEV1/FVC < 90% predicted at ages 45–65 years, pack-
years ≥ 5 and have at least one eligible sibling. An initial set of
49 pedigrees selected from the BEOCOPD study were described
and analyzed previously (26). To this sample we added 147
families from BEOCOPD and 462 families from the ICGN study.
The COPDGene, BECOPD and ICGN studies all excluded subjects
with severe alpha-1 antitrypsin deficiency.

Exome sequencing

We sequenced all subjects using Nimblegen capture and
Illumina platforms. The COPDGene ESP, BEOCOPD and ICGN
subjects were all sequenced at the University of Washington,
using Nimblegen V2 exome capture; COPDGene Baylor samples
used VChrome capture. Alignment, variant calling and quality
control were performed using bwa, GATK and in-house pipelines,
respectively. As COPDGene ESP and COPDGene Baylor used
slightly different capture platforms, calling was performed on
these datasets separately. All BEOCOPD and ICGN subjects were
called together (joint calling) and went through the same quality
control steps together to provide the final family-based data
(named BEOCOPD-ICGN) for analysis. Baseline characteristics of
the subjects in each of the cleaned datasets are shown in Table 1
and our overall study design is shown in Figure 2. More details
can be found in the Supplementary Material.

Analysis strategy

Loss of function variants using the GESE test We first performed
the GESE (25) on loss of function variants (defined by SnpEff
(60)) with MAF < 0.1% in the family-based BEOCOPD-ICGN data
using COPD affection status as the outcome. We included only
the most severe COPD subjects (GOLD spirometry Grades 3 or
4) and resistant smoking control subjects (normal spirometry,
aged > 40 years, with at le ast five pack-years of cigarette
smoking). This analysis took advantage of the unique properties
of a family-based strategy, including having multiple copies of
rare variants, and assumes a Mendelian model with a few rare

variants with very large effects. We sought supportive evidence
for identified causal genes in COPDGene dataset by attempting
to identify similarly deleterious variants

Association analyses Second, we performed single-variant,
gene-based and pathway-based association analyses. For all
association analyses, we used Bonferroni correction based on
the number of genes, pathways or variants tested. For the
COPDGene case–control data, COPD affection status was used as
the outcome, which was adjusted for pack-years, gender, age and
ancestry-based principal components (PCs) in the COPDGene
Baylor data, and the top PCs alone in the COPDGene ESP data
due to the selection criteria, and as performed previously
(Supplementary Material). For the family-based data, due to
the low number of controls with normal lung function, but
a wider range of FEV1 available through family members, we
analyzed FEV1 (forced expiratory volume in one second), a lung
function measure highly correlated with COPD (9) instead of
COPD affection status itself. The outcome in the family-based
association tests was the rank of the residuals from regressing
raw post-bronchodilator FEV1 value on height, pack-years, sex,
age, top 5 genetic ancestry PCs and batch indicator variable.

Single-variant association analysis For single-variant analyses,
we applied the Stouffer method to meta-analyze the results from
the hybrid method in SKATBinary_Single function (SKAT pack-
age) in the COPDGene case–control data, since the two cohorts
selected from the COPDGene study were sequenced and called
separately. The hybrid method in SKATBinary_Single function
selects the most appropriate approach to compute P-values for
each variant. For single-variant analysis in family-based data,
we applied the variant-based generalized linear mixed model
association test (GMMAT (61)). In addition to using COPDGene as
discovery and BEOCOPD-ICGN as replication, we also examined
using BEOCOPD-ICGN and both datasets as discovery by meta-
analyzing the results from the COPDGene case–control data and
the BEOCOPD-ICGN data using the Stouffer method. For single-
variant analyses, we tested all variants, and also the subset with
moderate effect with MAF < 5%.

Gene- and pathway-based association analysis For both the gene-
and pathway-based analyses, we applied SKAT-O tests. In the
COPDGene case–control datasets, we applied the hybrid method
in the SKATBinary function, implemented in the SKAT package
to each of the datasets, and meta-analyzed the two datasets
using Fisher’s method. For the BEOCOPD-ICGN family-based
data, we applied MONSTER (62), which is a generalized version
of SKAT-O for family-based studies. We also meta-analyzed all
results (case–control and family-based results) using Fisher’s
method. Our primary gene- and pathway-based association
analyses focused on deleterious variants defined using FATHMM
(57,63) with MAF < 1% in the association analysis. In one study of
amyotrophic lateral sclerosis (ALS), FATHMM was found to give
the best power to identify known causal genes for ALS in gene-
based association tests (57). Our secondary analyses included
association testing on functional variants with moderate effects
(defined by SnpEff (60)) with MAF < 5%. This is a less stringent
filtering criterion on the variants to prevent missing signals in
this set of variants. Pathways were defined using KEGG pathways
(29) and the c2 collection of curated gene sets from the Molecular
Signatures Database (MsIGdb) in GSEA (64).

https://academic.oup.com/hmgj/article-lookup/doi/10.1093/hmgj/ddy269#supplementary-data
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Figure 2. A flow chart of the study design. COPDGene (pink) samples were sequenced in two batches (Baylor and ESP, see Methods). The family-based studies (blue)

included two cohorts. Forty-nine pedigrees of the Boston Early-Onset study samples were sequenced and analyzed previously (26); we combined these data with another

subset of these BEOCOPD and additional samples from the ICGN study. All of these sequenced subjects from BEOCOPD and ICGN were called together, forming the

BEOCOPD-ICGN dataset (blue). We applied the family-based GESE test to the most severe cases and resistant controls in the BEOCOPD-ICGN dataset. We also performed

single-variant, gene-based and pathway-based association tests in COPDGene and the BEOCOPD-ICGN samples. A final network analysis was conducted to look at the

topological relationship between the top results from the two datasets.

Identification of enrichment in gene expression To help deter-
mine whether the identified genes were relevant for our
phenotypes, we used publicly available FPKM (per kilobase
of gene model per million mapped reads) results from gene
expression data from the Lung Genomics Research Consortium
(http://www.lung-genomics.org) to identify whether any gene
was expressed in the lung (using a cutoff of 0.5) (26). We also
used the results of differential expression for lung function
and COPD case–control status in an independent set of lung
tissue from severe COPD subjects and controls (65). In addition,
enrichment for genes associated with respiratory system in
mouse was carried out using a curated set of genes associated
with respiratory phenotype in the Mouse Genome Database
(http://www.informatics.jax.org/marker) (66). Gene expression
information in human and normal murine lung development
for three common inbred strains of mice were obtained from
the GEO dataset (GSE14334 and GSE74243), and genes involved in
fetal lung development were obtained using methods described
in (49).

Network-based analysis Finally, we applied the network-based
separation measure defined in (31) to examine how closely con-
nected the top genes from the two independent analyses are
in the PPI network. This measure has been shown to predict
pathobiological similarity of two sets of disease genes (31). In
our application here, since the two outcomes analyzed for the
COPDGene and BEOCOPD-ICGN dataset are highly correlated,
genes that are causal for these outcomes should have much
shorter network-based distance. Therefore, a significant result
tells us that at least a subset of the top genes from the two
analyses is topologically overlapping and exerts some effect on
risk of COPD.

Examination of previously identified genetic associations with COPD
To examine loci previously described to be associated with risk
of COPD or lung function itself in GWAS or harboring Mendelian

variants related to COPD, we curated a set of 329 genes for closer
examination (Supplementary Table S12) (8,9). At COPD GWAS
loci, we identified all variants in a European reference population
with an r2 > 0.8 with the lead variant, and then expanded
these borders by 100 kb. For Mendelian syndromes, we included
connective tissue disorders such as cutis laxa (12–16), as well as
telomere-related genes including TERT, TERC, RTEL1, and NAF1
(17,18,41–43). We looked for supportive evidence of association
for these genes using several methods. First, we examined the
association results in both primary and secondary analyses as
described above. Since 104 of the previously described lead SNPs
based on GWAS of lung function or COPD were also available for
the COPDGene subjects, we additionally performed conditional
analyses for these genes by conditioning on the GWAS SNPs in
proximity in an attempt to identify independent rare variants
contributing to COPD susceptibility. For both the marginal asso-
ciation analyses and conditional analyses, COPD affection status
was the outcome in the COPDGene case–control analyses and
FEV1 was the outcome in the family-based analyses. Finally, we
examined Mendelian genes for evidence of pathogenic variants
using Clinvar and other public annotation resources.

Supplementary Material
Supplementary Material is available at HMG Online.
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