Skip to main content
. 2018 Oct 17;8(10):e018335. doi: 10.1136/bmjopen-2017-018335

Table 2.

Accuracy in predicting the number of new HIV diagnoses in China

Model Nowcasting One-month ahead forecasting Two-month ahead forecasting
RMSE NRMSE RMSE NRSME RMSE NRMSE
nbGLM-AR 473.35 11.71% 484.21 11.98% 528.38 13.08%
nbGLM-Baidu 957.58 23.7% 1166.38 28.86% 1176.06 29.1%
nbGLM-AR-Baidu 420.68 10.41% 482.79 11.95% 539.37 13.35%
BnbGLM-AR 455.65 11.27% 456.95 11.31% 497.11 12.3%
BnbGLM-Baidu 976.99 24.18% 1176.16 29.11% 1145.23 28.34%
BnbGLM-AR-Baidu 423.17 10.47% 451.75 11.18% 508.31 12.58%

BnbGLM-AR, Bayesian negative binomial generalised linear model (BnbGLM) with autoregressive terms; BnbGLM-AR-Baidu, BnbGLM with autoregressive terms and the composite Baidu Search Index; BnbGLM-Baidu, BnbGLM with a variable representing the composite Baidu Search Index; nbGLM-AR, negative binomial generalised linear model (nbGLM) with autoregressive terms; nbGLM-AR-Baidu, nbGLM with autoregressive terms and the composite Baidu Search Index; nbGLM-Baidu, nbGLM with a variable representing the composite Baidu Search Index; NRMSE, normalised root mean square error; RMSE, root mean square error.