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An accurate and continuous measurement of blood pressure (BP) is of great importance for the prognosis of some car-
diovascular diseases in out-of-hospital settings. Pulse transit time (PTT) is a well-known cardiovascular parameter which is
highly correlated with BP and has been widely applied in the estimation of continuous BP. However, due to the complexity of
cardiovascular system, the accuracy of PTT-based BP estimation is still unsatisfactory. Recent studies indicate that, for the
subjects before and after exercise, PTTcan track the high-frequency BP oscillation (HF-BP) well, but is inadequate to follow the
low-frequency BP variance (LF-BP). Unfortunately, the cause for this failure of PTT in LF-BP estimation is still unclear. Based
on these previous researches, we investigated the cause behind this failure of PTT in LF-BP estimation. 0e heart rate- (HR-)
related arterial baroreflex (ABR) model was introduced to analyze the failure of PTT in LF-BP estimation. Data from 42 healthy
volunteers before and after exercise were collected to evaluate the correlation between the ABR sensitivity and the estimation
error of PTT-based BP in LF and HF components. In the correlation plot, an obvious difference was observed between the LF
and HF groups. 0e correlation coefficient r for the ABR sensitivity with the estimation error of systolic BP (SBP) and diastolic
BP (DBP) in LF was 0.817 ± 0.038 and 0.757± 0.069, respectively. However, those correlation coefficient r for the ABR
sensitivity with the estimation error of SBP and DBP in HF was only 0.403 ± 0.145 and 0.274 ± 0.154, respectively. 0ese results
indicated that there is an ABR-related complex LF autonomic regulation mechanism on BP, PTT, and HR, which influences the
effect of PTT in LF-BP estimation.

1. Introduction

Blood pressure (BP) is a vital sign which is defined as the
pressure of circulating blood on the walls of blood vessels.
In morphology, BP is usually expressed in terms of the
systolic BP (maximum during one heartbeat) over diastolic
BP (minimum in between two heartbeats). Continuous
blood pressure monitoring is of great clinical significance
which could provide a long-term character of the cardiac
system. It is important to the diagnosis of cardiac diseases.
However, the traditional BP monitoring involves the in-
flating and deflating of a cuff which causes unavoidable
intermittent monitoring of the blood pressure. Because of
this shortcoming of cuff-based BP monitoring and the
profound need for continuous blood pressure monitoring,
the scientific community has paid a lot of attention to the

cuff-less continuous BP estimation methods in recent
decades [1].

Among these cuff-less BP measurement methods, the
PTT-based method has been extensively investigated in
clinical settings. A mountain of research studies has dem-
onstrated that there is a high correlation between BP and
PTT [2–5]. PTT is a cardiovascular parameter which is
defined as the time delay for the pressure wave to travel from
a proximal point to a distal point in the arterial within the
same cardiac cycle. It could be easily calculated from the
feature points of ECG and PPG. 0e principal fundamental
behind this method is that the blood flow in the arteries is
physically modeled as the propagation of pressure waves
inside elastic tubes. In this way, the physical characteristics
of blood flow wave in arteries could be described by the
Moens–Korteweg (MK) equation as follows [6]:
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where L, G, h, r, and ρ are the length of the vessel, the elastic
modulus of the tube wall, the vessel wall thickness, the vessel
radius, and the constant blood density, respectively. PWV is
the velocity of the blood flow wave propagating in the entire
arterial tree, which is inversely related with PTT. G is ex-
ponentially correlated with BP through

G � G0e
cp

, (2)

where G0 is the elastic modulus at zero pressure, c is a co-
efficient depending on a particular vessel, and P is BP. 0e
MK equation and its variants could also be simplified into
different mathematical models, in which the relevant he-
modynamic parameters (blood density, vessel radius, etc.,)
were converted into a number of individual-specific model
parameters (see Section 2.1 for details). 0erefore, with an
initial calibration of these individual-specific model pa-
rameters, the PTT-BP relationship is obtained. 0en,
measuring PTT could offer a continuous and cuff-less BP
monitoring [2].

Over the past 20 years, various calibration models of the
BP-PTT relationship have been proposed to achieve the
continuous BP measurement with PTT [7–21]. Chen et al.
[7] established a mathematical model involving the patients’
ages and genders. It indicated that this model could capture
the PTT-DBP relationship for subjects on a wider range.
Gesche et al. [11] developed a one-point calibration model
for the PTT-BP relationship, which needs only one mea-
surement of BP using a cuff-based reference. 0e results
indicated that the SBP calculated from PTT correlates sig-
nificantly with the cuff-based SBP (r � 0.83). Esmaili et al.
[18] proposed a PTT-BP nonlinear model for the accurate
estimation of both SBP and DBP. It attained a high accuracy
with evaluated error and variance of 0.12± 6.15mmHg for
SBP and 1.31± 5.36mmHg for DBP.

Although the PTT-based method has been considered as
the most promising cuff-less continuous BP monitoring
technique, there are still several problems that need to be
solved before its widespread application [8]. 0e major and
most important challenge is that the accuracy of PTT-based
BP estimation is still not satisfactory enough. 0e possible
influence factors include: arterial compliance, cardiac out-
put, peripheral resistance, and blood volume [10]. However,
due to the complexity of the cardiovascular system, the
influences of these physiological factors on the PTT-based
BP are hard to be evaluated. It is impracticable to employ
these factors directly to improve the accuracy of PTT-based
BP estimation. 0e possible solution is, based on the ex-
periment phenomenon, to introduce the applicable regu-
lation models or parameters into the PTT-BP calibration
model to weaken the influences from other physiological
factors.

From the differences of influence factors, there are
two special frequency bands of the BP changes [22–24]: (1)
the high-frequency (HF, 0.2–0.35Hz) BP oscillation influ-
enced by the physical factors (e.g., respiration) and (2) the

low-frequency (LF, 0.1–0.15Hz) BP variance under the
control of the autonomic nervous system (ANS). Recently,
various researches [25–27] have investigated the time-
frequency correlation between the variability of PTT, HR,
and BP before and after exercise. 0e results indicate that,
relatively speaking, PTTcan track the HF BP oscillation well,
but inadequate to follow the LF BP variance (see Section 2.3
for details). From the experimental results, this poor per-
formance of PTT in LF-BP estimation is considered as
a reason for the nonaccuracy of PTT-based BP estimation
[10]. However, the cause for this failure of PTT in LF-BP
estimation is still unknown.

Based on these previous researches, we try to in-
troduce the ABR regulation model [28] (arterial barore-
flex, a major BP-related autonomic nervous regulation
mechanism, see section 2.2 for details) to analyze this
failure of PTT in LF-BP estimation in this research. From
the view of the ABRmodel and the interaction between the
cardiovascular parameters, it was found that the ABR
sensitivity may influence the estimation accuracy of PTT-
based LF-BP. 0en, synchronous physiological data (BP,
PPG, and ECG) from 42 subjects before and after exercises
were collected to quantitatively analyze the influence of
ABR sensitivity on the PTT-based HF- and LF-BP with the
help of VMD (variation mode decomposition, a time-
frequency analysis technique). 0e correlation between
the ABR sensitivity and the estimation error of PTT-based
HF- and LF-BP was evaluated. 0e aim was to analyze the
cause behind failure of PTT in LF-BP estimation in the
experimental condition. It is expected that the results of
this work may help to construct a better PTT-BP cali-
bration model in practice.

0e rest of this paper is organized as follows. Section 2
introduces the backgrounds of this paper including the
current PTT-based calibration model, the ABR model, the
time-frequency correlation between BP, HR, and PTT before
and after exercise, and the qualitative analysis of the possible
cause for the failure of PTT in LF-BP estimation. Section 3
explains the quantitative analysis methodology including the
data collection and preprocessing, the calculation method of
ABR sensitivity, and the correlation analyses between the
ABR sensitivity and the PTT-based BP estimation error.
Section 4 presents and discusses the results of the experi-
ments. 0e conclusion and further works are given in
Section 5.

2. Backgrounds

2.1. "e Calibration Models of PTT-BP Relationship. In the
PTT-based BP estimation method, the arterial vessels are
physically modeled as an elastic tube. 0e pressure wave
propagating on the vessels follows a function of the pulse
propagating position and time (x and t, respectively) as [4]

P(x, t) � f x ±
t

������
LC(P)

􏽰􏼠 􏼡, (3)

where L is a constant that represents the arterial inertance
per unit length.0e vessel compliance C is defined as the rate
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of tube cross section changes in terms of blood pressure P as
follows:

C(P) �
Am

πP1 1 + P−P0( 􏼁/P1( 􏼁
2

􏽨 􏽩
, (4)

where P0, P1, and Am are subject-specific parameters [5].
Accordingly, the PWV is equal to (

������
LC(P)

􏽰
)−1, and PTT is

the time interval for the pressure wave traversing a tube of
length l, which is expressed as:

PTT � l
������
LC(P)

􏽰
. (5)

0en, combining equations (3)–(5) with the afore-
mentioned equations (1) and (2), the two most popular
calibration models in the literature could be obtained. By
substituting (1) into (2), a popular calibration model is given
as follows [7]:

BP � K1 ln(PTT) + K2. (6)

0e other popular physical calibration model is derived
by substituting (4) into (5), given as follows [8]:

BP �
K1

PTT + K2
, (7)

where K1and K2 are unknown subject-specific parameters
which are obtained by fitting reference BP with PTT in the
regression model.

Experimental studies have shown that 1/PTT, rather
than PTT, is linearly related to BP [11, 12]. In other words,
model (7) performs better in PTT-BP fitting than model (6).
However, no matter model (6) or model (7) are the MK
equation-based models, which could only indicate the
rhythmic HF-BP oscillation that was caused by the physical
activity [6]. 0e BP changes are not only HF-oscillating
caused by the exogenous driving but also LF-fluctuating due
to the autonomic nervous regulation [23].

2.2.Arterial BaroreflexRegulationModel. Arterial baroreflex
(ABR) is a major autonomic nervous regulation mechanism
which is responsible to stabilize BP [28]. 0e baroreceptors,
locating along all major arteries of the human body, sense
the BP changes and deliver a signal to the autonomous
nervous system (ANS). 0en, the ANS stabilizes BP through
a feedback regulation mechanism by HR like this: decrease
(increase) in BP leads to the consequent reduction (en-
hancement) in the HR. Meanwhile, the increase (decrease)
in HR causes the increase (decrease) in BP as a direct
feedforward effect. 0erefore, the ABR mechanism could be
described by a simplified double-loop feedback diagram
(Figure 1).

0e overall ABR regulation nonlinearly drives the heart
rate on the basis of the arterial pressure, which follows
a logistic model [28]:

HR(P) � HRl +
HRh −HRl

1 + e−ε P−Pn( )
, (8)

where, HRl and HRh are the lower and upper levels of heart
rate, respectively, Pn denotes the arterial pressure at the

midpoint of the heart rate range, and ε determines the slope
of the linear region (or sensitive region) in the overall ABR
regulation curve (Figure 2).

2.3. "e Time-Frequency Correlation Between BP, HR, and
PTT before and after Exercise. In the past studies, numerous
studies [25–27] have investigated the time-frequency cor-
relation between the variability of PTT, HR, and BP before
and after exercise. 0e variability of these physiological data
is defined as the variation between two consecutive data
points. Drinnan et al. [25] analyzed the cross-correlation
function between PTT and HR from 15 normal healthy
subjects during paced respiration. 0e results suggest that
the high HRV would significantly influence the PTTV. 0is
relationship between HRV and PTTV is negatively corre-
lated, i.e.,

HRV↑≫PTTV↓. (9)

Recently, using the recursive autoregressive model, Ma
and Zhang [26] and Liu et al. [27] investigated the time-
frequency correlation between BP, HR, and PTT in the LF
and HF components for the subjects before and after ex-
ercise. 0e results reveal that PTT is highly correlated with
HF-BP changes, but insignificantly correlated with LF-BP
changes. However, the cause behind this phenomenon is still
unclear. 0e possible reason is the mediation mechanisms of
ANS on the cardiovascular system and the inherent cor-
relations between the cardiovascular parameters.

2.4. Qualitative Analysis for the Failure of PTT in LF-BP
Estimation. Based on these research studies and the ABR
model, a qualitative analysis for the ineffective of PTT in LF-
BP estimation before and after exercise was proposed here.

As shown in Figure 2, under the sensitive ABR regulation
(the red box region), HR is increasing rapidly (high HRV)
while BP is slow varying (LF-BP changes). As aforemen-
tioned in (9), PTTV is highly coupled with HRV. In this
scenario, the high HRV significantly influences the fluctu-
ation of PTT.0e PTTwould change unpredictably that may
no longer follow the PTT-BP relationship model in (6) or
(7), and leads to the failure of PTTin the estimation of LF-BP
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Figure 1: 0e simplified diagram of ABR.
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changes. On the other hand, under the nonsensitive ABR
(region outside the red box), HR is slow varying (low HRV)
as BP is increasing rapidly (HF-BP). 0erefore, PTT is less
affected by the HRV during the nonsensitive ABR regulation
and predicts the HF-BP well. In brief, the high HRV may
have unexpected effects on PTT under the ABR regulation.
0ese ABR-model-based qualitative analysis results could
explain the poor performance of PTT in LF-BP estimation
well. It inspired us that ABR regulation is possibly the main
cause for the failure of PTT in LF-BP estimation before and
after exercise. However, further quantitative analysis should
be implemented to confirm that. In the following sections,
we investigated the correlation between the ABR sensitivity
and the estimation error of PTT-based BP in HF-band and
LF-band separately.

3. Methodology

3.1. Data Collection and Protocol. In our previous research
[29], synchronous ECG, PPG, and reference BP data were
collected on 42 healthy adults (21 males) with a mean age of
25.6± 2.1 years (range 21–31 years) from 8:00 to 11:00 a.m. in
a quiet environment and at a constant room temperature of
22–25°C. 0ese volunteers were nonsmokers with no history
of cardiovascular diseases (CVDs) and no caffeine ingestion
6 h prior to the examination. Reference BP including systolic
blood pressure (SBP) and diastolic blood pressure (DBP)
was measured by Finapres (Finapres Medical System),
a noninvasive BP measurement system, with the finger cuff
on the right thumb and brachial cuff on the right upper arm.
ECG and PPG were acquired with lead-II ECG electrode and
PPG sensor (Biopac Systems) on left middle finger, re-
spectively. All the data collection was performed with
subjects in sitting position before and after a treadmill
running exercise. Treadmill running exercise is a commonly
used drugless method to increase the subject’s BP variation
range in trials [30]. 0e signals were recorded at the sam-
pling rate of 1000Hz. 0e ECG signal was filtered with

a 0.5Hz Butterworth high-pass filter and a 35Hz Butter-
worth low-pass filter. 0e PPG signal was filtered with
a 0.05Hz Butterworth high-pass filter and a 10Hz Butter-
worth low-pass filter. 0ese filter parameters are the default
setting that is recommended by the Biopac physiological
data acquisition system. Table 1 summarized the whole
experimental procedure for each volunteer. In total,
3∗ 42∗ 20-min ECG, PPG, and reference BP signal were
collected.

3.2. Parameter Extraction and Data Processing. PTT is
usually calculated as the time interval between the ECG
R-waveform and (1) the peak point of PPG (PTT1), (2) the
maximal first derivate point of PPG (PTT2), or (3) the
minimum point of PPG (PTT3) among RR intervals (RRi) in
the same cardiac cycle (see Figure 3). However, due to the
motion artifact, the peak point or the minimum point of
PPG is easy to deform, which influences the measurement of
PTT1 and PTT3 in the experiment. 0erefore, we chose the
relatively more robust PTT2 [6] as the measurement of PTT
to ensure the test results, here. 0en, the obtained PTT was
applied to match the reference SBP and DBP with the
calibration model (7), which is recommended by Mukka-
mala et al. [6]. 0e PTT-BP relationship model was been
adaptively trained with the ordinary least squares (OLS)
algorithm which can be mathematically expressed as an
optimization problem as follows:

minω XωT −BPref
����

����
2
2,

(10)

where X � (1/PTT, 0), ω � (K1, K2) as given in (7) and
BPref is the referenced SBP and DBP.

In order to analyze the estimation accuracy of PTT-
based BP in LF and HF range separately, VMD technology
was utilized to decompose the estimated BP and reference
BP (including SBP and DBP) signal. VMD is a newly de-
veloped time-frequency analysis technique proposed by
Dragomiretskiy and Zosso [31]. Using VMD, the signal could
be adaptively decomposed into an ensemble of N (N> 1)
band-limited modes (BLMs) without the need of setting
frequency range artificially. Each BLM compacts around
a center frequency ωk determined by the signal itself. 0e
bandwidth for each BLM is calculated with the L2-norm of
the gradient of its Hilbert transformed signal. 0us, these
BLM could capture the intrinsic characters of the signal in the
time-frequency domain without artificial influence. To benefit
from this unique property of BLM, VMD technology has been
widely used in the biosignal processing [32–34]. Here, the
reference and estimated BP signals were decomposed into LF
and HF modes. 0is process was implemented with the help
of VMD Matlab toolbox software programmed by Drag-
omiretskiy and Zosso [31].

Figure 4 shows one segment for the time-frequency
decomposition results of the reference and the corre-
sponding estimated BP signal. It could be observed that the
spectral decomposition results of the estimated BP are
obviously different from those of reference BP, especially in
the LF regions. Similarly, in the time domain, the differences
between the estimated BP and the reference BP are more
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Figure 2: 0e schematic diagram of the overall ABR regulation
model.
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obvious in the LF region than those in the HF region. 0ese
results are consistent with the research results of Ma and
Zhang [26] and Liu et al. [27], i.e., the worse performance of
PTT in LF-BP estimation.

0en, the estimation errors of the PTT-based SBP/DBP
were calculated in LF, HF, and overall as follows:

e
n
LFSBPi � LF􏽤SBP

n

i − LFSBP
n
i ,

e
n
LFDBPi � LF􏽤DBP

n

i − LFDBP
n
i ,

e
n
HFSBPi � HF􏽤SBP

n

i −HFSBPn
i ,

e
n
HFDBPi � HF􏽤DBP

n

i −HFDBPn
i ,

e
n
SBPi � 􏽤SBP

n

i − SBP
n
i ,

e
n
DBPi � 􏽤DBP

n

i −DBP
n
i ,

(11)

where e is the estimation error, 􏽢[·] is the estimation value, the
rightmost subtrahend in the equations is the corresponding
reference BP value, n represents the nth subject, and i is the
ith data point.

0e ABR sensitivity is quantified by the clinical pa-
rameter baroreflex sensitivity (BRS) which is defined as the
RRi variations as a reaction to the change of BP. 0e most
widely applied BRS measuring method is the time-domain
approach, in which BRS (measured in ms/mmHg) is cal-
culated as the averaging regression coefficient between the
first-order difference of RRi (measured in ms) and SBP
(measured in mmHg) changes in the same direction
(dRRi> 0, dSBP> 0 or dRRi< 0, dSBP< 0, i.e., 1st and 3rd
quadrants) during a sliding window [35]. In this study, the

BRS is dynamically calculated with a one-point-overlapping
sliding window in size of 16 data points [35]. Figure 5 shows
the process of dynamic BRS calculation. 0e details of the
algorithm were described as the pseudocode in Table 2.

3.3. Correlation Evaluation. To confirm and pinpoint the
influence of ABR sensitivity on the PTT-based BP estima-
tion, the Pearson’s correlation coefficients r (represented in
terms of μ and SD) was utilized to calculate the correlation
between the estimation error of PTT-based BP and BRS for
each subject. Also, we applied the minimum absolute value
(MAV) to test the significance of the correlation coefficients.
0e specific formulas of these criteria are given as follows:

rn �
􏽐 e · BRS− 􏽐 e 􏽐BRS/M( 􏼁

������������������������������������

􏽐 e2 − 􏽐 e( 􏼁
2/M􏼐 􏼑􏼐 􏼑 􏽐BRS2 − 􏽐BRS( 􏼁

2/M􏼐 􏼑

􏽱 ,

μ �
1
N

􏽘

N

n�1
rn

⎛⎝ ⎞⎠,

SD �

������������

1
N

􏽘

N

i�1
rn − μ( 􏼁

2

􏽶
􏽴

,

MAV � min rn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩,

(12)

where n is the nth subject, N is the number of subjects, M is
the number of data points, and min[|·|] is the minimum
absolute value.

0e obtained data were contrastively analyzed stage by
stage. At first, the overall correlation coefficients were
compared between two groups: (1) eSBP versus BRS and (2)
eDBP versus BRS. It is to confirm if there is an overall
correlation between BRS and the estimation error of PTT-
based BP. 0en, the correlations are analyzed in LF and HF
sections comparatively: (1) eLFSBP versus BRS, (2) eLFDBP
versus BRS, (3) eHFSBP versus BRS, and (4) eHFDBP versus
BRS. It is designed to further test if there is relativity between
the ABR sensitivity and the failure of PTT in LF-BP esti-
mation. In each stage, the significance test of the difference
between two groups was implemented with a T-test. It was
expected to verify and confirm the influence of ABR on PTT-
based BP estimation with these contrastive analyses.

4. Experiment Results and Discussion

4.1.Overall CorrelationAnalysis. Figure 6 shows the boxplot
of the overall correlation coefficients for two groups: (1) eSBP
versus BRS and (2) eDBP versus BRS. 0e red line represents
the median value.0e bottom and top of the blue box are the
first and third quartiles of data distributions, respectively.
And, the black line represents 1.5 times the interquartile
range of upper and lower quartiles. It is observed that the
mean value of overall correlation coefficients in the group
eSBP versus BRS is higher than that in the group eDBP versus
BRS, indicating a closer relationship between eSBP and BRS.

Table 1: 0e experiment procedure.

Physiological
conditions Trial no. Time (min) Recording

Length (min)
Acclimatization 1 10 0
Sitting rest 2 10 10
Treadmill running
(8 km/h) 3 5 0

Sitting recovery 4 10 10

R-wave RRi

PTT1

PTT2

PTT3

Minimum point

Max 1st

derivative

Peak point

ECG
PPG

Figure 3: 0e definition of PTT and RR interval.
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However, it is worth noting that the correlation coefficients
of each group are changing in both positive and negative
regions. It reveals that the overall correlation for eSBP-BRS
and eDBP-BRS is uncertain.

Table 3 lists the evaluation criteria for the correlation
coefficients in detail. Especially, the MAV of the correlation
coefficients in the group of eSBP versus BRS and eDBP versus

BRS are 0.031 and 0.043, respectively.0is near-zero value of
MAV indicates the lack of correlation between ABR sen-
sitivity and the overall PTT-based BP estimation error. It
indicated that the ABR mechanism could not fully explain
the estimation errors of PTT-based BP.

4.2. Correlation Analysis of the ABR Sensitivity and the Es-
timation Error for PTT-Based LF- and HF-BP. In addition,
we compared the correlation coefficients between the PTT-
based LF- and HF-BP estimation error and BRS, separately.
As shown in Figure 7, it is observed that the correlation
coefficients in the groups of eLFSBP versus BRS and eLFDBP
versus BRS are more central around their mean values than
those in the groups of eHFSBP versus BRS and eHFDBP versus
BRS. Also, the mean values of the correlation coefficients in
LF sections (eLFSBP versus BRS, eLFDBP versus BRS) are ap-
parently higher than those in HF sections (eHFSBP versus
BRS, eHFDBP versus BRS). In other words, there is a higher
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Figure 4: One exemplary reference BP signal decomposition results in time and frequency domain. (a) 0e reference DBP spectral
decomposition. (b) 0e reference DBP. (c) 0e estimated DBP spectral decomposition. (d) 0e estimated DBP. (e) 0e reference SBP
spectral decomposition. (f ) 0e reference SBP. (g) 0e estimated SBP spectral decomposition and (h) the estimated SBP.
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Figure 5: Dynamic BRS calculation. dRRi and dSBP are the first-
order forward difference of RRi and reference SBP, respectively.

Table 2: 0e pseudocode of BRS calculation.
Initialize
0e sliding-window start data-point number w � 0
Searching the sliding window:
Set inside-window start data-point number i � 0

Repeat
i � i + 1,

if (dRRi(w + i)< 0 and dSBP(w + i)< 0)
Register i in the first-quadrant array

else if (dRRi(w + i)> 0 and dSBP(w + i)> 0)
Register i in the third-quadrant array

Until i � 16
Calculate the regression coefficient between dRRi (i) and dSBP
(i) in the first-quadrant and third-quadrant separately:R1 andR2

BRS in the wth sliding-window is calculated as:
BRS w � (R1+R2)/2, w � w + 1.

go to Searching the sliding window;
until the last data-point is reached
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correlation between the ABR sensitivity and PTT-based LF-
BP estimation error.

0e detailed evaluation criteria for the correlation co-
efficients listed in Table 4 also indicate the higher correlation
between the ABR sensitivity and PTT-based LF-BP esti-
mation error. 0e mean value± standard variation of the
correlation coefficients in the group of eLFSBP versus BRS and
eLFDBP versus BRS is 0.817± 0.038 and 0.411± 0.145, re-
spectively. In contrast, the correlation coefficients for the
group of eHFSBP versus BRS and eHFDBP versus BRS are only
0.403± 0.145 and 0.274± 0.154, respectively.0eMAV value

is 0.522 and 0.355 in the LF group of eLFSBP versus BRS and
eLFDBP versus BRS, respectively. However, the MAV is only
0.071 and 0.080 in the HF group of eHFSBP versus BRS and
eHFDBP versus BRS, respectively. In the t-test of the difference
between the LF and HF class, significant differences were
found (p< 0.01).

0ese results clearly suggested that there is a high cor-
relation between the PTT-based LF-BP estimation error and
ABR sensitivity. Nevertheless, no correlation has been found
between the PTT-based HF-BP estimation error and ABR
sensitivity. It is consistent with the results of qualitative
analyses in Section 2.4.

5. Conclusion and Further Works

In this paper, we analyzed the poor performance of PTT in
LF-BP estimation for the subjects before and after exercise.
At first, based on the ABR model, the influence of ABR
sensitivity on PTT-based BP estimation was analyzed. It was
found that HR may have the unexpected effects on PTT in
the LF section under the ABR regulation, which could help
to explain the cause behind the failure of PTT in LF-BP
estimation. 0en, the physiological data from 42 volunteers
were collected to verify this hypothesis through correlation
analysis between the ABR sensitivity and the estimation
error of PTT-based BP in different frequencies. For the
overall correlation analysis (Table 3), no obvious correlation
was found between the ABR sensitivity and the PTT-based
SBP and DBP estimated error. 0e r value is 0.533± 0.109
and 0.411± 0.145 for the SBP and DBP group, respectively.
However, in the comparative correlation analysis (Table 4),
remarkable differences (p< 0.01) on the correlations of ABR
sensitivity and PTT-based BP estimation error have been
observed among LF and HF groups. Especially, in the
correlation analysis of ABR sensitivity and the PTT-based
LF-BP estimation error, very high r values of 0.817± 0.038
and 0.757± 0.069 are observed in the SBP and DBP group,
respectively. In contrast, for the correlation of ABR sensi-
tivity and PTT-based HF-BP estimation error, only r values
of 0.403± 0.145 and 0.274± 0.154 are viewed in the SBP and
DBP group, respectively. Moreover, it is worth noting that
the MAV values in the LF group are all higher than those in
the HF group.

0ese experiment results indicated that there is a defi-
nitely high correlation between the error of PTT-based LF-
BP estimation and the ABR sensitivity for the subjects before
and after exercise. To the best of our knowledge, this phe-
nomenon has not been mentioned in the previous studies.
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Figure 7: Boxplots of the correlation coefficients in LF (eLFSBP
versus BRS, eLFDBP versus BRS) and HF (eHFSBP versus BRS, eHFDBP
versus BRS) sections.

Table 4:0e correlation for BRS and BP estimation error in LF and
HF sections.

Classes Groups
Pearson’s correlation

coefficients (r)
μ SD MAV

p< 0.01
LF eLFSBP vs BRS 0.817 0.038 0.522

eLFDBP vs BRS 0.757 0.069 0.355

HF eHFSBP vs BRS 0.403 0.145 0.071
eHFDBP vs BRS 0.274 0.154 0.080
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Figure 6: Boxplot of the overall correlation coefficients between the
PTT-based SBP and DBP estimated error and BRS.

Table 3: 0e overall correlation for BRS and BP estimation error.

Groups
Pearson’s correlation coefficients (r)

(p< 0.05)
μ SD MAV

eSBP vs BRS 0.533 0.109 0.031
eDBP vs BRS 0.411 0.145 0.043
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0is is also the most important finding in this study. It
suggested that there is an ABR-related complex LF auto-
nomic regulation mechanism on BP, PTT, and HR, which
influences the estimation accuracy of PTT in LF-BP for the
subjects before and after exercise. 0is finding also gave
some possible inspirations to help constructing a better
PTT-based BP estimation model that: (1) to weaken the
influence of ABR, HR is an important parameter that should
be considered in improving the accuracy of PTT-based LF-
BP estimation; and (2) a weighted frequency-dependent
model is required to better estimate BP from PTT. How-
ever, it should be noted that there are some limitations in
this study. Due to the complexity of cardiovascular system,
ABR could not be the only reason for the failure of PTT in
LF-BP estimation. 0e details should be investigated with
more different cardiovascular parameters from the subjects
under different conditions in further work.
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