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ABSTRACT
Background. Bayesian networks are directed acyclic graphical models widely used
to represent the probabilistic relationships between random variables. They have
been applied in various biological contexts, including gene regulatory networks and
protein–protein interactions inference. Generally, learning Bayesian networks from
experimental data is NP-hard, leading to widespread use of heuristic search methods
giving suboptimal results. However, in cases when the acyclicity of the graph can be
externally ensured, it is possible to find the optimal network in polynomial time.
While our previously developed tool BNFinder implements polynomial time algorithm,
reconstructing networks with the large amount of experimental data still leads to
computations on single CPU growing exceedingly.
Results. In the present paper we propose parallelized algorithm designed formulti-core
and distributed systems and its implementation in the improved version of BNFinder—
tool for learning optimal Bayesian networks. The new algorithm has been tested on
different simulated and experimental datasets showing that it hasmuch better efficiency
of parallelization than the previous version. BNFinder gives comparable results in
terms of accuracy with respect to current state-of-the-art inference methods, giving
significant advantage in cases when external information such as regulators list or prior
edge probability can be introduced, particularly for datasets with static gene expression
observations.
Conclusions. We show that the new method can be used to reconstruct networks in
the size range of thousands of genes making it practically applicable to whole genome
datasets of prokaryotic systems and large components of eukaryotic genomes. Our
benchmarking results on realistic datasets indicate that the tool should be useful to a
wide audience of researchers interested in discovering dependencies in their large-scale
transcriptomic datasets.

Subjects Bioinformatics, Computational Biology
Keywords Bayesian networks learning, Gene regulatory networks inference, Parallel and
distributed computing

INTRODUCTION
Bayesian networks (BNs) are graphical representations of multivariate joint probability
distributions factorized consistently with the dependency structure among variables. In
practice, this often gives concise structures that are easy to interpret even for non-specialists.
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A BN is a directed acyclic graph with nodes representing random variables and edges
representing conditional dependencies between the nodes. Nodes that are not connected
represent variables that are independent conditionally on their parent variables (Friedman
& Koller, 2003). In general, inferring BN structure is NP-hard (Chickering, Heckerman &
Meek, 2004), however it was shown by Dojer (2006) that it is possible to find the optimal
network structure in polynomial time when datasets are fixed in size and the acyclicity of
the graph is pre-determined by external constraints. The acyclicity can be ensured in two
cases: when inferring dynamic BNs from time-series data (the ‘‘unrolled’’ graph, i.e., graph
with a copy of each variable in each discretized time point, is always acyclic), or when
user defines the regulation hierarchy restricting the set of possible edges in case of static
BNs (for example, by introducing the list of potential regulators). Therefore the minimal
information required to infer dynamic BN is expression values matrix, and in case of static
BN—expression values matrix and the list of potential parent variables.

This algorithm was implemented in BNFinder—a tool for BNs reconstruction from
experimental data (Wilczyński & Dojer, 2009).

One of the common use of BNs in bioinformatics is inference of interactions between
genes (Zou & Conzen, 2005) and proteins (Jansen et al., 2003). Even though it was
originally developed for this purpose, BNFinder is a generic tool for reconstructing
regulatory interactions. Since its original publication, it was successfully applied to linking
expression data with sequence motif information (Dabrowski et al., 2010), identifying
histone modifications connected to enhancer activity (Bonn et al., 2012) and to predicting
gene expression profiles of tissue-specific genes (Wilczynski et al., 2012).

BNFinder is implemented in Python programming language and is therefore available
for most modern operating systems. It is a command line tool, but the usage is quite
easy even for the scientists without a strong Computer Science background. The learning
data must be passed to BNFinder in a text file split into 3 parts: preamble, experiment
specification and experiment data. The preamble allows users to specify some features of
the data and/or network, while the next two parts contain the learning data, essentially
formatted as a table with space- or tab-separated values. For example, if the user wants
to infer the network with four genes {G1, G2, G3, G4}, where G1 and G2 are known
transcription factors, the input file would look like Table 1.

In cases when more information is available about the experiment, the preamble section
of the input file can be used to incorporate perturbational data, prior probabilities of the
genes interaction or the expected structure of the signaling pathway (especially in caseswhen
one expects cascade activation of the regulatory factors). These parameters are not required
but they can substantially increase the accuracy of inferred network. Readers interested in
applying BNFinder to their own data might find it useful to look through the BNFinder
tutorial (https://github.com/sysbio-vo/bnfinder/raw/master/doc/bnfinder_tutorial.pdf),
which includes several working examples of simple and more complex usage scenarios.

BNFinder supports several output formats, the simplest of which is SIF (Simple
Interaction File), where each line represents the fact of a single interaction between two
variables. The SIF output for the network in Table 1 shows positive correlation between
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Table 1 An example of BNFinder input learning data for inferring static BN with four genes, where
genes G1 and G2 are regulators (transcription factors). The first line denotes preamble (in this case -
regulators list), the second line—experiment specifications (the list of experiments names), and the rest of
lines denote experiment data (gene expression values).

#regulators G1 G2

conditions EXP0 EXP1 EXP2 EXP3 EXP4 EXP5

G1 0.2 3.4 1.3 7.4 2.2 0.4
G2 4.5 7.8 0.3 5.6 3.3 1.1
G3 1.0 2.9 0.8 5.5 1.6 2.8
G4 3.2 6.5 0.5 3.1 8.2 5.0

G1 and G3, G2 and G4 genes:

G1 + G3

G2 + G4

The detailed explanation on all input parameters and their influence on output data
is described in the user manual, freely available from the dedicated github repository—
https://github.com/sysbio-vo/bnfinder/raw/master/doc/bnfinder_doc_all.pdf.

Even though BNFinder can be applied to many different datasets, the practical usage of
the algorithm is limited by its running times that can be relatively long. Since the algorithm
published by Dojer (2006) has the capacity to be parallelized by design and the current
version of BNFinder (Dojer et al., 2013) has only a simple parallelization implemented,
we have developed a new version that takes advantage of multiple cores via the python
multiprocessing module and gives better performance.

IMPLEMENTATION
The general scheme of the learning algorithm is the following: for each of the random
variables find the best possible set of parent variables by considering them in a carefully
chosen order of increasing scoring function. This function consists of two components:
one is penalizing the complexity of a network and the other one is evaluating the possibility
of explaining data by a network. The acyclicity of the graph allows to compute the parents
set of each variable independently, therefore algorithm first starts with computing scores
for all possible singleton parents sets for a given random variable. Then it checks if penalty
on increasing parents set size is too high or if it reached user defined parents set size limit,
and if no—proceeds with two-element parents sets and so on. The detailed description of
the algorithm and scoring functions is given in Dojer manuscript (Dojer, 2006).

Current parallelization in BNFinder version 2 (Dojer et al., 2013) can be considered
variable-wise as it distributes the work done on each variable between the different threads.
However, such approach has natural limitations. Firstly, the number of parallelized tasks
cannot exceed the number of random variables in the problem, meaning that in the cases
where only a few variables are considered (e.g., in classification by BNs) we get a very
limited performance boost. Secondly, variable-wise parallelization might be vulnerable (in
terms of performance) to the datasets with highly heterogeneous variables, i.e., variables
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whose true dependency graph has a wide range of connections. As the time spent on
computing parent sets for different variables varies - it leads to uneven load of threads.
In biology we usually observe networks with scale-free topology consisting of a few hub
nodes with many parents and a large number of nodes that have one or small number
of connections (Barabasi & Oltvai, 2004). If one applies variable-wise algorithm to such
networks the potential gain in the algorithm performance is not greater than in the case
where all the nodes have as many parents as the hub node with the largest parent set.

While variable-wise algorithm is the most straightforward one, it is also possible to
consider different possible parents sets in parallel, as is the case for the set-wise algorithm.
It means that in the first step we compute singleton parents sets using all available threads,
in the second step we compute two-element parents sets in parallel and so on, until we
reach parents sets size limit or scoring function limit. However, the set-wise algorithm
requires more synchronizations between the threads (McCool, Reinders & Robison, 2012) in
comparison with the variable-wise. On top of that allocating large number of cores to the
variable whose parents set is very quick to compute may result in lower performance due
to the context switching. The latter is the process of storing the state of a thread, so it can
be restored and execution resumed from the same point later. Context switch is governed
by operating system and has a cost in performance, therefore if we allocate 100 cores to the
variable which true singleton parent is found in the first step (which is quick to compute
as we only need to score single parent-variable interactions), it would probably take more
time than when allocating 10 cores. As it is difficult to tell, which problem might be more
important in practice, we have implemented and tested two approaches: set-wise only
and hybrid one - a natural combination of variable-wise and set-wise. It should be noted
that, while the variable-wise parallelization was already implemented in the BNFinder, the
set-wise and hybrid methods are novel in this particular application.

Figure 1 shows parallelization algorithms schema in a simplified way for better
understanding. As stated above, set-wise algorithm uses each given core to compute
parents sets for one gene and after finding parents it proceeds with the next gene. On the
contrary, hybrid algorithm uniformly distributes cores between genes, for example, if a
user has three genes in the network and six cores available, each gene will have two cores
for computing its parents set. If there are seven cores available, one gene will have three
cores, while other two genes will have two cores. Thus, once the gene is processed, the freed
cores cannot be allocated to other genes, which may be a potential disadvantage.

So, the pure theoretical complexity of set-wise (left side of inequality) and hybrid (right
side of inequality) algorithms can be described in the following way:∑n

i=1 ti
k
=

(avgni=1ti)n
k

≤
(maxni=1 ti)n

k
where k is the cores number, n is the number of random variables, and ti is the time one
needs to compute optimal parents set for the ith variable using one core.

Thus, the time to reconstruct the whole network in case of a set-wise approach is the
sum of time needed for each random variable, which is in fact average time one spends
on finding the parents set for one variable, while inferring BN with a hybrid approach is
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Figure 1 Parallelization algorithms schema. For simplicity the plot depicts the case with two random
variables (genes, proteins or other biological entities), three parents (regulators), and four CPUs.
However, this example can be easily extended to more variables, and in the end the user gets output as
shown on Result subplot. After considering parents sets of a same size BNFinder checks if either parents
set size limit is reached or scoring function penalty is too high to decide if proceed next. (A) Variable-wise
algorithm can only parallelize between variables, therefore out of four CPU it uses only two. (B)Hybrid
algorithm uses two levels of parallelization—between variables and between parents sets of each variable,
thus, it uses two CPUs per variable in a given example. In general it uniformly distributes cores among
variables. (C) Set-wise algorithm implements parallelization between parents sets only, thus, considering
variables sequentially and using four CPUs per variable.

Full-size DOI: 10.7717/peerj.5692/fig-1

bounded by the maximum time one spends on one variable. This estimate does not take
into account the time, which operating system spends on multi-threading or accessing the
disk storage.

RESULTS
Performance testing
Algorithms comparison
We compared implementations of three different algorithms: variable-wise, set-wise and
hybrid. The original implementation (variable-wise) serves as a baseline for computing
the speed-up and efficiency of the parallelization. For testing we used synthetic benchmark
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Figure 2 Synthetic data testing. Comparing performance (A), speed-up (B) and efficiency (C) of
algorithms on synthetic benchmark data: 20 variables×2,000 observations. Speed-up is a ratio of the
performance with increase of the cores number. Efficiency is a speed-up normalized by the number of
cores.

Full-size DOI: 10.7717/peerj.5692/fig-2

data as well as real datasets concerning protein phosphorylation network published by
Sachs et al. (2005). The efficiency is defined as speed-up divided by the number of cores
used.

Set-wise and hybrid algorithms performance on a 20-gene synthetic network was
very similar, while the speed-up and efficiency comparison revealed more differences
between the algorithms (see Fig. 2). There is no regulators list for this network, so
BNFinder reconstructed a dynamic BN.Hybrid algorithm showedmore unstable behavior,
performing better when the number of cores correlates with the number of genes. It
outperformed set-wise when the number of cores exceeded the number of genes two times
at least, however it didn’t show any speed-up when increasing the number of cores from 42
to 50. The latter is easily explained by the algorithm design, since running time is bound by
the most computationally complex variable, using 41–59 cores cannot give performance
boost as long as this variable provided with one core only.

The Sachs et al. network we tried next has 11 proteins. The regulators are selected
from those proteins and introduced in the cascade manner, which denotes expected
layer structure of the signaling pathway. The derivation of the structure relied on
the simultaneous measurement of multiple phosphorylated protein and phospholipid
components in thousands of individual primary human immune system cells. Perturbing
these cells withmolecular interventions drove the ordering of connections between pathway
components. We took the data from the article, and transformed it into the format suitable
for BNFinder. In particular, first layer can regulate all the following, while each next one
cannot regulate previous layers. On the first layer only singleton parents set is possible
consisting of plcg protein, on the second layer we have two regulators, PIP3 and previously
defined plcg, making it possible to search for singleton and two-element parents sets for
the rest of proteins, and so on.

Sachs et al. data showed significant difference between two algorithms. Clearly, the
set-wise algorithm outperforms the hybrid one: using 11 cores it showed 8× speed-up,
while the hybrid algorithm showed only 1.5× speed-up (see Fig. 3). Hybrid algorithm
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Figure 3 Sachs et al. data testing. Comparing performance (A), speed-up (B) and efficiency (C) of
algorithms on protein phosphorylation data: 11 variables× 1,023 observations (Sachs et al., 2005).
Speed-up is a ratio of the performance with increase of the cores number. Efficiency is a speed-up
normalized by the number of cores.

Full-size DOI: 10.7717/peerj.5692/fig-3

performance was hindered by highly heterogeneous variables in the input data, because out
of the 11 proteins in the network pakts473 has 6 parents, p44/42 has 3 parents, while others
have 1–2 parents. Importantly, the better performing algorithm is also the one showing
more consistent behavior.

However, the way the regulators are introduced in the input file produces uneven load
by itself, as each next variable has bigger set of potential parents. Therefore, we generated
more benchmark data with different number of regulator and target genes, where we could
define regulators in one layer manner or similar to Sachs data. Moreover, the underlying
structure of generated networks was designed to be heterogeneous. Namely, it contains
genes with gradually increasing number of parents: first gene has zero regulators, second
gene—one regulator, third—two regulators and so on. The datasets were generated with
BayesGen.py script that is included in the supplementary material. It takes the desired
connectivity between variables and simulates the observations as emissions from a BN with
bimodal Gaussian distributions of variables.

The results of multiple tests showed that introducing complex layer structure of
regulators always resulted in the hybrid algorithm poor performance. It either showed
much worse results regardless of the number of cores as in Fig. 3 or it showed comparable
speed-up when the number of cores was three times bigger than the number of genes.
In cases when regulators were supplied as one single list both algorithms showed results
similar to those in Fig. 2, namely the set-wise algorithm was better when the number of
cores was lower than the number of genes, while the hybrid algorithm was better in the
opposite case (although there was no such dramatic difference as in the case of the layered
regulators structure). The more observations per regulator-target interaction we had, the
better BNFinder predicted the network structure. However, as we studied running times
per gene we observed that variables with the biggest number of parents did not always
result in the longest computations. The latter is explained by how the scoring function
works. BNFinder stops when the penalty for increasing the set of parents is so big that it
cannot improve beyond what it has already found. In general, if the optimal parent set
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is very good in predicting the child variable value BNFinder will finish searching earlier.
It means that the whole family of three-element parents sets can have worse scores than
the two-element parents set, but the algorithm will proceed further because it has not yet
reached the penalty on increasing the set size.

In particular, running times also depend on the number of observations and the
number of nodes in the networks. For example, Fig. 4 shows that increasing the number
of observations by 10× leads to 12× longer running time for the network of the same size,
while 8-gene networks take 3 times longer to compute in comparison to 7-gene networks
having the same number of observations.

Since there is no obvious winner between set-wise and hybrid algorithms, we decided
to provide users with both options with set-wise being the default algorithm.

Tests on benchmark and Sachs data were performed on the same server with AMD
Opteron (TM) Processor 6,272 (4 CPUs with total of 64 cores) and 512GB RAM. During
the tests the server was loaded only by regular system processes, but to ensure statistical
significance we performed each test five times, plotting average values with standard
deviations.

Distributed computations testing
For the new version of BNFinder we also implemented an option for distributed usage of
the tool. The idea is quite simple and did not require specific python libraries or tools.
The user has to submit the file with subset of genes as input argument, so BNFinder can
calculate partial result. When all the genes are processed user must place all the results into
one folder and run BNFinder again, so it will aggregate the results.

For the tests we chose Challenge 5 (Genome-Scale Network Inference) data from
DREAM2 competition (Dialogue for Reverse Engineering Assessments and Methods)
(Stolovitzky, Prill & Califano, 2009; DREAM Initiative, 2009). Challenge data is a log-
normalized compendium of Escherichia coli expression profiles, which was provided by
Tim Gardner to DREAM initiative (Faith et al., 2007). The participants were not informed
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Table 2 DREAM2 Challenge 5 data testing. BNFinder set-wise algorithm is used with 4 cores and 4 genes per task. The tasks were then distributed
among computational nodes. l stands for BNFinder parents sets limit. CLR with cutoff means limiting output results to 100,000 genes interactions.

CLR CLR with cutoff BNF, l = 1 BNF, l = 2 BNF, l = 3 BNF, l = 3
Intel Xeon E5345 Intel Xeon E5-2690

CPU time, hours 0.7879 0.1999 2.0021 383.7149 109,200 54,800
Actual time, hours 0.2626 0.0666 0.0667 12.7904 336 169
Total CPU number 3 3 30 30 ∼325 ∼325

about the data origin and were provided only with 3,456 genes × 300 experiments dataset
and the list of transcription factors.

BNFinder was tested with different parents set limit parameter value (i.e., maximum
number of potential parents), which increases the computation time dramatically in
non-linear way, especially in case of dataset with many variables. We compared set-
wise algorithm performance with context likelihood of relatedness (CLR) algorithm -
an extension of the relevance networks approach, that utilizes the concept of mutual
information (Faith et al., 2007). We chose CLR, because it is very fast and easy to use tool,
which provides good results. In addition, CLR-based algorithm - synergy augmented CLR
(SA-CLR) was best performed algorithm on Challenge 5 (Watkinson et al., 2009).

The CLR tests were performed on the GP-DREAMplatform, designed for the application
and development of network inference and consensus methods (Reich et al., 2006).
BNFinder tests were done within Ukrainian Grid Infrastructure (VO ‘‘Infrastructure’’,
2011), which was accessed through nordugrid-arc middleware (arc client version 4.1.0
(Ellert et al., 2007)), so the tasks submitting process was automated and unified. The results
presented in Table 2 are not precisely comparable due to differences in used hardware,
especially when using such heterogeneous environment as Grid. In addition, we could not
obtain stable number of cores over time with the Grid, as the clusters were loaded with
other tasks. However, running times can give a rough estimate for those who plan to use
BNFinder on large datasets.

Even though computing with parents sets limit of 3 takes significant amount of time and
resources, it is clear that BNFinder is able to reconstruct genome-scale datasets, significantly
broadening its application range after it was adapted to parallel and distributed computing.

Accuracy testing
Previously we compared accuracy of BNFinder algorithm with Banjo (Wilczyński & Dojer,
2009) on data provided with the tool and separately on Sachs data (Dojer et al., 2013),
which we used in this work to test the performance. Here we performed accuracy testing
on 14 different datasets, both synthetic and taken from microarray experiments. No other
additional data or information was used for the networks inference except those mentioned
in the datasets description below.

DREAM2 Genome Scale Network Inference 3,456 genes ×300 experiments dataset,
log-normalized compendium of Escherichia coli expression profiles described above
(Stolovitzky, Prill & Califano, 2009). Transcription factors list is provided with the data.
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Table 3 Gene regulatory network inference methods used for benchmarking.

Inference Approach Method

Co-expression algorithms MutRank (Obayashi & Kinoshita 2009)
Information-theoretic approaches CLR (Faith et al. 2007), ARACNE (Margolin et al. 2006), PCIT

(Reverter & Chan 2008), C3NET (Altay & Emmert-Streib 2010)
Feature selection approaches MRNET (Meyer et al. 2007), MRNETB (Meyer et al. 2010), Genie3

(Huynh-Thu et al. 2010)
Bayesian model averaging FastBMA (Hung et al. 2017)

DREAM4 In Silico Network Challenge: time course datasets showing how the simulated
network responds to a perturbation and how it relaxes upon its removal. There are 5
different datasets with 10 and 100 genes each. For networks of size 10, datasets consist of
5 different time series replicates, while networks of size 100 has 10 time series replicates.
Each time series has 21 time points (Stolovitzky, Monroe & Califano, 2007).

Yeast time series: 102 genes ×582 experiments datasets with time series after drug
perturbation from the yeast rapamycin experiment described in Yeung et al. (2011). There
are 582/6= 97 replicates (the 95 segregants plus two parental strains of the segregants), each
with measurements at 6 time points. Prior probabilities of gene regulations are provided.

Yeast static: 85 genes× 111 experiments subset of the data used for network inference in
yeast by Brem & Kruglyak (2005). Prior probabilities of genes regulations are provided. TF-
gene regulations were extracted from YEASTRACT repository (http://www.yeastract.com,
version 2013927).

Yeast static synthetic: 2,000 genes ×2,000 experiments dataset generated using GNW
simulator (Schaffter, Marbach & Floreano, 2011) by extracting parts of known real network
structures capturing several of their important structural properties. To produce gene
expression data, the simulator relies on a system of non-linear ordinary differential
equations. TF-gene regulations were extracted from YEASTRACT repository (version
2013927). The adjacency matrix of true underlying network structure of this dataset has
symmetrical form, therefore it is not possible to evaluate the direction of interaction in this
case.

DREAM2 data was downloaded from the challenge website, DREAM4, YeastTS (time
series), and Brem data was imported from NetworkBMA (Young, Raftery & Yeung, 2014) R
package, while synthetic Yeast static data (GNW2000) was imported from NetBenchmark
(Bellot et al., 2015) R package.

Table 3 summarizes gene regulatory network inference methods we used for
benchmarking. Specifically, we used FastBMA method implemented in NetworkBMA
R package, while the rest of the methods were accessed through NetBenchmark, a
bioconductor package for reproducible benchmarks of gene regulatory network inference.
The methods were used with default parameters, while for FastBMA, Genie3 and BNFinder
prior edge probabilities and TF-gene regulations were supplied where applicable.

We used two metrics to assess methods performance: Area Under the Precision
Recall curve (AUPR) or Area Under Receiver Operating Characteristic curve (AUROC),
implemented in MINET R package (Meyer, Lafitte & Bontempi, 2008). However, this
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Table 4 DREAM2 Genome Scale Network Inference. BNFinder and CLR are compared with the best
scored method using 100% of output interactions. BNFinder is used with parents sets limit 1 and subopti-
mal parents sets 100, CLR is used with default parameters. Evaluation of BNF on TF-TF free gold standard
is provided as well. All the output interactions are considered for calculating areas under curves.

CLR BNF BNF, gold standard Winner: Team 48
without TF-TF

AUPR 0.051398 0.028769 0.030584 0.059499
AUROC 0.617187 0.606326 0.629420 0.610643

approach gives an estimation of the global behavior of the method, therefore in
NetBenchmark package Bellot et al. (2015) evaluated the inferred networks using only
the top best 20% of the total number of possible connections. The latter allows us to
correctly compare methods with sparse and concise outputs. We used both MINET and
NetBenchmark evaluation functions in order to assess the impact on methods rankings.

FastBMA, Genie3 and BNFinder methods allow us to infer directed interactions,
therefore they were additionally evaluated on directed gold networks (where applicable),
while for the undirected evaluation gold network adjacency matrices were converted to
symmetrical ones (higher edge probabilities are preserved) as well as outputs of directed
methods.

In case of static gene expression data FastBMA can infer the regulators of a particular
gene by regressing it on the expression levels of the other genes. Therefore we used the
method with time series data only.

We mostly used DREAM2 data for running times tests and evaluated accuracy of CLR
method only. The results of BNFinder and CLR tests are shown in Table 4.

We ranked AUROC and AUPR values across all the methods for each of five 10 and
100 genes network from DREAM4 challenge. Different evaluation strategies for 10-gene
networks showed quite a different results (Figs. 5 and 6), while 100-gene networks results
were more consistent among MINET and NetBechmark (Figs. 7 and 8). We believe that
networks of a small size might not be a good benchmark data as even a slightest change
in the obtained scores might disrupt rankings dramatically. This is especially valid for the
methods, which output might differ each run due to the nature of underlying algorithms
(e.g., regression, greedy hill climbing). There is no single best method for DREAM4 data,
while Genie3, MRNET, MRNETB, FastBMA, and BNFinder scored first at least once.

Yeast time series network inference showed extremely bad results for all the methods
with MutRank having slightly better AUROC= 0.58 and AUPR= 0.07 values according to
MINET package. In contrast to synthetic DREAM4 data which has 21 time points, YeastTS
has only 6, which could explain worse results.

Surprisingly, BNFinder significantly outperformed other methods when reconstructing
network from Brem at al. static gene expression data (Fig. 9). Importantly, Genie3 method
was also supplied with the same regulators list as BNFinder, but it has led to worse results
contrary to using Genie3 without regulators. The other methods were used without any
additional prior information as implemented in NetBenchmark package.
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Figure 5 DREAM4 10 genes network, evaluation byMINET package. Area under ROC (A) and PR (B)
curves are ranked across different methods: the highest value is ranked first, and the lowest—ranked last.
BNFinder is used with parents sets limit 2 and suboptimal parents sets 30.

Full-size DOI: 10.7717/peerj.5692/fig-5
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Figure 6 DREAM4 10 genes network, evaluation by NetBenchmark package. Area under ROC (A)
and PR (B) curves are ranked across different methods: the highest value is ranked first, and the lowest—
ranked last. BNFinder is used with parents sets limit 2 and suboptimal parents sets 30.

Full-size DOI: 10.7717/peerj.5692/fig-6
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Figure 7 DREAM4 100 genes network, evaluation byMINET package. Area under ROC (A) and PR (B)
curves are ranked across different methods: the highest value is ranked first, and the lowest—ranked last.
BNFinder is used with parents sets limit 2 and suboptimal parents sets 30.

Full-size DOI: 10.7717/peerj.5692/fig-7
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Figure 8 DREAM4 100 genes network, evaluation by NetBenchmark package. Area under ROC (A)
and PR (B) curves are ranked across different methods: the highest value is ranked first, and the lowest—
ranked last. BNFinder is used with parents sets limit 2 and suboptimal parents sets 30.

Full-size DOI: 10.7717/peerj.5692/fig-8
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Figure 9 Brem et al. Yeast dataset, evaluation by NetBenchmark package.Directed and non-directed
(with symmetrical adjacency matrix) gold standard network evaluation is shown in different colours. Area
under ROC (A) and PR (B) curves values are considered. Genie3.noregs is the result of Genie3 execution
without the regulators list. BNFinder is used with parents sets limit 2 and suboptimal parents sets 30.

Full-size DOI: 10.7717/peerj.5692/fig-9

We also studied the effect of the number of experiments on the accuracy of inferred
network. For GNW2000 synthetic Yeast data we performed two separate tests: one with full
dataset—2,000 experiments, and second with only 150 randomly selected observational
points. Figure 10 clearly shows that all the methods improved their results on the full
dataset, with BNFinder being among the top methods and having best AUPR on the
reduced dataset. Interestingly, we did not see such a major difference between BNFinder
and othermethods in contrast to Brem at al. data, given the same input parameters and both
datasets being of Yeast origin. It shows the importance of developing new gold standards
based on experimental data from model organisms as synthetic data only cannot reflect all
the complexity of biological interactions.

Exploring BNFinder parameter space. The main advantage of BNFinder in comparison
with heuristic search Bayesian tools such as Banjo is that BNFinder reconstructs optimal
networks, which also means that the same parameters lead to the same result. However,
with BNFinder one can use a number of input arguments such as scoring functions
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Figure 10 GNW 2000 genes Yeast synthetic dataset, evaluation by NetBenchmark package. Area un-
der ROC (A) and PR (B) curves values are considered. GNW 2,000 short dataset contains only 150 ob-
servations, while GNW 2,000 has all the 2,000 observations. The effect of observations number increase is
clearly seen for all the methods. Genie3.noregs is the result of Genie3 execution without the regulators list.
BNFinder is used with parents sets limit 2 and suboptimal parents sets 30.

Full-size DOI: 10.7717/peerj.5692/fig-10

Table 5 The number of the interactions in the output network based on different BNFinder parame-
ters.DREAM2 Genome Scale Network Inference data is used.

Subparents= 25 Subparents=50 Subparents= 100

Parent limit= 1 78,366 156,685 313,061
Parent limit= 2 65,108 116,424 213,389

(Bayesian-Dirichlet equivalence, Minimal Description Length or Mutual information
test), static or dynamic (also with self-regulatory loops) BNs, perturbation data, or even
prior information on the network structure. All of these may alter results significantly, so,
naturally we are interested in choosing best parameters for a particular dataset. Here we
studied the impact of two very important parameters: parents sets limit and number of
suboptimal parents sets (gives alternative sets of regulators with lower scores).

In Table 5 we have summarized the total number of interactions returned by BNFinder
with different maximal parents per gene and different number of suboptimal parent
sets. The results indicate that increasing the size of the allowed parent set leads to the
decrease in the total returned edges in the network. This may seem surprising at first, but
it is consistent with highly overlapping suboptimal parents sets. Theoretically, increasing
parents set limit should lead to better precision, while increasing the number of suboptimal
parents set should increase the number of false positives by adding lower scored parents.
However, it may depend on the particular dataset, especially on the number of observations
available. On top of that, in cases where using higher number of parents per variable is
computationally challenging, suboptimal parents may compensate for this limitation.

We studied the effect of different parameters by plotting AUPR against AUROC values.
Figure 11 shows that on 2,000 genes × 2,000 experiments synthetic dataset using two
parents per gene is always better than one, and increasing the number of suboptimal
parents leads to an increase in AUROC and a slight decrease in AUPR values. Inferring a
network from the same dataset with only 150 experiments sometimes resulted in a lower
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Figure 11 BNFinder parameter space examination on GNW 2000 genes Yeast synthetic dataset,
evaluation by NetBenchmark package.GNW 2,000 short dataset contains only 150 observations, while
GNW 2000 has all the 2,000 observations. Limit stands for parents set size limit, while subopt denotes the
number of suboptimal parents set in the output network.
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AUPR for two parents per gene cases in comparison with singleton parents sets. While
BNFinder scoring function penalizes for parents set size increase it might still produce false
positives when the number of observational points is low and the number of variables is
more than ten folds bigger. Importantly, zero (or very low) number of sub-optimal parent
sets leads to extremely sparse output network (the number of edges is much less than 20%
of all possible interaction) and therefore poor AUPR and AUROC values.

In general, we can conclude that if the user is interested in the very top of the strongest
interactions in the network, one should use small numbers of sub-optimal parent (up to
5) sets and small limit on the parent-set size (up to 3). However, if one is interested in
discovering the more global picture of the true regulatory network, one should focus on
the higher number of sub-optimal parent sets with limit on the set size as high as it is
computationally feasible.

The results of all performance and accuracy tests with the scripts to generate all the plots
are available from a dedicated github repository—https://github.com/sysbio-vo/article-
bnf-suppl.
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DISCUSSION
Performance
Despite seemingly complex behavior of the hybrid algorithm and many cases where the
hybrid and the set-wise algorithms can be applied, we can give users the best practice
guidance for BNFinder application. In case of small networks where number of variables
is 2 or more times less than the number of cores it is advised to use the hybrid algorithm,
because the set-wise would generate more context switching events per variable. The
same applies when a user imposes parent set limit equal or less than 3, which makes the
computational load per variable more even. In case when the complex layered structure of
regulators is introduced it is always better to use the set-wise. In case of big networks, when
the number of variables is greater than the number of cores in a single computational unit,
one can also use the new BNFinder feature, which allows to define subset of genes as it was
described in Distributed computations testing section of this paper. Defined subsets can
be computed separately and simultaneously on different computational units, and user
should apply the same logic when choosing parallelization algorithm as for the smaller
networks.

And finally, the user may just use the default parameters as set-wise algorithm did not
show major drop in performance in comparison to the hybrid one.

Accuracy of reconstruction
While we understand that there are many more tools for gene regulatory networks
reconstruction in the literature we believe that NetBenchmark package is representative
for the field since it incorporates state-of-the-art methods, which are based on a variety
of different algorithms. On top of that using benchmarking tool makes it easier for other
researchers to compare their methods to our results.

Measuring AUROC and AUPR values on 14 different datasets revealed that studied
methods behave differently on different datasets, and none of the methods scored best in
all cases. In general, time series data proved to be more challenging for the methods than
inferring network from static gene expression datasets. Our results on 10 genes networks
evaluation with top 20% and 100% interactions showed that such small networks can
hardly be used as the only source of comparison.

Testing BNFinder on the mentioned datasets we concluded that it performed best on
the static gene expression datasets with additional prior knowledge (transcription factors
list, prior edge probability between genes), while for other methods such as Genie3 the
same information did not yield significant improvement.

It should be noted, that in most of these scenarios, our knowledge of the true network
connections is also limited and different tools use different definitions of a meaningful
‘‘connection’’, therefore it is expected that, for example, a tool usingmutual informationwill
capture a different subset of connections than a tool using Bayesian-Dirichled equivalence.
While our opinion is that such automated methods will be gaining importance as their
accuracy increases, there is still a lot ofwork ahead of us on careful validation of the problems
various tools have and on refinement of the definitions of regulatory interactions.
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CONCLUSIONS
The improvement over previous version of BNFinder made it feasible to analyze datasets
that were impossible to analyze before by utilizing the power of distributed and parallel
computing. It allowed us to significantly extend the application range of the tool, and, for the
first time, to compare it with the best-performing non-Bayesianmethods. BNFinder showed
overall comparable performance on synthetic and real biological data, providing significant
advantage in cases when prior knowledge on genes interactions can be introduced.
This can lead to further research on the optimization of the BNFinder method for the
purpose of finding larger networks with better accuracy. We provide the new BNFinder
implementation freely for all interested researchers under a GNU GPL 2.0 license.
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