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Diffusion tensor imaging and 
voxel-based morphometry reveal 
corticospinal tract involvement in 
the motor dysfunction of adult-
onset myotonic dystrophy type 1
Jin-Sung Park1,2, Huijin Song3, Kyung Eun Jang4, Hyunsil Cha4, Sang-Hoon Lee4,  
Su-Keong Hwang5, Donghwi Park6, Hui Joong Lee7,8, Jun-Young Kim9 & Yongmin Chang7,10

Magnetic resonance imaging (MRI) studies have demonstrated that patients with myotonic dystrophy 
type 1 (DM1) exhibit gray and white matter abnormalities that are correlated with various genetic and 
neuropsychological measures. However, few MRI studies have focused on the correlations between 
brain abnormalities and overall motor function including gait performance. Here, we investigated the 
correlations between brain abnormalities, as assessed with MRI including diffusion tensor imaging 
(DTI), and motor performance, as assessed with the Medical Research Council sum score (MRCSS), 
6-minute walk test (6MWT), and hand grip power, in patients with DM1. Eighteen patients with DM1 
and twenty healthy controls participated in this study. The MRCSS and 6MWT reflect patients’ general 
motor performance, particularly gait, while hand grip reflects the presence of myotonia. We found 
significant relationships between DTI parameters in the corticospinal tract (CST) and genetic factors 
and motor performance in patients with DM1. These findings suggest that CST involvement reflecting 
deterioration of the motor tracts may play a significant role in clinical myotonia. Further, a direct 
relationship between the cortical gray matter volume and DTI measures in the CST suggests that white 
matter abnormalities in the CST are strongly associated with volume reductions in the sensorimotor 
cortex of patients with DM1.

Myotonic dystrophy type 1 (DM1; OMIM: #160900) is a multisystem disorder that affects the muscles, eyes, 
heart, endocrine system, and central nervous system. It is caused by the abnormal expansion of unstable CTG 
trinucleotide repeats in the 3′-untranslated region of the myotonic dystrophy protein kinase gene (DMPK), which 
results in the intranuclear accumulation of mutated and mis-spliced transcripts, leading to an RNA gain of toxic 
function1,2. Furthermore, recent pathological studies have shown the presence of neurofibrillary tangles, which 
may explain the brain abnormalities that are observed in patients with DM13–5.

Many previous magnetic resonance imaging (MRI) studies have revealed the presence of brain abnormalities 
in patients with DM1, including abnormalities in brain volume, cortical thickness, and white matter; several stud-
ies have also found that the structural abnormalities in gray and white matter were correlated with patients’ clin-
ical and neuropsychological data6–17. However, most of these previous MRI studies focused on the correlations 

1Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Korea. 2Department of 
Neurology, Kyungpook National University Chilgok Hospital, Daegu, Korea. 3Institute of Biomedical Engineering 
Research, Kyungpook National University, Daegu, Korea. 4Department of Medical & Biological Engineering, 
Kyungpook National University, Daegu, Korea. 5Department of Pediatrics, School of Medicine, Kyungpook National 
University, Daegu, Korea. 6Department of Rehabilitation, Daegu Fatima Hospital, Daegu, Korea. 7Department of 
Radiology, Kyungpook National University Hospital, Daegu, Korea. 8Department of Radiology, School of Medicine, 
Kyungpook National University, Daegu, Korea. 9Department of Orthopaedic Surgery, Daegu Catholic University 
College of Medicine, Daegu, Korea. 10Department of Molecular Medicine, School of Medicine, Kyungpook National 
University, Daegu, Korea. Jin-Sung Park and Huijin Song contributed equally. Correspondence and requests for 
materials should be addressed to Y.C. (email: ychang@knu.ac.kr)

Received: 12 June 2018

Accepted: 9 October 2018

Published: xx xx xxxx

OPEN

mailto:ychang@knu.ac.kr


www.nature.com/scientificreports/

2SCIENtIFIC Reports |  (2018) 8:15592  | DOI:10.1038/s41598-018-34048-9

between cognitive or neuropsychological impairments and abnormalities in gray and white matter. Although a 
few studies demonstrated possible correlations between brain abnormalities and motor performance in DM112,16, 
the specific relationship between brain abnormalities and overall motor function in DM1 has not been fully 
investigated. A few studies have attempted to show a relationship between motor function and brain abnormal-
ities based on motor weakness or myotonia12,17. The novelty of our study is that we simultaneously evaluated the 
motor performance based on both motor weakness and gait performance; thus, our approach reflects the overall 
cardiopulmonary system in these patients.

In the current study, we investigated the correlations between brain abnormalities, as assessed with voxel-wise 
quantitative MRI (including diffusion tensor imaging (DTI) methods such as cortical volume analysis, tract-based 
spatial statistics (TBSS), and segmented tract analysis), and motor performance, as evaluated with the Medical 
Research Council sum score (MRCSS), 6-minute walk test (6MWT), and hand grip power, in patients with DM1, 
relative to age-matched healthy controls. The MRCSS and 6MWT reflect a patient’s general motor performance, 
with an emphasis on gait, while the hand grip power test assesses a patient’s ability to relax voluntary muscles 
after vigorous effort, a function that is often significantly deteriorated in patients with DM1; this aspect presents 
clinically as myotonia. Specifically, our aims were to (1) investigate the relationships between white and gray mat-
ter abnormalities (especially in the corticospinal tract (CST)) and various genetic and clinical characteristics of 
patients with DM1, particularly motor performance; and (2) evaluate the possible relationship between changes 
in cortical gray matter volume and DTI measurements of the CST in patients with DM1, in order to establish 
whether the abnormalities in gray matter and white matter are independent processes.

Results
Clinical and genetic parameters.  The mean age of eighteen patients with DM1 was 44.22 (standard devi-
ation [SD], 10.61) years, and the mean age of twenty healthy controls was 46.50 (SD, 9.84) years. For patients with 
DM1, the mean age at onset was 27.9 (11.8) years. The number of CTG repeats ranged from 150 to 778, and the 
mean CTG length was 360 (215). Patients’ hand grip score, according to the modified Rankin scale, ranged from 
3 to 5, with the mean score being 3.61 (0.98). The mean disease duration was 16.3 (7.8) years.

Relationship between gray matter volume and genetic and clinical measures.  Table 1 shows the 
gray matter regions that were correlated with the genetic and clinical measures (CTG repeats, hand grip, and dis-
ease duration) of patients with DM1, as well as the results of the gray matter volume comparisons between DM1 
and healthy controls. We found that CTG repeats were significantly correlated with the bilateral middle occipital 
and lunate sulci, right lateral orbital sulcus, and right posterior ramus of the lateral sulcus. These gray matter 
regions exhibited significant volume reductions in DM1 compared to healthy controls.

Patients’ hand grip scores were significantly correlated with various cortical gray matter regions including sev-
eral limbic structures. Specifically, DM1 showed significant volume reductions in the left superior occipital gyrus, 
left superior part of the precentral sulcus, right postcentral gyrus, right anterior transverse temporal gyrus, right 
inferior segment of the circular sulcus of the insula, right middle occipital and lunate sulci, left amygdala, and 
left accumbens compared to healthy controls. The brainstem was correlated with disease duration and exhibited 
reduced volume in patients with DM1 vs. healthy controls (Table 1).

Clinical data Gray matter region Hemi- sphere r-value (p-value)

Volumea (SE)

P-valueHC DM1

CTG repeat

Middle occipital sulcus and lunatus sulcus
L −0.633 (0.005)** 1.426 (0.08) 1.154 (0.06) 0.008**

R −0.528 (0.024)* 1.297 (0.06) 1.024 (0.07) 0.005**

Lateral orbital sulcus R −0.563 (0.015)* 0.638 (0.04) 0.478 (0.03) 0.002**

Posterior ramus of the lateral sulcus R −0.530 (0.024)* 1.878 (0.05) 1.714 (0.05) 0.018*

Hand grip

Opercular part of the inferior frontal gyrus L 0.568 (0.014)* 2.863 (0.08) 2.947 (0.16) 0.632

Triangular part of the inferior frontal gyrus L 0.731 (0.001)** 2.393 (0.08) 2.249 (0.12) 0.326

Superior occipital gyrus L 0.652 (0.003)** 2.484 (0.10) 1.916 (0.08) <0.001**

Superior part of the precentral sulcus L 0.485 (0.041)* 2.147 (0.12) 1.697 (0.08) 0.004**

Parcentral lobule and sulcus R 0.491 (0.038)* 2.200 (0.07) 2.002 (0.10) 0.102

Postcentral gyrus R 0.493 (0.038)* 3.399 (0.10) 2.985 (0.13) 0.013*

Anterior transverse temporal gyrus R 0.589 (0.010)* 0.749 (0.04) 0.623 (0.04) 0.031*

Inferior segment of the circular sulcus of the insula R 0.546 (0.019)* 1.912 (0.05) 1.745 (0.06) 0.028*

Middle occipital sulcus and lunatus sulcus R 0.471 (0.048)* 1.297 (0.06) 1.024 (0.07) 0.005*

Caudate
L 0.638 (0.004)** 3.343 (0.09) 3.215 (0.13) 0.423

R 0.537 (0.022)* 3.525 (0.09) 3.435 (0.14) 0.580

Amygdala L 0.477 (0.045)* 1.634 (0.06) 1.374 (0.05) 0.002**

Accumbens L 0.511 (0.030)* 0.633 (0.03) 0.452 (0.03) <0.001**

Disease duration Brain stem −0.598 (0.009)** 18.651 (0.43) 17.014 (0.37) 0.007**

Table 1.  Between-group comparison of gray matter volume and correlations between gray matter volume and 
genetic and clinical measures. aUnit of volume: ml; * and **indicate p < 0.01 and p < 0.05, respectively.
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Voxel-wise group comparisons of DTI data and correlations with genetic and clinical fac-
tors.  The DTI data were subjected to TBSS, which reflects the structural integrity of the white matter. The 
results identified widespread reductions in fractional anisotropy (FA) and elevations in axial diffusivity (AD) and 
radial diffusivity (RD) in DM1 compared to healthy controls (Fig. 1). The CTG repeats were significantly corre-
lated with the posterior limb of the internal capsule (IC) and middle section of the CST (Table 2). Furthermore, 
the FA values in these motor-associated brain regions (posterior limb of the IC and middle section of the CST) 
showed strong correlations with patients’ performance on both the MRCSS and 6MWT, which reflect the motor 
function of patients with DM1 (Table 2). Significant differences in the DTI measures (FA, AD, and RD) of the 
posterior limb of the IC and middle section of the CST, which are important for motor function, were also iden-
tified between patients and healthy controls (Table 3).

Relationships between the diffusion parameters of the CST, forceps minor, and genetic and 
clinical measures.  Waypoint correlations between the CST and CTG repeats are shown in Fig. 2. The CTG 
repeats were negatively correlated with the FA and AD in the middle sections of the bilateral CST, which pass 
around the lateral ventricle and basal ganglia region (Fig. 2A,B). The CTG repeats were also positively correlated 
with the RD of the middle sections of the bilateral CST, though at fewer waypoints than the correlations with FA 
and AD (Fig. 2C). The right hemisphere of this region showed significantly elevated AD and RD values in patients 
with DM1 compared to healthy controls (Table 3). However, no significant group differences in the FA of the 
middle sections of CST in the right hemisphere or in the diffusion parameters (FA, AD, and RD) of the middle 
sections of CST in the left hemisphere were identified (Table 3).

Waypoint correlations between the CST and hand grip scores are shown in Fig. 3. The hand grip scores were 
negatively correlated with the FA and AD in the beginning sections of the left CST around the midbrain region 
(Fig. 3A,B). On the other hand, the FA and RD of the middle sections of the left CST were positively and nega-
tively correlated with hand grip, respectively (Fig. 3A,C). Patients with DM1 showed significantly elevated FA and 
AD in the midbrain section of the left CST compared to healthy controls (Table 3). However, in the middle section 
of the left CST, only the AD value was elevated in DM1 compared to healthy controls (Table 3).

Waypoint correlations between the diffusion parameters of the forceps minor (FMINOR) and hand grip and 
disease duration are shown in Fig. 4. Hand grip scores were positively correlated with the FA in the bilateral 
medial sections of the FMINOR (Fig. 4A). The AD of these regions was significantly elevated in patients with 
DM1 vs. healthy controls (Table 3). However, no significant differences in the FA and RD of the bilateral medial 
sections of the FMINOR were identified between the groups (Table 3). The disease duration was negatively cor-
related with the FA in the right middle section of the FMINOR (Fig. 4B). The AD of this region was significantly 
elevated in patients with DM1 vs. healthy controls, though no significant differences in the FA and RD of the 
right middle section of the FMINOR were noted between the groups (Table 3). The hand grip scores and disease 
duration were not significantly correlated with the AD and RD measures of the other waypoints of the FMINOR 
(Table 2).

Waypoint correlations between the CST and MRCSS and 6MWT are shown in Fig. 5. The MRCSS was posi-
tively correlated with the FA and AD in the middle section of the right CST (Fig. 5A,B). The RD of a similar region 
of the right CST was negatively correlated with the MRCSS (Fig. 5C). The AD and RD of the middle section of the 
right CST were significantly elevated in patients with DM1 compared to healthy controls (Table 3). No significant 

Figure 1.  Between-group comparison of TBSS. Data are presented at p < 0.05 corrected for multiple 
comparisons. Voxel-wise differences show (A) reduced FA (red-yellow map), (B) elevated AD (blue-green map), 
and (C) elevated RD (orange map) in patients with DM1. TBSS = tract-based spatial statistics; FA = fractional 
anisotropy; AD = axial diffusivity; RD = radial diffusivity; DM1 = myotonic dystrophy type 1.
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FA differences were noted between the groups in this region (Table 3). The 6MWT was positively correlated with 
only the FA in the upper region of the middle section of the right CST (Fig. 5D). In this region, patients with DM1 
showed significantly reduced FA and elevated AD and RD compared to healthy controls (Table 3).

Relationship between the CST diffusion parameters and motor cortex volume.  Waypoint cor-
relations between the diffusion parameters of the CST and the volume of the precentral and postcentral gyri are 
shown in Fig. 6. The precentral gyrus volume was positively correlated with only the FA in the ending sections of 
the CST, which are close to the motor cortex (Fig. 6A). The postcentral gyrus volume was significantly correlated 
with the FA, AD, and RD in similar sections of the CST with waypoint correlations between the precentral gyrus 
and CST (Fig. 6B–D). The AD and RD in these regions were significantly elevated in DM1 vs. healthy controls 
(Table 3). However, the FA in these regions was shown no differences between the two groups.

Discussion
The results from the current study are in accordance with those of previous studies, which have shown widespread 
brain abnormalities in patients with DM1. However, in contrast to previous imaging studies, which focused on 
structural abnormalities and their relationships with cognitive and neuropsychological impairments in DM1, the 
current study used DTI and TBSS to reveal strong relationships between the motor performance of patients with 

Clinical data White matter regions Hemi-sphere

r-value (p-value)

FA AD RD

CTG repeat

Posterior limb of IC L/R −0.682 (0.002)** N/A N/A

Middle section of CST
L −0.636 (0.005)** −0.601 (0.008)** 0.553 (0.017)*

R −0.621 (0.006)** −0.668 (0.002)* 0.543 (0.020)*

Hand grip

Midbrain section of CST L −0.603 (0.008)** −0.669 (0.002)** N/A

Middle section of CST L 0.493 (0.038)* N/A −0.555 (0.017)*

Medial section of FMINOR L/R 0.514 (0.029)* N/A N/A

Disease duration Right middle section of FMINOR R −0.535 (0.022)* N/A N/A

MRCSS
Posterior limb of IC L/R 0.735 (0.001)** N/A −0.474 (0.047)*

Middle section of CST R 0.640 (0.004)** 0.542 (0.020)* −0.574 (0.013)*

6MWT
Posterior limb of IC L 0.767 (0.001)** N/A −0.569 (0.034)*

Middle section of CST R 0.632 (0.021)* N/A N/A

Table 2.  Correlations between white matter regions and genetic and clinical measures. FA = fractional 
anisotropy; AD = axial diffusivity; RD = radial diffusivity; IC = internal capsule; CST = corticospinal tract; 
FMINOR = forceps minor of the corpus callosum; * and **indicate p < 0.01 and p < 0.05, respectively.

White matter regions Hemi-sphere Diffusion parameter

Diffusion values(SE) of each group

P-valueHC DM1

Posterior limb of IC L/R

FA 0.3627 (0.0022) 0.3113 (0.0065) <0.001**

AD 0.00161 (0.00003) 0.00168 (0.00004) 0.109

RD 0.00088 (0.00003) 0.00101 (0.00003) 0.005**

Upper section of CST L

FA 0.4492 (0.0123) 0.4304 (0.0116) 0.275

AD 0.00111 (0.00001) 0.00116 (0.00001) 0.002**

RD 0.00054 (0.00001) 0.00058 (0.00000) 0.006**

Middle section of CST

L

FA 0.5914 (0.0138) 0.6087 (0.0116) 0.350

AD 0.00119 (0.00001) 0.00123 (0.00001) 0.063

RD 0.00044 (0.00001) 0.00044 (0.00001) 0.727

R

FA 0.5213 (0.0067) 0.5046 (0.0124) 0.229

AD 0.00115 (0.00001) 0.00123 (0.00002) <0.001**

RD 0.00047 (0.00000) 0.00052 (0.00000) <0.001**

Midbrain section of CST L

FA 0.5114 (0.0080) 0.5569 (0.0116) 0.002**

AD 0.0012 (0.00002) 0.0013 (0.00002) 0.002**

RD 0.00052 (0.00000) 0.00051 (0.00000) 0.056

Medial section of FMINOR L/R

FA 0.7003 (0.0236) 0.6479 (0.0203) 0.069

AD 0.00111 (0.00001) 0.00117 (0.00001) 0.002**

RD 0.00046 (0.00005) 0.00055 (0.00004) 0.149

Table 3.  Between-group comparisons of the diffusion parameters in white matter regions and their correlations 
with genetic and clinical data. FA = fractional anisotropy; AD = axial diffusivity; RD = radial diffusivity; IC: 
internal capsule; CST: corticospinal tract; FMINOR = corpus callosum-forceps minor; * and ** indicate 
p < 0.01 and p < 0.05, respectively.
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DM1 and abnormalities in the CST, which is the prototypic tract reflective of motor function. Furthermore, the 
present study showed that the gray matter volume in the sensorimotor cortex is correlated with alterations in DTI 
measurements of the CST, suggesting that cortical volume reductions in the sensorimotor cortex are associated 
with microstructural white matter abnormalities observed in the CST in patients with DM1. The current study 
used a methodological approach similar to that of previous literature16, comprising voxel-wise DTI comparison 
using TBSS (from FSL) and cortical thickness analysis using FreeSurfer; in this study, we added a fully automatic 
pipeline of FreeSurfer for both cortical thickness and volumetric analysis.

In accordance with the existing imaging literature6–8,10,11,13–21, we observed reduced gray matter volume in 
several brain regions in patients with DM1, compared with the volume in healthy controls. Among these brain 
regions, reduction of gray matter volume in the occipital area was significantly correlated with the number of 
CTG repeats in patients with DM1. CTG repeats comprise a known genetic factor reflective of disease severity9. 
More importantly, deterioration of hand grip in patients with DM1 was significantly correlated with reduction 
of gray matter volume in several brain regions that are important for motor performance (e.g., precentral and 
postcentral gyri). These findings imply that the reduction of gray matter volume in the sensorimotor cortex of 
individuals with DM1 likely affects their motor performance: with greater reduction of gray matter volume, worse 
hand grip performance is observed in patients with DM1.

DTI parameters in several sections of the CST were correlated with genetic and motor-associated clinical 
measures. First, CTG repeats were robustly correlated with DTI parameters (FA, AD, and RD) in the posterior 
limb of the IC and middle section of the CST, indicating that the white matter microintegrity of these portions 
of the CST exhibits the greatest susceptibility to genetic factors in patients with DM1. The posterior limb of the 
IC contains CST fibers, which arise in the motor area of the cerebral cortex, and sensory fibers, largely derived 
from the thalamus, which pass upward to the sensory cortex. Additionally, DTI parameters in the middle sec-
tion of the CST were strongly correlated with motor-associated clinical measures. Specifically, FA values in the 
posterior limb of the IC and middle section of the CST were primarily correlated with patient performance on 
three clinical assessments of motor function (hand grip test, MRCSS, and 6MWT). Furthermore, RD values in 

Figure 2.  Correlated region projections and plots between the CST and CTG repeats. Relationships between 
the CST and CTG repeats are displayed projected onto a T1-weighted brain template and mean CST pathways 
(left panel). (A,B) Red regions in both CSTs show that CTG repeats are significantly correlated with reduced 
FA and AD (left panel). (C) Red regions show that the CTG repeats are significantly correlated with elevated 
RD in both CSTs (left panel). Middle and right panels show correlation plots for the red regions in both CSTs. 
CST = corticospinal tract; FA = fractional anisotropy; AD = axial diffusivity; RD = radial diffusivity.
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the posterior limb of the IC and middle section of the CST were correlated with patient performance on these 
same clinical assessments of motor function, suggesting that the correlation between the clinical measures and 
FA may result from the correlation between the clinical measures and RD. Therefore, when considering FA as a 
function of RD22, it is tempting to interpret these results as indicative of RD as the main source of microstructural 
abnormalities along the CST in patients with DM1. More specifically, the elevation in RD, as observed in patients 
with DM1, relative to that of healthy controls, seems to indicate that demyelination of white matter occurs along 
the CST in patients with DM123,24.

A recent study of 16 adolescent DM1 with a mean age of 13.9 found a significant difference in the DTI of the 
corticospinal tract; notably, the difference was present in MD, but not in FA11. Another study recruited 45 DM1 
patients with a mean age of 38.4; they exhibited statistically significant differences in both FA and MD of the cor-
ticospinal tract, compared with controls12. The mean age of DM1 patients enrolled in the current study was 44.22; 
we found statistically significant differences in both FA and MD. Based on these findings, we can speculate on the 
contribution of disease progression to alterations in imaging findings; however, further longitudinal studies are 
needed to clarify this relationship.

A recent electrophysiological study showed a delay in the central motor conduction time in patients with 
DM125, supporting our findings of abnormalities in the CST in patients with DM1. Clinically, DM1 is charac-
terized by hand myotonia, which is a dysfunction of hand muscle relaxation. We suspect that, as greater effort is 
needed to extend the fingers, hyperexcitation may be induced in the CST; this may cause more extensive damage 
to the CST, compared with other tracts in the brain. Our hypothesis is supported by a recent fMRI study that 
showed enhancement of cerebral blood oxygen level-dependent (BOLD) signals in the supplementary motor area 
(SMA), which harbors the CST26. Therefore, early and significant involvement of the CST may be a consequence 
of reorganization and redistribution of brain circuits due to hyperexcitation, as individuals with clinical myotonia 
must use additional effort to accomplish the same motor task, compared with healthy controls.

Our study also revealed an association between white matter abnormalities in the CST and changes in gray 
matter volume in the sensorimotor cortex. Specifically, lower FA values were associated with greater volume 

Figure 3.  Correlated region projections and plots between the CST and hand grip. Relationships between the 
CST and hand grip are displayed projected onto a T1-weighted brain template and mean CST pathways (left 
panel). (A) Red regions in the left CST show significant correlations between FA and hand grip. Hand grip 
shows a significant correlation with reduced FA in the midbrain section of the left CST (a) and with elevated 
FA in the middle section of the left CST (b). (B) Red regions in the midbrain section of the left CST show a 
significant correlation between AD and hand grip. (C) Red regions in the middle section of the left CST show 
a significant correlation between RD and hand grip. CST = corticospinal tract; FA = fractional anisotropy; 
AD = axial diffusivity; RD = radial diffusivity.
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reductions in the precentral and postcentral cortices. Furthermore, the postcentral cortical volume was positively 
correlated with the AD and negatively correlated with the RD in the terminal sections of the CST. This finding 
is important because it clarifies the relationship between gray matter and white matter abnormalities in DM1, 
indicating that they are not independent processes. Indeed, our findings suggest that in DM1, white matter abnor-
malities in the CST are strongly associated with reductions in gray matter volume in the sensorimotor cortex; the 
inverse relationship is also likely to exist. Prior studies have shown widespread atrophy of the corpus callosum in 
DM1; moreover, DTI images have shown a significant loss of volume in the corpus callosum, supporting the role 
of Wallerian degeneration as a major cause of white matter change in DM18,19.

In conclusion, our results are in accordance with those of previous imaging studies that have demonstrated 
diffuse white and gray matter abnormalities in DM1. However, the current study revealed new statistically signif-
icant relationships between DTI parameters in the CST and genetic and motor-associated clinical characteristics 
in patients with DM1. These findings suggest that involvement of the CST, reflecting deterioration of the motor 
tract, may play a significant role in clinical myotonia. Moreover, the direct relationship we identified between 
cortical gray matter volume and DTI measures in the CST of patients with DM1 suggests that in these patients, 
white matter abnormalities in the CST are strongly associated with reductions in gray matter volume in the sen-
sorimotor cortex. Finally, because of the relatively small population in this study, it is necessary to include a larger 
population to confirm the current findings in the future study.

Methods
Participants.  Eighteen patients with DM1 (8 men, 10 women) and twenty healthy controls (9 men, 11 
women) participated in this study. The mean age of the patients with DM1 was 44.22 (SD, 10.61) years and the 
mean age of the healthy controls was 46.50 (SD, 9.84) years. The clinical characteristics, number and length of 
CTG repeats, hand grip score, age of onset, disease duration, and laboratory findings including the creatine kinase 
level of the participants were obtained. The MRCSS test was applied to evaluate the motor function of the DM1 

Figure 4.  Correlated region projections and plots between the FMINOR and hand grip and disease duration. 
Relationships between the FMINOR and hand grip and disease duration are displayed on a T1-weighted brain 
template and mean FMINOR pathways (left panel). (A) Red regions show a significant correlation between 
FA and hand grip. Hand grip is significantly correlated with elevated FA in the red regions of the FMINOR. 
(B) Disease duration is significantly correlated with reduced FA in the red regions of the FMINOR. Right 
panels show correlation plots for the red regions of both CSTs, including Pearson’s coefficient and p-value. 
FMINOR = forceps minor of the corpus callosum; FA = fractional anisotropy.
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patients. The MRCSS was calculated by summing the MRC scores of six muscle groups (elbow flexion, abduction 
of shoulder, wrist extension, knee extension, hip flexion, and foot dorsiflexion for both sides). The MRC score for 
each muscle group ranged from 0 to 5, yielding a maximum score of 6027. We additionally used MRC scoring to 
determine the bilateral hand grip, as distal hand weakness is one of the early signs of DM1. Genomic DNA was 
isolated from the peripheral blood as described previously28. In addition, we employed the 6MWT, which repre-
sents motor function and cardiopulmonary function in DM1. The 6MWT was performed and scored according 
to the methods of a previous study29. All persons who were participated in the data analysis, were blinded to the 

Figure 5.  Correlated region projections and plots between the CST and MRCSS and 6MWT. Relationships 
between the right CST and MRCSS and 6MWT are displayed on a T1-weighted brain template and mean right 
CST pathway (left panel). (A) Red regions in the right CST show a significant correlation between FA and 
MRCSS. (B) The MRCSS is significantly correlated with elevated AD in the red regions of the right CST. (C) 
The MRCSS is significantly correlated with reduced RD in the red regions of the right CST. (D) The 6MWT 
is significantly correlated with elevated FA in the red regions of the right CST. CST = corticospinal tract; 
MRCSS = Medical Research Council sum score; 6MWT = 6-minute walk test; FA = fractional anisotropy; 
AD = axial diffusivity; RD = radial diffusivity.

Figure 6.  Correlated region projections and plots between the CST and precentral and postcentral gyri. 
Relationships between the CST and precentral and postcentral gyri volumes are displayed on a T1-weighted 
brain template and mean CST pathways. (A) Precentral gyrus volume (red) is significantly correlated with 
elevated FA in the red region of the left CST. (B,C) Postcentral gyrus volume (green) is significantly correlated 
with elevated FA and AD in the red regions of the left CST. (D) Postcentral gyrus volume (green) is significantly 
correlated with reduced RD in the red region of the left CST. FA = fractional anisotropy; AD = axial diffusivity; 
RD = radial diffusivity.
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identities of individual cases and presence of white matter abnormalities on conventional T2W or FLAIR images. 
Approval for all procedures was received from the Institutional Review Board of Kyungpook National University 
Medical Center, and written informed consent was obtained from all participants by the requirements of the 
Kyungpook National University Hospital Human Research Committee. In addition, all experiments were per-
formed in accordance with relevant guidelines and regulations.

Image acquisition.  We acquired MRI data from all participants using a 3-T scanner (Discovery MR750, 
GE healthcare), with a 32-channel head coil. Structural brain images for the volumetric analyses were acquired 
using the three-dimensional brain volume imaging sequence (repetition time: 8.16 ms, echo time: 3.18 ms, flip 
angle: 12°, 1-mm isotropic resolution). We acquired DTI data using the diffusion-weighted echo planar imaging 
sequence, with 25 directions and a b-value of 1000 (repetition time: 10,000 ms, echo time: 100.2 ms, thickness: 
4 mm, flip angle: 90°, 0.82-mm in-plane resolution).

Cortical volumetric analysis.  Structural images were processed using a fully automatic pipeline for cortical 
reconstruction and volumetric segmentation within the FreeSurfer 5.3 program (http://surfer.nmr.mgh.harvard.edu). 
Briefly, this procedure includes skull stripping, automated Talairach transformation, subcortical segmentation of white 
and gray matter, intensity normalisation, and tessellation of the gray/white matter boundary and pial surface by using 
continuity information and intensities image intensities from the structural volume. The Destrieux parcellation atlas30 
was applied to automatically parcellate and assign a neuroanatomical label to each location on a cortical surface model. 
The surface of the gray and white matter border was inflated and smoothed with a 10-mm full width at half maximum 
Gaussian smoothing kernel. Each participant’s data were registered to an average spherical surface representation in 
Freesurfer (fsaverage). Manual editing was not performed at any stage of the Freesurfer processing stream. The volume 
data extracted by the parcellation process for each labelled region were employed in the correlation analysis with DTI 
and clinical data. Pearson’s correlation test was applied to estimate correlation coefficient between the volume data and 
clinical data. The two-sample t-test was used to compare differences of gray matter volumes, which extracted from each 
labelled region, between DM1 and healthy controls with the significant level of p < 0.05.

Diffusion tensor data analysis.  Using the DTI data, we performed TBSS, which is part of the FMRIB 
Software Library (FSL; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Each participant’s diffusion data were preprocessed 
with eddy current correction tools in FSL, which correct for eddy current distortions and head motion. The b0 
image from each participant was used as a reference image for realigning the diffusion data. Subsequently, a brain 
mask was created with the b0 image after automated skull stripping was performed using the brain extraction tool 
(BET). The brain mask was applied to perform diffusion tensor estimation using FMRIB’s diffusion toolbox. The 
FA, AD, and RD data for each brain voxel were calculated by the diffusion toolbox. The FA was calculated from 
the eigenvalues (λ1, λ2, λ3) of the diffusion tensor, as follows:
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where λ  represents the mean value of the eigenvalues31. The AD, which reflects diffusivity of water along the 
direction of the axonal fibres (λ1), and the RD, termed (λ1 + λ2)/2, which reflects diffusivity of water perpendicu-
lar to the fibres, were also calculated using the eigenvalues32. Each individual FA data were registered to the 
FMRIB58 FA standard space using the FMRIB’s nonlinear image registration tool. A mean FA image was calcu-
lated with a minimum threshold of 0.2 and thinned to create skeletonized a mean FA, which represented the 
centres of all tracts common to all participants. Each individual’s aligned FA data were projected onto the skeleton 
and the resulting data were used to perform voxel-wise comparisons between the groups. The mean AD and RD 
data were processed with the same nonlinear registration and projection procedures as those described above.

A general linear model was used to test for between-group differences and correlations with clinical data. The 
randomise tool in FSL was used for multiple comparisons, with 5000 permutations of the data. Differences were 
considered significant at a family-wise error-corrected p value of <0.05. The threshold-free cluster enhancement 
method was used to define clusters for significant differences in between the groups. Correlation analyses were 
performed with clinical variables (CTG repeats, disease duration, MRCSS, and 6MWT) for voxel-wise correlation 
analysis within the DM1 group.

Segmented tract analysis.  For tract segmentation, the tracts constrained by underlying anatomy 
(TRACULA) program within FreeSurfer 5.3 was used for the DTI data processing. The TRACULA program is 
a processing stream that includes an algorithm for performing automated global probabilistic tractography to 
estimate the posterior probability of the following 18 major white matter tracts: CST, cingulum-cingulate gyrus 
bundle, cingulum angular bundle, inferior longitudinal fasciculus, superior longitudinal fasciculus-temporal part, 
longitudinal fasciculus-parietal part, anterior thalamic radiation, uncinate fasciculus, in each hemisphere; and the 
forceps major and FMINOR of the corpus callosum. First, the preprocessing stage performed eddy current com-
pensation to correct for eddy currents and head movements and intra-subject and inter-subject registration to 
the FreeSurfer common template space by FreeSurfer’s bbregister; tensor fitting was also applied for least-squares 
tensor estimation using FSL’s dtifit. Second, the TRACULA program invoked FSL’s bedpostx tool to apply the 
ball-and-stick model of diffusion to the DTI data33. The TRACULA program then estimated the posterior proba-
bility of each pathway in the participant with a pathway prior information on each tract’s position combined with 
the participant’s anatomical segmentation labels. Finally, the TRACULA program combined the participant’s 
diffusion measures (FA, AD, and RD) along each pathway and output a table for each diffusion measure and each 

http://surfer.nmr.mgh.harvard.edu
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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pathway. We used the diffusion measures from the FMINOR and CST of both hemispheres to investigate the rela-
tionships between motor function and clinical measures (CTG repeats, hand grip, MRCSS, 6MWT, and disease 
duration). For statistical test, Pearson’s correlation test was used to estimate correlation coefficient between diffu-
sion data and clinical measures. The two-sample t-test was used to compare differences of diffusion parameters 
(FA, AD, and RD) for group comparison at significant level of p < 0.05.

Statistical analysis.  Statistical analyses were performed using SPSS version 22.0 (IBM). We tested the asso-
ciations between the mean diffusion measures (FA, AD, and RD) of the CST and FMINOR, the extracted gray 
matter volume of each labelled region by FreeSurfer, and the genetic and clinical measures using Pearson’s corre-
lation tests. The level of significance was set at p < 0.05 (two-tailed).

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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