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Abstract
Expression of tumor necrosis factor-α (TNFα) in the serum of prostate cancer patients is associated with poorer
outcome and progression to castrate-resistant (CRPC) disease. TNFα promotes the activity of NFκB, which regulates a
number of anti-apoptotic and proinflammatory genes, including those encoding the inhibitor of apoptosis proteins
(IAPs); however, in the presence of IAP antagonists, TNFα can induce cell death. In the presence of recombinant or
macrophage-derived TNFα, we found that IAP antagonists triggered degradation of cIAP1 and induced formation of
Complex-IIb, consisting of caspase-8, FADD and RIPK1 in CRPC models; however, no, or modest levels of apoptosis
were induced. This resistance was found to be mediated by both the long (L) and short (S) splice forms of the caspase-
8 inhibitor, FLIP, another NFκB-regulated protein frequently overexpressed in CRPC. By decreasing FLIP expression at
the post-transcriptional level in PC3 and DU145 cells (but not VCaP), the Class-I histone deacetylase (HDAC) inhibitor
Entinostat promoted IAP antagonist-induced cell death in these models in a manner dependent on RIPK1, FADD and
Caspase-8. Of note, Entinostat primarily targeted the nuclear rather than cytoplasmic pool of FLIP(L). While the
cytoplasmic pool of FLIP(L) was highly stable, the nuclear pool was more labile and regulated by the Class-I HDAC
target Ku70, which we have previously shown regulates FLIP stability. The efficacy of IAP antagonist (TL32711) and
Entinostat combination and their effects on cIAP1 and FLIP respectively were confirmed in vivo, highlighting the
therapeutic potential for targeting IAPs and FLIP in proinflammatory CRPC.

Introduction
Inflammation contributes towards the initiation and

progression of prostate cancer1, with levels of inflamma-
tory cytokines, such as tumor necrosis factor-alpha
(TNFα), correlating with poor outcome and progression
to castrate-resistant disease (CRPC)2,3. TNFα derived
from cells in the tumor microenvironment can activate

proinflammatory and pro-survival pathways in tumor
cells, such as those mediated by the NFκB transcription
factor family. Binding of TNFα to TNF-receptor 1
(TNFR1) results in formation of Complex-I, which con-
tains receptor-interacting protein kinase-1 (RIPK1) and
the cellular inhibitors of apoptosis proteins-1/2 (cIAP1/2).
Within Complex-I, RIPK1 ubiquitination is mediated by
cIAP1/2, subsequently leading to activation of NFκB4.
Transcribed NFκB target genes, including those encoding
anti-apoptotic proteins, such as cIAP1/2 and FLIP, and
inflammatory cytokines, such as IL-8 and TNFα itself, act
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to further potentiate localized inflammation and cell
survival5. In a previous study, we demonstrated that FLIP
expression is elevated in CRPC and antagonizes response
to androgen receptor-targeted therapy6.
Therapeutic IAP antagonists, such as TL32711 (Bir-

inapant), have been developed based on the IAP-binding
motif (Ala-Val-Pro-Ile) of the endogenous inhibitor of
IAPs – SMAC (Second Mitochondrial-Derived Acti-
vator of Caspases) – and interact with the structurally
conserved BIR (baculovirus IAP repeat) domains of
IAPs7. IAP antagonist binding to the BIR domains of
cIAP1 induce dimerization of its RING domains, sti-
mulating E3-Ubiquitin ligase activity and subsequent
auto-ubiquitination and proteasomal degradation of
cIAPs8. cIAP1 depletion following IAP antagonist
treatment leads to formation of a cytoplasmic cell death-
regulating platform termed Complex-IIb, consisting of
RIPK1, FADD and procaspase-89. Procaspase-8 homo-
dimerization at this complex results in its processing
and activation, leading to downstream activation of
caspases-3/7. Hetero-dimerization of procaspase-8 with
either the long (FLIP(L)) or short (FLIP(S)) splice forms
of FLIP in Complex-IIb inhibits procaspase-8 processing
and therefore induction of apoptosis10. IAP antagonists
can also disrupt the interaction between XIAP and
caspases-3, -7 and -911,12, thus relieving XIAP-mediated
repression of these caspases and promoting the execu-
tion phase of apoptosis13.
TL32711 is a bivalent IAP antagonist which initially

appeared promising in Phase1/2 clinical trials, but was
later revealed to offer minimal clinical benefit to
patients as a single agent and may act best alongside
chemotherapeutic agents14,15. This has paved the way
for the development of more potent IAP antagonists
with improved bioavailability. The monovalent IAP
antagonist ASTX660 is a non-peptidomimetic agent
generated by structure-based design with potent on-
target activity and favourable tolerability profile com-
pared to bivalent peptide mimetic IAP antagonists and is
currently in clinical development (Phase 1/2)16. In this
study, we tested the hypothesis that proinflammatory,
TNFα-rich, CRPC3 would be highly sensitive to IAP
antagonists, as these agents convert this proin-
flammatory, anti-apoptotic cytokine into a cell death-
inducing ligand.

Materials and methods
Compounds
TL32711 and Entinostat were obtained from Selleck

Chemicals (Newmarket, UK), ASTX660 was obtained
from Astex Pharmaceuticals (Cambridge, UK), z-
VAD-fmk and Necrostatin-1 were purchased from
Sigma-Aldrich (Gillingham, UK), GSK’874 and Necro-
sulfonamide from Merck (Darmstadt, Germany),

recombinant TNFα from Alomone Labs (Israel), TNFα-
neutralising antibody from Cell Signaling Technologies
(Danvers, MA, USA) and Leptomycin-B solution was
purchased from Sigma-Aldrich.

Cell lines
PC3, DU145, VCaP and THP-1 cells were obtained

from American Type Culture Collection (ATCC, Mana-
ssas, VA, USA) PC3, DU145 and THP-1 cells were cul-
tured in RPMI medium (Invitrogen, Paisley, UK) with 10%
fetal bovine serum (Invitrogen), and VCaP cells were
cultured in DMEM (ATCC, LGC Standards, Middlesex,
UK) with 10% fetal bovine serum.

Generation of overexpressing cell lines
PC3 cell lines overexpressing wild-type and mutant

FLIP spliceforms were generated as previously
described17.

Generation of PC3 CRISPR caspase-8 cell lines
PC3 CRISPR caspase-8 cells were generated by retro-

viral infection with pLentiCRISPRV2 with guide RNA
AAGTGAGCAGATCAGAATTG which was provided as
a kind gift from Prof. Galit Lahav, as described pre-
viously18. A mixed colony of cells was established fol-
lowing selection in Puromycin.

Macrophage polarisation and conditioned-media
collection
THP1 cells were differentiated to M1 polarised macro-

phages by 6 h treatment with 320 nM Phorbol 12-
myristate 13-acetate (Sigma-Aldrich), followed by 18 h
with 100 ng/mL Lipopolysaccharide (Sigma-Aldrich) and
20 ng/mL Interferon-γ. Conditioned media was collected
after 24 h and incubated for 1 h with 100 ng/mL TNFα
neutralizing antibody (Cell Signaling Technologies),
where appropriate.

Western blotting and subcellular fractionations
Western blotting was carried out as previously descri-

bed19. Nuclear/Cytoplasmic fractionations are described
in detail in Supplementary methods 1. cIAP1- and cIAP2-
specific antibodies were from Enzo (Exeter, UK). XIAP,
RIPK1, Acetylated-Lysine, HDAC1- and caspase 3-
specific antibodies were from Cell Signaling Technology
(Danvers, MA, USA). Caspase 8 antibody was from Alexis
Biochemicals (San Diego, CA, USA). FLIP antibody was
from Adipogen (San Diego, CA, USA). PARP antibody
was from eBioscience (San Diego, CA). FADD antibody
was obtained from BD Transduction Laboratories
(Franklin Lakes, NJ, USA). Ku70 and HSP90 antibodies
were from Santa Cruz Biotechnology (Dallas, Texas,
USA). Secondary horseradish peroxidase-conjugated
antibodies (Amersham, Buckinghamshire, UK) were
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used for detection on a G-Box digital developer (Syngene.
Cambridge, UK).

Flow cytometry
Analysis of cell-surface TNFR-1 expression was car-

ried out on a BD Facs Caliber flow cytometer using the
Cell Quest Pro software (BD Biosciences, San Diego,
CA, USA), and cells stained using Phycoerythrin-
conjugated anti-TNFR1 antibody (R&D Systems, Min-
neapolis, MN, USA) compared to an isotype control
antibody. Annexin-V/Propidium Iodide flow cytometry
was carried out on a BD LSR-II flow cytometer (BD
Biosciences, San Diego, CA, USA) using FITC-Tagged
Annexin-V (BD-Biosciences) and Propidium Iodide
(Sigma-Aldrich).

High-content Microscopy
High-content microscopy was carried out on an Array

Scan XTI high content microscope (Thermo Scientific)
using FITC-Tagged Annexin-V (BD-Biosciences) Propi-
dium Iodide (Sigma-Aldrich), and Hoescht Stain
(Invitrogen).

siRNA transfections
All siRNAs (SC, cIAP2, XIAP, FLIP (L, S&T), RIPK1,

Ku70) were obtained from Dharmacon (Chicago, IL,
USA), and transfections carried out using Lipofectamine
RNA iMAX (Life Technologies), as previously descri-
bed20. Sequences shown in Supplementary methods 2.

Immunoprecipitation
For complex-IIb immunoprecipitation cells were lysed

in CHAPS buffer (30 mM Tris pH 7.5, 150 mM NaCl, 1%
CHAPS). Anti-p18-capsase-8 antibody (1 μg, Santa
Cruz, CA) was conjugated to 30 μL Protein G Dyna-
beads (Invitrogen, Paisley, UK). For acetylated-lysine
immunoprecipitation, cells were lysed in RIPA buffer
and 1 μg of acetylated-lysine antibody (Cell Signaling
Technologies) was conjugated to beads. 750 μg of pro-
tein lysate was immunoprecipitated for 6 h at 4°C. IgG
isoytpe controls were purchased from Santa Cruz. Co-
Immunoprecipitation experiments were analysed by
Western Blotting.

Caspase 3/7 activity assay
Caspase 3/7 activity was assayed using Caspase-Glo®

3/7 assay according to manufacturer’s instructions (Pro-
mega, Madison, WI).

Cell viability assay
Cell viability was assessed by Cell Titre-Glo® assay

according to manufacturer’s instructions (Promega,
Madison, WI, USA).

In vivo xenograft study
All animal experiments were conducted in compliance

with institutional guidelines and authority regulations. For
in vivo anti-tumor efficacy study 1 × 106 PC3 cells in 1:1
Matrigel:PBS were subcutaneously injected into male
Balb/c SCID mice, one tumor per mouse. After tumors
were established (volume ≥ 100 mm3), mice were treated
with Vehicle (Veh) (1% DMSO in Peanut Oil (IP) and 30%
Cyclodextrin (PO)), intraperitoneally with 20 mg/kg
TL32711, orally with 15mg/kg Entinostat (ENT), or with
the TL32711 and Entinostat combination. Tumor
volumes and animal weights were measured regularly
until study endpoint (volume ≥ 500mm3). Tumor tissues
and blood were harvested for further analysis.

Immunohistochemistry and Immunofluorescence
Immunohistochemistry staining on FFPE xenograft tis-

sue for FLIP and cleaved-caspase-3 was carried out as
previously described21. FLIP antibody was obtained from
Abcam (Cambridge, England, UK) and used at a dilution
of 1:1000, cleaved caspase-3 antibody was obtained from
Cell-Signaling Technologies and used at a dilution of
1:200. Microscopy slides were digitally scanned using an
Aperio CS2 slide scanner (Leica Biosystems, Milton
Keynes, UK). Immunofluorescence was carried out using
a Zeiss Apotome microscope. F4/80 antibody was
obtained from Biorad (CA, USA) and used at a dilution of
1:200, Cytokeratin-5 antibody was used at a dilution of
1:200, and fluorescent labelled secondary antibodies from
Invitrogen (CA, USA) used at 1:1000. Mounting media
containing DAPI (Invitrogen) was used to fix coverslips
and stain nuclei simultaneously.

TNFα ELISA
Human TNFα was quantified by human TNFα ELISA

(Abcam, Cambridge, UK), and murine TNFα (Abcam)
from mouse serum as-per manufacturer’s instructions.

Statistical Analysis
Experimental results were compared using a two-tailed

Students t-test, or Two-Way ANOVA with Bonferroni
Post-test, where appropriate. Experiments were carried
out in triplicate, values represent mean ± SEM. *p ≤ 0.05
**p ≤ 0.01 and ***p ≤ 0.001.

Results
IAP antagonists have rapid and potent on target activity in
prostate cancer cell lines
PC3, DU145 and VCaP cell lines were used throughout

this study as they represent CRPC22. VCaP cells are a truly
castrate-resistant model as, although they express
androgen receptor, they do not respond to androgen-
deprivation therapy in vitro or in vivo23. Core components
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of the TNFR1 apoptosis signaling pathway were profiled
at the protein level by Western blot (Fig. 1a) and flow
cytometry (TNFR1; Fig. 1b). cIAP1 expression was high in
DU145 and VCaP, whereas cIAP2 expression was highest
in PC3 cells and absent in the VCaP model. XIAP
was expressed at a similar level in the three models.
Expression of the Complex-IIb adaptors RIPK1 and
FADD were similar across the models as was expression
of procaspase-3; however, procaspase-8 expression was
significantly lower in the VCaP model. Notably, expres-
sion of both FLIP splice forms correlated with expression
of cIAP1 in the 3 cell lines. Similar levels of cell-surface
TNFR1 were detected in each cell line (Fig. 1b).
The bivalent IAP antagonist TL3271124 induced

degradation of cIAP1 in PC3, DU145 and VCaP cells

(Fig. 1c); a widely accepted pharmacodynamic (PD) bio-
marker of on-target activity for this class of agent25 and
confirms potent on-target activity of TL32711 at nano-
molar concentrations. Of note, no consistent effect on
XIAP expression was observed. In timecourse studies,
rapid depletion of cIAP1 was observed in response to
TL32711 (Fig. 1d); cIAP2 downregulation was also
detected at early timepoints, but recovered to near control
levels after 3 h, consistent with reports of IAP antagonist-
induced activation of the non-canonical NFκB pathway
following cIAP downregulation and the requirement for
cIAP1 to mediate cIAP2 ubiquitination and degrada-
tion26–28. In contrast, XIAP levels remained relatively
unaffected by TL32711. Similar results were obtained with
the monovalent IAP antagonist ASTX660 (Fig. 1e–f).
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Fig. 1 IAP antagonists have rapid and potent on target activity in prostate cancer cell lines. a Western blot analysis of basal expression of
cIAP1, cIAP2, XIAP, FLIP(L), FLIP(S), Procaspase-8, RIPK1, FADD, Procaspase-3 and β-actin in PC3, DU145 and VCaP cell lines. b Flow cytometric analysis
of basal cell surface expression of TNFR1 in PC3, DU145 and VCaP cell lines compared to an IgG isotype control. c Western blot of cIAP1, cIAP2 and
XIAP expression following treatment with 0, 10, 1, 0.1, 0.1, 0.01 and 0.001 μM TL32711 in PC3, DU145 and VCaP cell lines for 24 h. d Western Blot of
cIAP1, cIAP2, and XIAP expression following 1, 3, 6, 12 and 24 h treatment with a clinically-achievable dose of 1 μM TL32711 in PC3 and DU145 cells. e
Western blot analysis of cIAP1, cIAP2 and XIAP expression following treatment with 0, 10, 1, 0.1, 0.1, 0.01 and 0.001 μM ASTX660 in PC3, and DU145
cell lines for 24 h. f Western Blot of cIAP1, cIAP2, and XIAP expression following 1, 3, 6, 12 and 24 h treatment with 1 µM ASTX660 in PC3 and DU145
cell lines
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Prostate cancer cell lines are resistant to TL32711+ TNFα
combination
Following treatment with a clinically-achievable dose

1μM TL32711 for 3 h in the presence of 10 ng/mL
recombinant TNFα (to model a proinflammatory micro-
environment), formation of TNFR1 Complex-IIb was
observed in all cell lines as indicated by interaction
between caspase-8 and RIPK1 (Fig. 2a). Only in the PC3
model did formation of Complex-IIb correlate with
downstream activation of significant levels of apoptosis
(Fig. 2b). TL32711 alone induced a small but consistent
increase in cell death in PC3 cells, although neither this
line nor DU145 secreted detectable levels of TNFα basally
or following IAP antagonist treatment as determined by
ELISA (Supplementary Figure 1). Recombinant TNFα
alone had no effect on cell death in any of the CRPC
models. These results were mirrored in cell viability
assays, with DU145 and VCaP cells exhibiting profound
resistance (over 80% cell viability relative to control in
response to 1μM TL32711 plus TNFα; Fig. 2c). Even in
the more sensitive PC3 model, ~60% cell viability relative
to control was observed in response to 1μM TL32711 in
combination with TNFα, and almost no activity with
TL32711 monotherapy was observed. Similar results were
obtained with ASTX660 (Supplementary Figure 2A-B).
Taken together, these findings suggest that, despite

efficient formation of Complex-IIb, CRPC is inherently
resistant to IAP antagonist-induced apoptosis, even in the
presence of TNFα. As cIAP1 is rapidly and potently (1
nM) downregulated by both IAP antagonists in these
models, we assessed potential for resistance mediated by
the other 2 main IAPs, cIAP2 and XIAP, using RNAi.
Downregulation of either cIAP2 or XIAP (Fig. 2d) failed
to significantly enhance sensitivity to TL32711/TNFα in
PC3 and DU145 cell lines, suggesting that other factors
are involved in mediating resistance to IAP antagonists in
CRPC.

Cytoplasmic FLIP(S) and nuclear FLIP(L) mediate resistance
of CRPC to IAP antagonist-induced apoptosis
FLIP is an inhibitor of caspase-8 activation29, and the

more resistant CRPC models (DU145 and VCaP) express
significantly higher levels of both FLIP splice forms than
the more sensitive PC3 model (Fig. 1a). Moreover, we
have previously found that FLIP is frequently over-
expressed in CRPC6. We therefore assessed FLIP’s role in
mediating the observed resistance to IAP antagonists. In
all three models, simultaneously downregulating both
FLIP(L) and FLIP(S) by siRNA (FT) significantly
enhanced cell death induction in response to TL32711/
TNFα (Fig. 3a), and these effects were reflected in
reductions in cell viability (Supplementary Figure 3).
Similar effects were observed with the monovalent IAP
antagonist, ASTX660 (Supplementary Figure 4). Notably,

simultaneous downregulation of FLIP(L) and FLIP(S)
with the dual splice form-targeted siRNA (FT) resulted in
significant levels of apoptosis induction in the DU145
model (the model with highest FLIP levels) in the absence
of co-treatment with either IAP antagonist or TNFα,
indicating that this model is intrinsically FLIP-dependent.
Also, in PC3 cells, simultaneous downregulation of FLIP
(L) and FLIP(S) enhanced sensitivity to both TL32711
alone and TNFα alone, an effect also observed in DU145,
but not VCaP cells. Specific silencing of either the long
(FL siRNA) or the short (FS siRNA) splice form also
enhanced cell death induction in response to TL32711/
TNFα, although to a lesser extent than simultaneously
targeting both splice forms, indicating that both FLIP
splice forms mediate resistance (Fig. 3a).
Qualitative assessment of apoptotic cell death by PARP

cleavage confirmed the results of the cell death and cell
viability assays, with enhanced PARP cleavage observed
after transfection with siRNA targeting both FLIP(L) and
FLIP(S) splice forms-in combination with TL32711/TNFα
in all three models (Fig. 3b). Transfection with the FLIP
(L)-specific siRNA also enhanced TL32711/TNFα-
induced PARP cleavage in all three cell lines, but to a
lesser extent than the dual-targeted siRNA, while the FLIP
(S)-specific siRNA enhanced TL32711/TNFα-induced
PARP cleavage in PC3 and DU145 cells, albeit to a lesser
extent than the FT and FL siRNAs. Despite the clear
enhancement of sensitivity to TL32711/TNFα in FLIP
siRNA transfected cells, there was a relative lack of
downregulation of FLIP(L) in cells transfected with either
the dual splice form targeting or selective FLIP(L) siRNA
in all three models (Fig. 3b). In contrast, FLIP(S) was
efficiently downregulated by both the FLIP(S)-specific and
FT siRNAs. The p43-cleavage product of FLIP(L), which
is generated when it heterodimerizes with procaspase-8 in
Complex IIb29, was depleted in FT and FL siRNA trans-
fected cells, suggesting that it is the pool of FLIP(L) which
can be recruited to Complex-IIb that is effectively tar-
geted by these siRNAs. Importantly, p43-FLIP was
detected in complex-IIb (along with FADD, RIPK1 and
FLIP(S); Fig. 3c), indicating that FLIP(L) is recruited to
this complex and processed by caspase-8; importantly,
p43-FLIP was not detected in complex-IIb in the FT
siRNA transfected cells.
The FLIP long (FLIP(L)) splice form has been reported

to possess nuclear import and export signals30; we
therefore assessed whether either the cytoplasmic or
nuclear pools of FLIP(L) were being targeted by the FL
and FT siRNAs. We found that it was the nuclear pool of
FLIP(L) that was downregulated (Fig. 3d), suggesting
(somewhat surprisingly) that it is this pool of FLIP(L),
which, along with the predominantly cytoplasmic FLIP(S),
mediates resistance to TL32711/TNFα in CRPC cells.
This conclusion was further supported by the finding that
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the nuclear export inhibitor Leptomycin-B reduced clea-
vage of FLIP(L) to p43-FLIP(L) (indicating that it abro-
gates recruitment of FLIP(L) to Complex-IIb) and
enhanced TL32711/TNFα-induced PARP cleavage
(Fig. 3e, Left) and caspase activation (Right).
Further support for the critical role of FLIP in mod-

ulating CRPC resistance to TL32711/TNFα was obtained
using PC3 cell lines stably overexpressing wild-type FLIP
(L), wild-type FLIP(S), or F114A mutant FLIP(S) (Fig. 3f,
Right), which we have previously demonstrated binds
inefficiently to FADD and therefore fails to prevent
procaspase-8 homodimerization and activation at FADD-
dependent complexes31. We found that overexpression of

either wild-type FLIP protein, but not the F114A FLIP(S)
mutant protected PC3 cells against TL32711/TNFα-
induced cell death (Fig. 3f); this confirms the criticality of
the FLIP/FADD interaction within Complex-IIb for FLIP’s
ability to confer resistance.

Entinostat downregulates FLIP and overcomes resistance
to apoptosis induced by IAP antagonists
The second generation Class I-selective histone deace-

tylase (HDAC) inhibitor Entinostat has demonstrated
clinical activity in hormone-resistant Breast Cancer32. In
both the PC3 and DU145 CRPC models, we found that
Entinostat downregulated both FLIP(S) and FLIP(L)
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expression, whereas expression of IAPs was unaffected
(Fig. 4a). In the VCaP model, the effect of Entinostat on
FLIP was more modest (Fig. 4b). Notably, Entinostat
downregulated nuclear rather than cytoplasmic FLIP(L) in
the PC3 and DU145 models, although it had almost no
effect on nuclear FLIP(L) in the VCaP model (Fig. 4c).
FLIP(S) was again found to be predominantly expressed in

the cytoplasm and was downregulated by Entinostat.
Other components of Complex-IIb (procaspase-8 and
FADD) were expressed in the cytoplasm and were unaf-
fected by Entinostat treatment. In addition, FLIP down-
regulation was mediated at the post-transcriptional level,
as FLIP mRNA expression was not downregulated in
response to Entinostat; in fact, both FLIP(L) and FLIP(S)
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mRNAs were upregulated in the DU145 model (Supple-
mentary Figure 5).
The ability of Entinostat to enhance TL32711/TNFα-

induced cell death correlated with its ability to down-
regulate nuclear FLIP(L) and cytoplasmic FLIP(S), as
PC3 and DU145 models were sensitized to TL32711/
TNFα, whereas VCaP cells remained relatively resistant,
as assessed by cell death (Fig. 4d) and cell viability
(Fig. 4e) assays. Similar results were again obtained with
ASTX660 (Supplementary Figure 6). Furthermore, FLIP
downregulation was confirmed to be critical for

Entinostat to overcome resistance to IAP antagonist
therapy: in PC3 cells overexpressing FLIP (either long or
short splice forms), Entinostat was unable to down-
regulate the exogenous FLIP proteins (Fig. 4f, Right),
consistent with our previous observations33. Subse-
quently PC3 cells overexpressing wild-type FLIP(S) or
FLIP(L) were resistant to the TL32711/TNFα and
Entinostat combination (Fig. 4f, Left). In contrast, PC3
cells overexpressing the FADD-binding mutant F114A
FLIP(S) had comparable sensitivity to the EV control
cells, confirming the essentiality for FLIP binding to
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FADD in Complex-IIb to block cell death induction in
the context of Entinostat co-treatment.

Entinostat enhances apoptosis in response to IAP
antagonists via Ku70, RIPK1 and caspase-8
Given the multiple potential modes of action of HDAC

inhibitors34,35, we further explored the mechanism by
which Entinostat enhanced sensitivity to TL32711/TNFα.
HDAC inhibition in colorectal cancer cells leads to the
acetylation of the DNA damage repair protein Ku70,
leading to the disruption of a stabilizing interaction
between FLIP and Ku70, resulting in ubiquitin-mediated
FLIP degradation33. To assess the role of Ku70 in reg-
ulating FLIP expression in prostate cancer cells, we first
confirmed that Entinostat enhanced acetylation of Ku70
(Fig. 5a, Left) whilst also depleting FLIP expression in PC3
and DU145 cells (Fig. 5a, Right); subsequently, we
demonstrated that, similar to Entinostat, Ku70 down-
regulation using siRNA caused depletion of nuclear but
not cytoplasmic FLIP(L), although, unlike Entinostat, it
had no effect on cytoplasmic FLIP(S) (Fig. 5b). These
results suggest that nuclear FLIP(L) is stabilized by Ku70
in prostate cancer cells and that Ku70 acetylation in
response to Entinostat results in downregulation of this
subcellular fraction of FLIP(L).
IAP antagonists have been shown to induce cell death

through Complex-IIb via two RIPK1-dependent
mechanisms: caspase-8-mediated apoptosis and RIPK3-
mediated necroptosis36. As expected given the observed
formation of RIPK1/procaspase-8 complex in response to
TL32711/TNFα (Figs 2a and 3c), RIPK1 siRNA sig-
nificantly protected CRPC cells against cell death induced
by TL32711/TNFα, both with and without Entinostat pre-
treatment (Fig. 5c). Small molecule inhibition of RIPK1 or
RIPK3 kinase activity or MLKL oligomerisation (with
Necrostatin-1, GSK’840 or Necrosulfonamide, respec-
tively) failed to protect against TL32711/TNFα and Ent/
TL32711/TNFα-induced cell death (Fig. 5d). The pan-
caspase inhibitor z-VAD-fmk completely protected
against apoptosis and reduction in viability induced by
Entinostat in combination with TL32711/TNFα (Fig. 5e).
PC3 cells deficient in caspase-8 (PC3-C8 CRISPR) were
protected against TL32711/TNFα with and without
Entinostat, confirming that the cell death induced is
caspase-8-dependent apoptosis in both the absence and
presence of the HDAC inhibitor (Fig. 5f). Collectively
these results indicate that the scaffold function, but not
the kinase activity of RIPK1 is essential for the apoptotic
cell death induced by this combination in CRPC.

Macrophage-derived TNFa and in vivo- efficacy of TL32711
To more closely mimic the proinflammatory tumor

microenvironment (TME), we assessed the ability of
macrophage-derived TNFα to induce apoptosis in the

context of IAP inhibition. Differentiation of human THP-
1 monocytic cells into M1-like macrophages significantly
increased their secretion of TNFα (Fig. 6a). PC3 cells co-
treated with M1 THP-1 conditioned media were sensitive
to TL23711 alone, and this sensitivity was greatly
increased in PC3 cells pre-treated with Entinostat
(Fig. 6b). Importantly, use of a TNFα-neutralizing anti-
body demonstrated that the cell death induced in the
presence of M1 THP-1 conditioned media was TNFα-
dependent.
The strategy of using Entinostat to overcome resistance

of CRPC to IAP antagonists was further explored in a PC3
xenograft study (Fig. 6c). In support of our in vitro find-
ings, co-treatment with Entinostat and TL32711 retarded
tumor growth more than treatment with either agent
individually. Moreover, this combination was well toler-
ated (Fig. 6d). Depletion of cIAP1 in the TL32711 and
combination treatment groups demonstrated TL32711
on-target activity (Fig. 6e). Moreover, immunohis-
tochemistry analyses confirmed FLIP depletion in
Entinostat-treated groups and increased levels of cleaved
caspase-3 (a marker of apoptosis) in the combination-
treated group (Fig. 6f). The presence of macrophages in
close proximity to the engrafted tumor cells was con-
firmed by immunofluorescent microscopy (Fig. 6g); with
positive staining for the murine-macrophage marker F4/
8037 evident in all treatment groups. Such macrophages
may act as the source of murine-derived TNFα detected
in the serum of these mice, as quantified by ELISA in
Fig. 6h. Notably, Entinostat, but not TL32711, sig-
nificantly enhanced TME (murine)-derived TNFα, sug-
gesting a further mechanism by which Entinostat can
enhance sensitivity to IAP antagonists (Fig. 6h).

Discussion
With chronic inflammation often being cited as a key

driver of prostate tumorigenesis and disease progression1,
high levels of circulating TNFα observed in CRPC
patients3, and high intra-tumoral expression of TNFα and
TNFR1 cited as being associated with poor clinical out-
comes38, the potential for exploiting the pro-death activity
of TNFα was investigated. We hypothesized that inhibit-
ing IAPs would cause TNFα to induce cell death, thus
providing a therapeutic rationale for using IAP antago-
nists in proinflammatory CRPC.
Both bivalent (TL32711) and monovalent (ASTX660)

IAP antagonists were observed to have rapid and potent
on-target effects; however, although each of the CRPC
lines formed the cell death-inducing Complex-IIb these
cell lines were relatively (PC3) or totally (DU145, VCaP)
resistant to apoptosis induced by IAP antagonists alone
and when co-treated with TNFα or macrophage condi-
tioned media to mimic a proinflammatory TME. TL32711
has been reported to be cIAP1-selective, whereas
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ASTX660 inhibits both cIAP1 and XIAP24,39. However,
RNAi-mediated depletion of either cIAP2 or XIAP failed
to sensitize the CRPC models to TL32711, and cIAP2
depletion failed to enhance response to ASTX660 (not
shown), ruling out IAP redundancy as a mechanism of
resistance.
The caspase-8 regulator FLIP has been previously

shown by our group to be overexpressed in CRPC6. In
Complex-IIb, FLIP(L)/procaspase-8 heterodimers are
partially processed (to p43-FLIP(L) and p41/p43-caspase-
8), and this heterodimer has enzymatic activity but cannot
initiate cleavage of executioner procaspases and so does
not promote apoptosis induction. When FLIP(S) hetero-
dimerizes with procaspase-8 in Complex-IIb, the

heterodimer has no enzymatic activity and procaspase-8
cleavage is completely blocked, inhibiting apoptosis, but
also potentially promoting necroptosis as RIPK1 is also
not cleaved40. We found that while selective RNAi-
mediated depletion of either FLIP(L) or FLIP(S) enhanced
cell death induced by IAP antagonists, depletion of both
splice forms was required for the maximal induction of
cell death. Notably, we found that cytoplasmic FLIP(L)
was highly stable in CRPC cells, with no depletion up to
24 h after siRNA transfection (reported half-life ~3 h41);
the reason for this hyper-stability is currently under
investigation. However, nuclear FLIP(L) was effectively
depleted, and its downregulation along with down-
regulation of the predominantly cytoplasmic FLIP(S) was
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sufficient to promote apoptosis in response to IAP
antagonists. This suggests that in CRPC at least, the
nuclear pool of FLIP(L) is more important than the
cytoplasmic pool for blocking Complex-IIb-mediated cell
death. This was further supported by the observation that
the nuclear export inhibitor Leptomycin-B enhanced cell
death induced by TL32711/TNFα.
HDAC inhibitors have a wide range of anti-cancer

activities primarily through their abilities to modulate
gene expression via acetylation of histones and non-

histone proteins35,42. Because of these activities, HDAC
inhibitors are being pre-clinically and clinically investi-
gated in a number of cancers in combination with other
agents, most notably immune oncology agents43,44. We
and others have previously demonstrated that HDAC
inhibitors downregulate FLIP expression by both tran-
scriptional and post-transcriptional mechanisms33,45,46.
The Class I-selective HDACi Entinostat has been given
Breakthrough Therapy status by the FDA after showing
promising results in the treatment of aromatase inhibitor-
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Fig. 6 Macrophage-derived TNFα and in vivo efficacy of TL32711. a Human TNFα ELISA quantifying TNFα secretion from THP1 cells (THP basal)
and M1-differentiated THP1 cells(THP M1) at 24 h. b Annexin-V/PI flow cytometric analysis of PC3 cells pretreated for 24 h with 2.5 μM Entinostat(Ent)
followed by 24 h with 1 µM TL32711 cultured in M1-derived conditioned mediain the presence(CM+ TNFα nAb) or absence(Cond Media) of 100 ng/
mL TNFα neutralising antibody. c Tumor volume analysis of PC3 xenografts implanted into SCID-mice treated with Vehicle(Veh), 20 mg/kg TL32711,
15 mg/kg Entinostat(ENT) or TL32711 and Entinostat combination(schedule as indicated; E- Entinostat, T- TL32711). d Mouse weights for duration of
xenograft study. *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001. e Western blot analysis of cIAP1 expression in PC3 cells pre-implantation (in vitro) and three
individual PC3 xenograft tumor lysate 24 h following final dose of Vehicle (Veh), Entinostat(Ent), TL32711 or Combination(Combo). f
Immunohistochemical analysis of FLIP (Left), and cleaved caspase-3 (Right) expression in PC3 xenograft tumors from mice 24 h following final dose of
Vehicle, Entinostat, TL32711 or Combination. Representative IHC images of 3 regions of 3 tumors collected per treatment group. g
Immunoflurorescent microscopy of the murine macrophage marker F4/80, cytokeratin (CK)-5 epithelial cell marker, and DAPI-stained nuclei in PC3
xenograft tissue. Scale bar represents 100 μm. h Murine TNFα ELISA quantifying murine TNFα present in the serum of mice 24 h following final dose
of Vehicle (Veh), Entinostat (Ent), TL32711 or Combination(Combo). Data represents pooled values in duplicate from 3 mice per treatment group.
*p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001
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resistant breast cancer32. Because of this activity in a
hormone-resistant disease setting, we explored Entinostat
as a clinically relevant approach for targeting FLIP
expression in CRPC to overcome resistance to IAP
antagonists. Entinostat was observed to downregulate
nuclear FLIP(L) and cytoplasmic FLIP(S) protein expres-
sion via post-transcriptional mechanisms in two out of
three CRPC models and subsequently sensitize these
models to IAP antagonist therapy in vitro and in vivo.
Mechanistically, this appears to be due to Entinostat-
induced acetylation of Ku70, a protein best characterized
as a key component of the DNA damage repair machin-
ery47, which we have previously shown to inhibit FLIP
ubiquitination and degradation in an acetylation-
dependent manner33. In prostate cancer cells, Ku70 was
found to be acetylated in response to Entinostat, and
siRNA-mediated Ku70 depletion resulted in down-
regulation of nuclear but not cytoplasmic FLIP(L). Gong
et al. proposed a similar mechanism by which HDAC
inhibition induces an acetylation-dependent disruption of
the Ku70:FLIP complex48. In addition, FLIP(L)/(S)
downregulation following Entinostat treatment may also
be caused by activation of JNK activity49. JNK could
subsequently activate the E3-ubiquitin ligase ITCH, which
has previously been reported to promote FLIP degrada-
tion via the ubiquitination-proteasome system (UPS)50.
Entinostat-mediated enhancement of TL32711/TNFα-

induced cell death was also determined to be caspase-
dependent (i.e., not necroptotic) and, more specifically,
caspase-8-dependent. We also demonstrated that the cell
death induced by TL32711/TNFα in the presence and
absence of Entinostat was dependent on RIPK1 and FLIP’s
ability to interact with the key Complex-IIb adaptor pro-
tein FADD. Thus, the sensitizing effects of Entinostat are
clearly due to its effects on FLIP rather than other effects
of Class-I HDAC inhibition. In conclusion, these results
show that although IAP antagonists promote formation of
Complex-IIb in proinflammatory models of CRPC, these
complexes fail to activate cell death because of the co-
recruitment of FLIP. However, the inhibitory effects of
FLIP can be overcome using the clinically relevant HDAC
inhibitor Entinostat, suggesting that strategies combining
this agent with IAP antagonists (particularly better toler-
ated next-generation antagonists such as ASTX660) may
be effective in proinflammatory CRPC.

Acknowledgements
This work was partly funded by a research grant from Astex Pharmaceuticals
(Cambridge,UK).

Competing interests
The authors CM, NC, JM, CH, CA, PM, CWO, MLW and SM declare no conflict of
interest. DJW and DBL are on the scientific advisory board for and in receipt of
a research grant from Astex Pharmaceuticals.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41419-018-1125-5).

Received: 14 June 2018 Revised: 19 September 2018 Accepted: 3 October
2018

References
1. De, MarzoA. M. et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer

7, 256–269 (2007).
2. Michalaki, V., Syrigos, K., Charles, P. & Waxman, J. Serum levels of IL-6 and TNF-

alpha correlate with clinicopathological features and patient survival in
patients with prostate cancer. Br. J. Cancer 90, 2312–2316 (2004).

3. Sharma, J. et al. Elevated IL-8, TNF-α, and MCP-1 in men with metastatic
prostate cancer starting androgen-deprivation therapy (ADT) are associated
with shorter time to castration-resistance and overall survival. Prostate 74,
820–828 (2014).

4. Bertrand, M. J. M. et al. cIAP1 and cIAP2 facilitate cancer cell survival by
functioning as E3 ligases that promote RIP1 Ubiquitination. Mol. Cell 30,
689–700 (2008).

5. Oeckinghaus, A. & Ghosh, S. The NF-kappaB family of transcription factors and
its regulation. Cold Spring Harb. Perspect. Biol. 1, 1–14 (2009). a000034;1–14.

6. McCourt, C. et al. Elevation of c-FLIP in castrate-resistant prostate cancer
antagonizes therapeutic response to androgen receptor-targeted therapy.
Clin. Cancer Res. 18, 3822–3833 (2012).

7. Dubrez, L., Berthelet, J. & Glorian, V. IAP proteins as targets for drug devel-
opment in oncology. Onco. Targets Ther. 9, 1285–1304 (2013).

8. Feltham, R. et al. Smac mimetics activate the E3 ligase activity of cIAP1 protein
by promoting RING domain dimerization. J. Biol. Chem. 286, 17015–17028
(2011).

9. Darding, M. & Meier, P. IAPs: Guardians of RIPK1. Cell Death Differ. 19, 58–66
(2011).

10. Wang, L., Du, F. & Wang, X. TNF-a induces two distinct caspase-8 activation
pathways. Cell 133, 693–703 (2008).

11. Shiozaki, E. N. et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol.
Cell 11, 519–527 (2003).

12. Suzuki, Y., Nakabayashi, Y., Nakata, K., Reed, J. C. & Takahashi, R. X-linked
inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct
modes. J. Biol. Chem. 276, 27058–27063 (2001).

13. Ndubaku, C. et al. Antagonism of c-IAP and XIAP proteins is required for
efficient induction of cell death by small-molecule IAP antagonists. Acs. Chem.
Biol. 4, 557–566 (2009).

14. Noonan, A. M. et al. Pharmacodynamic markers and clinical results from the
phase 2 study of the SMAC mimetic birinapant in women with relapsed
platinum-resistant or -refractory epithelial ovarian cancer. Cancer 122, 588–597
(2016).

15. Amaravadi, R. K. et al. A Phase I study of the SMAC-mimetic birinapant in
adults with refractory solid tumors or lymphoma. Mol. Cancer Ther. 14,
2569–2575 (2015).

16. Tamanini, E. et al. Discovery of a potent nonpeptidomimetic, small-molecule
antagonist of cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked
inhibitor of apoptosis Protein (XIAP). J. Med. Chem. 60, 4611–4625 (2017).

17. Mclaughlin, K. A. et al. FLIP: a targetable mediator of resistance to radiation in
non-small cell lung cancer.Mol Cancer Ther 15, 2432–2441 (2016).

18. Paek, A. L., Liu, J. C., Loewer, A., Forrester, W. C. & Lahav, G. Cell-to-cell variation
in p53 dynamics leads to fractional killing. Cell 165, 631–642 (2016).

19. Longley, D. et al. c-FLIP inhibits chemotherapy-induced colorectal cancer cell
death. Oncogene 25, 838–848 (2006).

20. Crawford, N. et al. SAHA overcomes FLIP-mediated inhibition of
SMAC mimetic-induced apoptosis in mesothelioma. Cell Death Dis. 4, e733
(2013).

21. Schmid, D. et al. Efficient drug delivery and induction of apoptosis in color-
ectal tumors using a death receptor 5-targeted nanomedicine. Mol. Ther. 22,
2083–2092 (2014).

McCann et al. Cell Death and Disease          (2018) 9:1081 Page 12 of 13

Official journal of the Cell Death Differentiation Association

https://doi.org/10.1038/s41419-018-1125-5
https://doi.org/10.1038/s41419-018-1125-5


22. Wu, X., Gong, S., Roy-Burman, P., Lee, P. & Culig, Z. Current mouse and cell
models in prostate cancer research. Endocr. Relat. Cancer 20, R155–R170
(2013).

23. Loberg, R. D., John, L. N. S., Day, L. L., Neeley, C. K. & Pienta, K. J. Development
of the VCaP androgen independent model of prostate cancer. Urol. Oncol. 24,
161–168 (2006).

24. Condon, S. M. et al. Birinapant, a smac-mimetic with improved tolerability for
the treatment of solid tumors and hematological malignancies. J. Med. Chem.
57, 3666–3677 (2014).

25. Fulda, S. & Vucic, D. Targeting IAP proteins for therapeutic intervention in
cancer. Nat. Rev. Drug. Discov. 11, 109–123 (2012).

26. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-
??B activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007).

27. Darding, M. et al. Molecular determinants of Smac mimetic induced degra-
dation of cIAP1 and cIAP2. Cell Death Differ. 18, 1376–1386 (2011).

28. Vince, J. E. et al. IAP Antagonists target cIAP1 to induce TNFα-dependent
apoptosis. Cell 131, 682–693 (2007).

29. Riley, J. S., Malik, A., Holohan, C. & Longley, D. B. DED or alive: assembly and
regulation of the death effector domain complexes. Cell Death Dis. 6, e1866
(2015).

30. Katayama, R. et al. Modulation of Wnt signaling by the nuclear localization of
cellular FLIP-L. J. Cell Sci. 123, 23–28 (2010).

31. Majkut, J. et al. Differential affinity of FLIP and procaspase 8 for FADD’s
DED binding surfaces regulates DISC assembly. Nat. Commun. 5, 3350
(2014).

32. Yardley, D. A. et al. Randomized phase II, placebo-controlled study of exe-
mestane with or without entinostat in postmenopausal women with locally
recurrent or metastatic estrogen receptor-positive breast cancer progressing
on treatment with a nonsteroidal aromatase inhibitor. J. Clin. Oncol. 31,
2128–2135 (2013).

33. Kerr, E. et al. Identification of an acetylation-dependant Ku70/FLIP complex
that regulates FLIP expression and HDAC inhibitor-induced apoptosis. Cell
Death Differ. 19, 1317–1327 (2012).

34. Kaushik, D., Vashistha, V., Isharwal, S., Sediqe, S. A. & Lin, M. Histone deacetylase
inhibitors in castration- resistant prostate cancer: molecular mechanism of
action and recent clinical trials. Ther. Adv. Urol. 7, 388–395 (2015).

35. Walkinshaw, D. R. & Yang, X. J. Histone deacetylase inhibitors as novel antic-
ancer therapeutics. Curr. Oncol. 15, 237–243 (2008).

36. Brumatti, G. et al. The caspase-8 inhibitor emricasan combines with the SMAC
mimetic birinapant to induce necroptosis and treat acute myeloid leukemia.
Sci. Transl. Med 8, 339–369 (2016).

37. Morris, L., Graham, C. F. & Gordon, S. Macrophages in haemopoietic and other
tissues of the developing mouse detected by the monoclonal antibody F4/80.
Development 112, 517–526 (1991).

38. Rodríguez-Berriguete, G. et al. Clinical significance of both tumor and stromal
expression of components of the IL-1 and TNF-a signaling pathways in
prostate cancer. Cytokine 64, 555–563 (2013).

39. Chessari, G. et al. Fragment-based drug discovery targeting inhibitor of
apoptosis proteins: discovery of a non-alanine lead series with dual activity
against cIAP1 and XIAP. J. Med. Chem. 58, 6574–6588 (2015).

40. Pop, C. et al. FLIP(L) induces caspase 8 activity in the absence of interdomain
caspase 8 cleavage and alters substrate specificity. Biochem. J. 433, 447–457
(2011).

41. Poukkula, M. et al. Rapid turnover of c-FLIPshort is determined by its unique C-
terminal tail. J. Biol. Chem. 280, 27345–27355 (2005).

42. Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation
of non-histone proteins. Gene 363, 15–23 (2005).

43. Woods, D. M. et al. HDAC inhibition upregulates PD-1 ligands in melanoma
and augments immunotherapy with PD-1 Blockade. Cancer Immunol. Res 3,
1375–1385 (2015).

44. Orillion, A. et al. Entinostat neutralizes myeloid-derived suppressor cells and
enhances the antitumor effect of PD-1 inhibition in murine models of lung
and renal cell carcinoma. Clin. Cancer Res. 23, 5187–5201 (2017).

45. Hurwitz, J. L. et al. Vorinostat/SAHA-induced apoptosis in malignant meso-
thelioma is FLIP/caspase 8-dependent and HR23B-independent. Eur. J. Cancer
48, 1096–1107 (2012).

46. Riley, J. S. et al. Prognostic and therapeutic relevance of FLIP and procaspase-8
overexpression in non-small cell lung cancer. Cell Death Dis. 4, https://doi.org/
10.1038/cddis.2013.481 (2013).

47. Chen, C. S. et al. Histone deacetylase inhibitors sensitize prostate cancer cells
to agents that produce DNA double-strand breaks by targeting Ku70 acet-
ylation. Cancer Res. 67, 5318–5327 (2007).

48. Gong, P. et al. HDAC and Ku70 axis-an effective target for apoptosis induction
by a new 2-cyano-3-oxo-1,9-dien glycyrrhetinic acid analogue article. Cell
Death Dis. 9, 1–11 (2018).

49. Dai, Y., Rahmani, M., Dent, P. & Grant, S. Blockade of histone deacetylase
inhibitor-induced RelA/p65 acetylation and NF- κ B activation potentiates
apoptosis in leukemia cells through a process mediated by oxidative damage,
xiap downregulation, and c-jun N-terminal kinase 1 activation blockad. Mol.
Cell. Biol. 25, 5429–5444 (2005).

50. Chang, L. et al. The E3 ubiquitin ligase itch couples JNK activation to TNFa-
induced cell death by inducing c-FLIPL turnover. Cell 124, 601–613 (2006).

McCann et al. Cell Death and Disease          (2018) 9:1081 Page 13 of 13

Official journal of the Cell Death Differentiation Association

https://doi.org/10.1038/cddis.2013.481
https://doi.org/10.1038/cddis.2013.481

	Cytoplasmic FLIP(S) and nuclear FLIP(L) mediate resistance of castrate-resistant prostate cancer to apoptosis induced by�IAP antagonists
	Introduction
	Materials and methods
	Compounds
	Cell lines
	Generation of overexpressing cell lines
	Generation of PC3 CRISPR caspase-8 cell lines
	Macrophage polarisation and conditioned-media collection
	Western blotting and subcellular fractionations
	Flow cytometry
	High-content Microscopy
	siRNA transfections
	Immunoprecipitation
	Caspase 3/7 activity assay
	Cell viability assay
	In vivo xenograft study
	Immunohistochemistry and Immunofluorescence
	TNFα ELISA
	Statistical Analysis

	Results
	IAP antagonists have rapid and potent on target activity in prostate cancer cell lines
	Prostate cancer cell lines are resistant to TL32711 + TNFα combination
	Cytoplasmic FLIP(S) and nuclear FLIP(L) mediate resistance of CRPC to IAP antagonist-induced apoptosis
	Entinostat downregulates FLIP and overcomes resistance to apoptosis induced by IAP antagonists
	Entinostat enhances apoptosis in response to IAP antagonists via Ku70, RIPK1 and caspase-8
	Macrophage-derived TNFa and in�vivo- efficacy of TL32711

	Discussion
	ACKNOWLEDGMENTS




