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Abstract

Humoral immune responses are crucial for protection against invading pathogens and are the 

underlying mechanism of protection for most successful vaccines. Our understanding of how 

humoral immunity develops is largely based upon animal models utilizing experimental 

immunization systems. While these studies have made enormous progress for the field and have 

defined many of the fundamental principles of B cell differentiation and function, we are only now 

beginning to appreciate the complexities of humoral immune responses induced by infection. Co-

evolution of the adaptive immune system and the pathogenic world has created a diverse array of 

B cell responses to infections, with both shared and unique strategies. In this review, we consider 

the common mechanisms that regulate the development of humoral immune responses during 

infection and highlight recent findings demonstrating the evolution of unique strategies used by 

either host or pathogen for survival.

Introduction

Successful vaccination strategies against a number of pathogens including viruses and 

pathogenic bacteria depend upon the humoral immune response [1]. In addition, neutralising 

antibodies induced during infection with highly mutating viruses such as HIV, HCV and 

influenza have shaped current strategies for vaccine design [2-4]. B cell activation through 

binding of the B cell receptor (BCR) to a cognate antigen in the context of various additional 

signals drives both proliferative and differentiation programs. These processes result in 

expanded populations of both early effector cells that can secrete copious amounts of 

antibody as well as long-lived populations of B cells that can protect against secondary 

infections (Figure 1). In recent years, we have made considerable advances in our 

knowledge of the molecular regulation of the generation, function and maintenance of 

humoral immune responses induced by immunization. We have a better understanding of the 
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critical interactions between CD4+ T cells and B cells and the key transcriptional regulators 

that are important for germinal center (GC) responses, and the heterogeneous populations of 

memory cells that emerge from the GC (both long-lived plasma cells (LLPCs) and memory 

B cells (MBCs)) [5,6]. In an effort to generate better vaccines however, we now need to 

understand how specific B cell populations can be optimally protective against specific 

microbial infections, taking into account unique inflammatory signatures, antigen loads, 

tropisms or immune evasion mechanisms. We propose that the evolution of host-pathogen 

interactions over time has led to a greater heterogeneity in the development and function of 

humoral immune responses than perhaps revealed by protein immunization models. Recent 

studies in this review illuminate both the common mechanisms shared by infection-specific 

humoral responses as well as highlighting unique characteristics of pathogen-specific 

responses to counteract immune evasion strategies. Since innate-like CD5+ B1 B-cells are 

not thought to form memory and their role in infection has recently been extensively 

reviewed [7], this review will only focus on B2 B cells.

Kinetics of the B2 B cell response to infection

B2 B cells can be divided into distinct sub-populations based on their activation 

requirements, phenotype and localization [8-10]. The first B2 B cells to respond to infection 

are the innate-like CD21+ marginal zone (MZ) B-cells, located primarily in the splenic MZ. 

The MZ separates the follicle from the red pulp and provides a unique environment in which 

resident lymphocytes can sample antigens in the blood. Marginal zone B cells have been 

shown to be critical early responders to bacterial [11,12], viral [13,14] and parasitic 

infections [15,16]. Furthermore, MZ B cells can respond to antigen in a T cell-independent 

manner to rapidly express antibodies and also present captured antigens to CD4+ T cells 

[17-20], (Figure 1). Upon activation MZ B cells have also been shown to traffic into the B 

cell follicle where they can deliver antigen to follicular dendritic cells, and facilitate 

follicular B cell activation [21]. Follicular B cells localized to follicles within the spleen and 

lymph nodes, require additional time and signals for differentiation [22]. Follicular B-cells 

respond in a largely T-dependent manner to form either plasmablasts or GC B cells (Figure 

1). Plasmablasts are short-lived effector cells that readily secrete antibodies that are critical 

for controlling a primary infection [23•,24]. Cells that enter the GC undergo mutations 

within their BCRs that are tested on antigen presented on follicular dendritic cells, resulting 

in both diversified and higher affinity BCRs. Germinal center-derived memory cells can 

persist either as long-lived, quiescent, circulating MBCs that remain responsive to 

reinvading pathogens or sessile long-lived plasma cells (LLPCs) in the bone marrow and 

spleen [21,25-28]. LLPCs secrete antibodies without requiring further antigenic stimulation 

[5], but are not thought to respond to a subsequent infection due to their low levels of BCR 

[25].

The early primary B cell response:

MZ B cells are rapid, T-independent responders to infections of the blood including 

encapsulated bacteria, parasites such as Plasmodium and some viruses (Figure 1). MZ B 

cells are able to recognize capsular polysaccharides on bacterial pathogens, microbial CPG 

DNA and highly repetitive viral motifs, which stimulate TLR and BCR signalling. This 
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enables MZ B cells to rapidly differentiate into plasmablasts, important for early protection 

against some bacterial and viral pathogens. Indeed, splenectomised individuals and those 

with disrupted splenic MZ B cells are highly susceptible to encapsulated bacterial 

pathogens, including Streptococcus pneumoniae, Haemophilus influenzae and Neisseria 
meningitis [29,30]. These individuals have reduced levels of serum IgM and IgG. Moreover, 

serum antibodies detected in these individuals exhibit limited capacity to opsonise 

encapsulated bacterial antigens. In a more recent study, stroke-induced loss of splenic MZ B 

cells in mice associated with significant reduction in IgM levels and a spontaneous increase 

in bacterial infection in the lungs of these mice, suggesting a potential role for MZ B cells in 

limiting infections throughout the body following a stroke episode [12]. Together, these data 

support a role for MZ B cell-derived antibodies in early protection against invading 

pathogens. However, despite their positive roles in immunity to blood-borne pathogens 

antigens, MZ B cells have also been associated with detrimental effects during some 

infections. For instance it has been suggested that MZ B cells may obstruct protective T cell 

responses during early Leishmania donovani infection [31]. In this report, MZ B cell 

deficiency was associated with improved T cell responses and reduced parasite burden in 
vivo. Therefore, these data suggest that MZ B cells may also drive pathology during some 

infections. Understanding how MZ B cells support critical early antibody responses during a 

specific infection will be important for understanding optimal control of acute infection.

Next phase: activation of the follicular B cell response

Follicular B cell responses are initiated when naïve B-cells encounter antigen situated within 

primary lymphoid follicles. Activated B-cells migrate via chemokine-sensing towards the T 

cell zone where they are able to interact with CD4+ T cells, previously activated by dendritic 

cells [22,32], (Figure 1). Activated B cells present cognate peptides on MHC Class II to 

CD4+ T cells in the context of co-stimulatory signals and cytokines [33,34]. As CD4+ T 

follicular helper (Tfh) cells and B cells exchange signals, an extended program of 

differentiation and expansion begins. CD4+ Tfh cells express co-stimulatory molecules 

including CD40 ligand and ICOS as well as cytokines essential for initiation of the GC 

response and the formation of MBC populations [35-39]. Multiple factors including antigen 

availability, the strength of BCR-signaling and the types of cytokines secreted by the CD4+ 

T cells influence B cell fate and the decision to become either extrafollicular plasmablasts or 

GC B cells [5,40-42]. T-dependent plasmablasts can class-switch and can undergo somatic 

hypermutation and affinity maturation [43••]. In addition, while extra-follicular plasma cells 

are generally believed to be short-lived, there is some evidence that this is not always the 

case [44-46]. By immunizing T cell deficient mice with haptenated LPS, a model T-

independent antigen, a recent study demonstrated that long-lived GC-independent plasma 

cells are readily formed and maintained both in the spleen and bone marrow, suggesting that 

some plasmablast populations may be longer lived than previously appreciated [45]. B cells 

that receive the appropriate differentiation signals can alternatively be recruited into the GC 

and undergo somatic hypermutation, class-switch recombination and affinity maturation, 

giving rise to MBCs and LLPCs [47]. The resulting MBCs and LLPCs, express a diverse 

array of high affinity BCRs and recent evidence has even demonstrated that non-templated 

mutations contribute to this process [23•,48]. Interestingly, the post-GC decision to become a 
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LLPC or MBC also appears to be binary and is tightly regulated by a network of 

transcription factors [5,49,50]. The development and function of LLPCs was recently 

attributed to three key transcription factors, IRF4, Blimp-1 and XBP-1 [51•]. By using a 

tamoxifen-driven Cre-recombinase depletion system to IRF4 in established plasma cells, this 

study demonstrated an essential role for IRF4 in the survival of LLPCs, as measured by 

upregulation of CD138 and Blimp1 on B220lo cells in the spleen and bone marrow [51•]. 

Using a similar approach, it was further demonstrated that Blimp-1 and XBP-1 were 

required for LLPC maturation and production of antibodies, but were not essential for LLPC 

survival, both in the steady state and after protein immunization. Unlike LLPC fate, 

transcription factors critical for MBC fate are still being elucidated. Nonetheless, it has been 

suggested that MBC formation and maintenance is dependent on transcription factors such 

as PAX5, Bach2 and BCL-6, which are believed to insulate mature B cells against plasma 

cell differentiation [5,52-54]. For example, in a recent study employing a protein 

immunization system, genetic ablation of Bach2 in pre-existing MBCs associated with their 

increased differentiation into CD138-expressing plasma cells [54]. These findings were 

further corroborated by a more recent report in mice, which established a requirement for 

Bach2 in the generation of MBCs within the light-zone of the GC following protein 

immunization [53]. However, in driving the selection of light-zone GC B-cells into MBCs, 

Bach2 acted in a Blimp1-independent manner, suggesting a more complex interplay among 

transcription factors in controlling MBC and LLPC fate. Identification of the signals 

important for the formation, function and maintenance of MBCs and LLPCs during infection 

is an ongoing area of investigation that will have important implications for vaccine 

development.

Memory B cells respond to a secondary infection

While it is clear that the presence of continuous antibody production from LLPCs is critical 

for protection against many subsequent infections (reviewed by Amanna and Slifka) [55], 

we are now just beginning to understand the contributions that MBCs provide during a 

homologous secondary infection [56•]. Interestingly, heterogeneous populations of CD27+-

expressing MBCs that express either class-switched or unswitched BCRs have been 

described in humans for many years [57-59]. Yet due to a lack of phenotypic markers to 

identify small populations of antigen-experienced MBCs in mice, relatively few mechanistic 

comparative studies have been performed on these cells [23•,60,61]. The advent of both 

antigen-specific B cell enrichment strategies as well as single cell RNA-seq have been 

pivotal to renewed efforts to understand the nature and function of endogenous MBCs after 

infection or immunization [23•,56••,60]. For example, studies from our lab have 

demonstrated that fluorescently-labeled B cell tetramers containing various Plasmodium-

specific proteins can be used to study the development of the B cell response to malaria in 

both mice and humans and the panoply of different B cell subsets that can form at different 

times throughout the infection [56,62•]. These studies have revealed both interesting biology 

of MBCs (reviewed in [63]) and the unique immune evasion strategies that the parasite uses 

(discussed below). For example, we found that in mice, three different Plasmodium-specific 

MBC subsets persist in the spleen after a primary infection, exhibiting different phenotypic 

and functional qualities. The largest population was comprised of cells expressing high-
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levels of the IgD isotype that resembled naïve follicular B cells. The next prominent 

population resembled classically defined, somatically hypermutated IgG-expressing MBCs 

while the smallest population consisted of somatically hypermutated, IgM+ MBC 

population. Remarkably, despite this difference in number, the IgM+ MBCs responded 

fastest to a secondary infection and could generate both IgM- and IgG-antibody secreting 

plasmablasts. These findings suggest that heterogeneity in MBC function may have evolved 

to control different types of infections that can occur in different regions of the body or 

require the unique functional attributes of distinct isotypes. Interestingly, IgM-like 

antibodies exist even in the earliest immune systems including the lamprey [64], suggesting 

a critical role for these cells throughout evolution. These often over-looked IgM+ MBCs may 

be important targets for improved vaccine-induced immunity to certain infections and we are 

currently investigating the cues that lead to their differentiation.

Unique challenges of and responses to specific infections

We believe that heterogeneous populations of MBCs have evolved to control various types 

of infections as they provide an arsenal to prevent immune evasion. In the following section, 

we provide examples of some of the unique challenges to humoral immunity that can be 

ascribed to various infections.

a) Bacterial infection:

Many of the common mechanisms of B cell activation and function described above have 

been targeted by pathogen immune evasion mechanisms (Figure 1). For instance, antibodies 

acting via opsonic and complement fixation killing mechanisms have been associated with 

protection to Salmonella infection, while it exists in the extracellular environment [43••,

65-67]. Yet studies have also demonstrated that the bacteria have developed immune evasion 

strategies to modify the quality of Salmonella-specific B cell responses through the 

production of inefficient antibodies [66,68•]. One strategy that Salmonella uses is evasion of 

the GC response as demonstrated in a recent report employing transgenic ovalbumin-

expressing Salmonella strains to study B cell responses during Salmonella infection [68•]. In 

this report, primary Salmonella infection significantly impaired the expansion of 

endogenous Salmonella-specific B cells and the formation of GCs [68•]. These defects were 

mediated by factors within the Salmonella Pathogenicity Island 2 (SPI2) since normal B-cell 

expansion and GC formation was restored in mice infected with SPI2-deficient mutant 

bacteria. Therefore, targeting bacterial-associated virulence factors such as SPI2 in 

attenuated bacteria may be a useful vaccine strategy for boosting humoral immunity to 

Salmonella.

Perhaps as a counter-strategy, the host mounts a robust extrafollicular plasmablast response 

against Salmonella that can control infection [69,70]. A previous study in mice infected with 

attenuated enteric Salmonella typhimurium suggested a role for a robust extrafollicular B 

cell response in limiting bacterial burdens within the extracellular environment in the 

absence of a GC response [69]. This supports the idea that potent extrafollicular B cell 

responses may compensate for loss of optimal GC B cell responses during infection. 

Although it was previously thought that these extrafollicular responses were largely 
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polyclonal and non-specific, a more recent study in mice infected with Salmonella 
typhimurium demonstrated that they were indeed specific for the bacteria [43••]. 

Importantly, this study demonstrated that B-cells activated by Salmonella infection are 

capable of undergoing somatic hypermutation within the extra-follicular environment, 

boosting affinity maturation and production of isotype-switched antibodies, which was 

previously thought to primarily occur within the GC. These data highlight the complexity of 

the humoral response during infection and highlight our need to understand B cell responses 

to specific pathogens.

b) Viral infection:

Vaccine-mediated humoral immunity has led to the eradication of several devastating 

infections including Small pox, Measles and Polio. One potential evolutionary mechanism 

that some viruses may have adapted in subverting humoral immune-mediated killing is the 

induction of strong inflammatory responses, which suppress B cell differentiation and 

antibody production [71,72]. Recent evidence in human studies using RNA-seq-based 

technologies showed a negative correlation between highly upregulated inflammatory 

transcripts and responses to hepatitis B vaccination (HBV) [71]. However, upregulation of 

genes associated with B cell signalling positively correlated with heightened responses to 

HBV, suggesting a potential interplay between inflammation and B cell signalling in 

regulating B cell responses to infection and vaccination. Indeed, reports in mice demonstrate 

roles for inflammation-induced disruption of the lymphoid organ architecture, which can 

also suppress GC formation [72, 73]. For example, a recent study, using influenza and 

vaccinia viral models demonstrated that infection-induced inflammation disrupts the 

organisation of sub-capsular macrophages within sub-capsular spaces and inter-follicular 

regions, impairing GC B-cell and plasma cell formation during secondary viral challenge 

[72]. As a counter-measure to this evasion mechanism, host regulatory mechanisms that 

limit excessive inflammation to viral infection have evolved. For instance, a recent report 

demonstrated a T cell-intrinsic requirement for TGFβ-signalling in the formation of 

influenza-specific GC B cells and the production of class-switched antibodies [74•]. TGFβ-

signalling in T-cells acted by limiting IL-2-induced signals and the formation of virus-

specific inflammatory-like Th1 precursor cells, which enhanced Tfh and B cell responses. 

Similarly, Laidlaw and colleagues more recently demonstrated a role for follicular regulatory 

T cell (Tfr)-derived IL-10 in promoting GC B cell responses in mice with acute LCMV 

infection [75•]. Genetic depletion of IL-10 in Tfr cells was associated with reduced 

frequencies of GC B cells, in particular, those within the dark zone, suggesting that Tfr-

derived IL-10 may support dark zone GC responses. Taken together, these data suggest that 

regulatory mechanisms within the host may not only serve to limit infection-induced 

immunopathology but also boost immunity against invading pathogens. Therefore, targeting 

infection-induced inflammatory pathways may be an important avenue for improving 

humoral immunity to infection.

c) Parasitic infection:

Antibodies have also been shown to play important roles in several parasitic infections 

including Trypanosomes [15, 76], Helminths (reviewed in [77]) and Plasmodium [78•-82]. 

Trypanosomes have long been studied as an example of humoral immune evasion as they 
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have developed a robust antigenic variation system that enables them to evade antibody-

mediated killing [83]. However, recent data further suggests that Trypanosomes can also 

directly modulate B cell differentiation and function during infection [15]. Using a mouse 

model of Trypanosoma brucei, Radwanska and colleagues illustrated that Trypanosome-

infection induces apoptosis in MZ B cells, reducing antibody production and parasite control 

[15]. However, it remained unclear from this report whether cell-death was restricted to MZ 

B cells alone or affected other B cell subsets, since the latter were not directly examined in 

this study.

B cells are also critical for control of Plasmodium infections in both mice and humans. B 

cell deficient mice are unable to clear non-lethal blood-stage Plasmodium infections [84], 

while passively transferred antibodies are protective in both mice and humans [78•,85]. 

Plasmodium parasites have also developed strategies to evade these humoral immune 

responses, including antigenic variation [86], and repression of optimal B cell differentiation 

and antibody production during infection [62•,73,87]. Our work and that of others has shown 

that the blood-stage of Plasmodium infection can impinge upon the humoral immune 

response to the proceeding liver-stage parasites. An examination of the circumsporozoite 

protein (CSP)-specific B cell response in genetically attenuated parasites (Pyfabb/f) that are 

unable to establish blood-stage infection compared to wild type parasites, which establish a 

blood-stage infection [88] showed a direct effect of the blood stage on liver stage GC 

development [62•]. Moreover, this diminished GC response in the presence of a blood-stage 

infection alters the quality of CSP-specific MBCs and their ability to respond to a secondary 

challenge. These data highlight how immunization with attenuated parasites may drive 

optimal immunity to malaria and suggest further studies on how ongoing blood stage 

infections may alter immune memory. In addition, Plasmodium parasites may also modify 

optimal MBC formation and function during infection. Recent studies in humans have 

identified a unique subset of MBCs, ‘atypical’ MBCs, which develop during chronic 

Plasmodium infection [89-91]. When compared to classical MBCs, atypical MBCs display 

increased expression of inhibitory receptors, exhibit reduced BCR-signalling and are unable 

to differentiate into antibody secreting cells [89,90]. This suggests that these MBCs may be 

dysfunctional. Although their sources remain unclear, immunoglobulin gene sequencing 

techniques have predicted a shared developmental history between these atypical and 

classical MBCs [89].

d) Fungal infection:

Humoral immune responses are necessary for resistance against various fungal infections 

largely via antibody-mediated activation of the complement system (reviewed in [92,93]). 

For instance, complement-deficiency in mice has been associated with increased 

susceptibility to Candida [94], Aspergillus [95] and Cryptococcal [96] infections. This was 

associated with reduced opsonization and complement-mediated lysis of pathogenic fungi 

and decreased recruitment of phagocytic cells during infection. In order to subvert 

complement-mediated killing and establish infection, pathogenic fungi have adapted 

multiple survival strategies [92,93,97-99]. For example, Candida albicans may evade the 

complement system by expressing decoy inhibitory ligands such as phosphoglycerate 

mutase (Gmp1) and the pH-regulated antigen 1 (Pra1) that bind Factor H and Factor H-like 
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protein 1, which are key regulatory proteins in the alternative pathway [97-99]. These 

ligands have also been implicated in inhibiting the classical and lectin pathways during 

Candida and Aspergillus infections by binding the regulatory C4BP and thus restricting C3b 

and CD4b deposition on the fungal surface [97-100]. Pathogenic fungi may also secrete 

proteolytic enzymes that degrade effector components of the complement pathway hence 

inhibiting opsonization and phagocytosis [101,102]. For instance, Aspergillus fumigatus (A. 
fumigatus) secretion of the proteolytic enzyme, alkaline protease Alp1 has been associated 

with increased degradation of C3, C4, C5 and C1q complement proteins purified from 

human sera [101] and reduced expression of complement receptor 3 on phagocytic cells in 

cultured cerebral spinal fluids from A. fumigatus-infected individuals [102]. Together, these 

evasive strategies may contribute to enhanced fungal infection. Therefore, these data suggest 

that infection-induced complement inhibitory pathways may be targeted for improved 

immunity to pathogenic fungal infections.

Conclusions

The ongoing co-evolution of pathogens and host immune responses has introduced critical 

diversity associated with survival of both. Whereas some responses may be protective to 

specific infections, they may alternatively be detrimental to others. Therefore, a more 

comprehensive understanding of the function and generation of heterogeneous humoral 

immune responses to specific microbial infections is required to lead to more efficacious 

vaccine strategies. This more comprehensive approach to humoral immunity may reveal B 

cell strategies that are not induced by current protein immunization strategies. The 

introduction of new analytical methods including tools to analyze small populations of 

polyclonal, antigen-specific B cells, improved DNA-sequencing and single cell RNAseq 

platforms have ushered in a new era of understanding for B cell immunology. It will next be 

important to develop vaccine platforms that can induce heterogeneous responses or even 

direct a specific MBC population. It will soon be possible to develop the types of truly 

rationale-based vaccine design strategies that will be necessary for generating immunity 

against some of our oldest foes.
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Highlights

• Humoral immune responses are crucial for protection against infections

• Current paradigms of humoral responses are based on protein immunization 

models

• Pathogens have evolved an array of strategies to evade humoral immunity

• Diverse B cell responses have evolved to ensure host survival
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Figure 1. A schematic view of humoral immune responses to infection.
Extrafollicular and follicular antibody responses contribute to protection against invading 

microbial pathogens. B cells activated within the extrafollicular environment in the presence 

or absence of T cell help differentiate into short-lived antibody secreting cells that mediate 

early protection against infection. However, the formation of germinal center dependent or 

independent memory B cells and long-lived plasma cells in the B cell follicles facilitates 

complete resolution of primary infections and long-term protection against reinfection. For 

their survival, pathogens have evolved strategies that enable them to evade specific antibody-

dependent killing mechanisms.
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