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Abstract

Human brain connectivity is complex. Graph theory based analysis has become a powerful and 

popular approach for analyzing brain imaging data, largely because of its potential to 

quantitatively illuminate the networks, the static architecture in structure and function, the 

organization of dynamic behavior over time, and disease related brain changes. The first step in 

creating brain graphs is to define the nodes and edges connecting them. We review a number of 

approaches for defining brain nodes including fixed versus data-driven nodes. Expanding the 

narrow view of most studies which focus on static and/or single modality brain connectivity, we 

also survey advanced approaches and their performances in building dynamic and multi-modal 

brain graphs. We show results from both simulated and real data from healthy controls and 

patients with mental illnesse. We outline the advantages and challenges of these various 

techniques. By summarizing and inspecting recent studies which analyzed brain imaging data 

based on graph theory, this article provides a guide for developing new powerful tools to explore 

complex brain networks.

HHS Public Access
Author manuscript
Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2019 May 01.

Published in final edited form as:
Proc IEEE Inst Electr Electron Eng. 2018 May ; 106(5): 886–906. doi:10.1109/JPROC.2018.2825200.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Index Terms

brain graph; nodes; dynamic; multi-modal

I. Introduction

Brain performance has been characterized and quantitatively studied using state of the art 

noninvasive brain imaging techniques [1–3]. For example, magnetic resonance imaging 

(MRI) studies have shown that brain regions are not only structurally connected [4–6] but 

also functionally associated when performing cognitive tasks or even in resting state [7–9]. 

In the last decade, graph theory based analysis has become a powerful and popular approach 

for assessing brain networks [10–41], largely because of its potential to quantitatively 

illuminate the static architecture in structure and function [42–60], the organization of 

dynamic behavior over time in resting state or during different cognitive tasks [61–83], the 

development across the lifespan [84–103], and changes in mental disorders [104–161].

Technically, when building a brain graph using imaging data, the first step is typically to 

define the nodes, and then build edges between them [162]. The use of fixed spatial regions 

of interest (ROIs) assessed by anatomical atlases based on brain structure is one of the 

popular methods for defining brain nodes [163]. This approach is appropriate for structural 

brain imaging data. However, the selected ROIs do not necessarily respect the functional 

boundaries of the brain [164]. Thus, more approaches have been developed for defining the 

nodes when building brain graphs using functional magnetic resonance imaging (fMRI) data 

[165], such as independent component analysis (ICA) which is adopted to decompose the 

whole-brain fMRI into independent spatial components (called ICA nodes) [129, 166]. 

Briefly, both fixed (including ROIs, voxels) and data-driven (such as ICA) methods are 

widely used to define the nodes in brain graph studies using fMRI data [167].

While the dynamics of both structural and functional brain connectivity across different age 

stages have been investigated, most previous studies hypothesize that the functional brain 

connectivity is static over a scanning time. However, recent fMRI experiments have shown 

that functional brain connectivity is dynamic on the scale of tens of seconds even during the 

resting state [168, 169]. Currently, more studies are investigating time varying brain graph 

performance [82]. While structural brain graphs can be built across different ages, functional 

brain graphs are built not only across the life span, but also on short time scales such as 

across different cognitive tasks, or even across a few minutes of the resting state [170–172].

In addition to dynamic analysis, techniques to perform multimodal fusion analysis of brain 

imaging data are required, because collecting multiple types of brain data from the same 

individual using various non-invasive imaging techniques has become a common practice 

[173]. A key motivation for jointly analyzing multimodal data is to take advantage of the 

cross-information of the existing data, thereby potentially revealing important variations that 

may only be partially detected by a single modality [174–176]. Recent studies have 

developed powerful methods to build multimodal brain graphs.
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In this article, we briefly review and compare the research findings in static and dynamic 

(across the life span, at different ages, during various cognitive tasks, or during the resting 

state), structural (gray matter and diffusion image data) and functional brain graphs with 

nodes defined by different methods in not only healthy controls, but also patients with 

mental disorder. We survey advanced techniques for defining the brain nodes, building 

dynamic and multimodal brain graphs, and point out potential directions for developing new 

tools to build and characterize brain graphs. The rest of this paper is organized as follows: In 

Section II, we review and compare research results from static structural and functional 

brain graphs. In Section III, we focus on dynamic brain graphs. In Section IV, we survey 

studies creating brain graphs with multimodal data. Finally, we discuss the limitations of 

existing methods and suggest possible directions for developing new approaches in 

investigating different brain graphs.

II. STATIC STRUCTURAL AND FUNCTIONAL BRAIN GRAPHS

In gray matter and diffusion image structural brain graph studies, nodes are typically defined 

using ROIs though at multiple spatial scales. Edges are usually defined using correlation of 

gray matter volume or thickness, or fiber tracks (connections) between pairs of ROIs in gray 

matter and diffusion magnetic resonance imaging (dMRI) data respectively.

When building brain graphs in fMRI data, spatial brain components evaluated by group ICA 

have been used to define data-driven nodes, as opposed to fixed atlas-based ROI nodes. 

Edges are defined using a variety of metrics including Pearson correlation, partial 

correlation, or wavelet-based frequency dependent correlation between the time courses of 

any pair of nodes.

A. Structural Brain Graphs Built with ROIs

A main finding of gray matter structural brain graph studies is that the topology of structural 

brain networks shows “small world” properties rather than random. Previous studies have 

defined the nodes in ROIs from different ways, such as using 3 × 3 × 3 voxel cubes (size 

corresponding to 6 × 6 × 6 mm3) as nodes [177], or using 104 ROIs defined by atlas images 

as nodes [115]. It has also been shown that different cortical scales lead to cortical networks 

with different values of small-worldness when building brain graphs at 23 cortical scales 

(number of nodes varied from 66 to 1494) based on the Desikan-Killiany atlas [178].

Consistent with gray matter structural brain graphs, diffusion brain image-based graphs are 

also not random. When using 78 cortical ROIs from the automated anatomical labeling 

(AAL) atlas [179] as nodes, the topology of the diffusion brain image-based graph 

resembled a small-world architecture characterized by an exponentially truncated power-law 

distribution. In addition, the diffusion brain image-based graph was characterized by major 

hub regions in association cortices that were connected by bridge connections following 

long-range white matter pathways [180]. Importantly, the observed inter-scan reproducibility 

of the graph measures was high [181].

Diffusion brain image-based graphs have also been built at multiple scales. In a diffusion 

spectrum imaging (DSI) and diffusion tensor imaging (DTI) study, 90, 180, 360, 720 ROIs 
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defined by AAL atlas, 110, 220, 440, and 880 ROIs defined by the Harvard-Oxford Atlas 

(HO), and 54, 108, 216 and 432 ROIs defined by the LONI Probabilistic Brain Atlas 

(LPBA40) were used as nodes respectively. Basic connectivity properties and several graph 

metrics displayed high reproducibility and low variability in both DSI and DTI networks 

[182].

An impressive property of previous diffusion brain image-based graphs is the so-called “rich 

club” organization initially identified by a study using 82 ROIs defined by Freesurfer suite 

as nodes. A rich club organization is characterized by a tendency for high-degree nodes to be 

more densely connected among themselves than nodes of a lower degree in the graph [183]. 

A following study which used 1170 ROIs as nodes showed that the set of pathways linking 

rich club regions formed a central high-cost, high-capacity backbone for global brain 

communication [184].

A wide application of brain graph analysis is for the detection of potential biomarkers of 

mental illness such as schizophrenia. Altered brain graph properties have been revealed in 

schizophrenia using DTI data with different nodes. When using 82 ROIs [104] and 108 ROIs 

[185] as nodes to build the graphs respectively, it was shown that though small-world 

attributes were conserved in schizophrenia, the cortex was interconnected more sparsely and 

up to 20% less efficiently [104], and node specific path lengths were longer in patients 

[185]. Another DTI study which used 90 ROIs defined by AAL as nodes discovered 

decreased global efficiency in schizophrenia [186].

In summary, structural brain graphs have been extensively studied using multi scale ROIs as 

nodes. Structural brain graphs show small-world properties with hub nodes, modular, and 

rich club organization, and graph measures are robust across scans. Nodes with different 

cortical scales may lead to different levels of small-world organization. Graph metrics 

including path length and global efficiency have been shown to be disrupted in 

schizophrenia [185, 186].

B. Functional Brain Graphs Built with ROIs

In line with structural graphs, the functional brain graphs also show small world rather than 

random topology. This topological property has been consistently revealed by graphs with 

different nodes such as the 90 ROIs come from AAL atlas [47, 105, 179, 187], and single 

voxels [188, 189]. For a review of the small world topology of functional brain networks see 

[190]. In addition to small-world property, functional brain graph show scale-free topology 

when using single voxels as nodes [188, 189], and significantly non-random modular 

organization when using AAL-based 90 ROIs as nodes [84]. Modules have been found to be 

consistent with cognitive function when using five different node definitions, in which each 

module was associated with a discrete cognitive function [191]. Moreover, functional brain 

graph studies strongly suggested that brain hubs play important roles in information 

integration underpinning numerous aspects of complex cognitive function [192].

The reliability of graph measures in functional brain connectivity has also been studied. A 

test-retest study of graphs with 90 ROIs defined by AAL as nodes estimated the reliability of 

various graph measures including clustering coefficient, characteristic path length, local and 
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global efficiency, assortativity, modularity, hierarchy and small-worldness. Results showed 

that the second order metrics (small-worldness, hierarchy, assortativity) tended to be more 

robust than first order metrics (clustering coefficient, characteristic path length, modularity, 

global and local efficiency) [193].

Similar to structural brain graphs, functional brain graphs have been built with ROIs in 

multiple spatial resolutions as well. It was found that the graphs with nodes of higher 

resolution exhibited the small-world properties more prominently. And region-based graphs 

fragmented more at high thresholds than voxel-based graphs, suggesting region-based 

graphs are less robust [194]. Although the degree distributions of all graphs followed an 

exponentially truncated power law rather than a true power law, the higher the resolution, the 

closer the distribution was to a power law. Furthermore, voxel-based analyses enhanced 

visualization of the results in the 3D brain space. These results demonstrated benefits of 

constructing the brain graph at the finest scale [194]. Another study built functional brain 

graphs with seven different parcellation resolutions (84, 91, 230, 438, 890, 1314, and 4320 

regions) based on the AAL atlas. Results showed that gross inferences regarding graph 

topology, such as whether the brain was small-world or scale-free, were robust. But both 

absolute values of, and individual differences in, specific parameters such as path length, 

clustering, small-worldness, and degree distribution descriptors varied considerably across 

the resolutions [49]. Brain graphs with 90 (AAL) or 70 (Automated Nonlinear Imaging 

Matching and Anatomical Labelling [ANIMAL-atlas] [195]) ROIs as nodes were found to 

show robust small world properties and truncated power-law connectivity degree 

distribution. However, significant differences in multiple topological parameters (e.g., small-

worldness and degree distribution) between the two graphs were revealed [196].

Functional brain graphs have been extensively investigated in brain disorders. Using AAL-

based 90 ROIs as nodes, pairwise functional connectivity was found to be decreased and the 

variance was increased in schizophrenia [124]. Graph measures including degree, clustering 

coefficient, global efficiency, and local efficiency were decreased and path length was 

increased in patients with schizophrenia [122]. These findings were repeated in another 

fMRI study which used 72 ROIs defined by AAL as nodes [107]. Altered community 

structure was also reported in schizophrenia in graphs with 278 ROIs nodes defined with 

FSL’s cortical and subcortical Harvard-Oxford probabilistic atlas [197].

In addition to schizophrenia, disruptions of functional brain graphs have also been studied in 

other brain disorders including Alzheimer’s disease [198, 199], amnestic mild cognitive 

impairment (aMCI) – the prodromal stage of Alzheimer’s disease [200], major depressive 

disorder [201], children with frontal lobe epilepsy (FLE) [202], children with attention-

deficit/hyperactivity disorder (ADHD) [203], and mesial temporal lobe epilepsy (mTLE) 

patients [204] using different ROI nodes.

In summary, functional brain graphs with high resolution voxel level rather than low 

resolution brain region level nodes showed less fragmentation. The higher resolution graphs 

exhibited more prominent small-world properties, and the higher the resolution, the closer 

the degree distribution was to a power law [194]. However, there were some disadvantages 

when defining the nodes at voxel level. For example, some voxels may be located 
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completely in white matter, thus it was difficult to remove the effects of white matter signal 

fluctuations [49]. In addition, computational burden was high for calculating graph metrics 

in weighted voxel-based brain graphs. Optimization of these computational algorithms is an 

important goal [194]. Notably, graph measures were largely disrupted in brain disorders.

C. Functional Brain Graphs Built with ICA Nodes

There are some limitations when defining the ROI nodes in functional MRI data based on 

anatomical brain atlases. For example, The ROIs may not correspond well to real functional 

boundaries [167] in the brain or fully capture individual subject variability [179, 205–207]. 

Although functional connectivity-based data-driven methods for brain parcellation have been 

developed both at the group [208–212] and individual level [213, 214], no study to our 

knowledge has used these approaches to define brain nodes for building graphs. In contrast, 

ICA is a popular data-driven method for defining the nodes to mitigate these limitations of 

ROI-based nodes in building functional brain graphs using fMRI data. In this approach, the 

fMRI data of a group subjects are firstly decomposed into a number of spatial components. 

Then single subject components and their associated time courses are back-reconstructed 

[215–218]. The graph nodes of spatial brain components evaluated by ICA are functionally 

homogeneous and may capture individual differences better than anatomical atlas-based ROI 

nodes [166, 215, 216, 219]. Using this node definition approach, the topology of brain 

graphs has also been revealed to be small world and modular with hub nodes. Moreover, 

alterations of graph measures including connectivity strength, clustering coefficient, local 

efficiency, characteristic path length, global efficiency, modularity, and rich club parameters 

were discovered in schizophrenia [55, 127–129]. However, limitations of defining nodes 

using ICA include spatial overlap of some of the nodes (though this can potentially be an 

advantage as well [220]), and the number of nodes/components need to be selected [129, 

220].

D. Comparing ROI and ICA Methods for Building Functional Brain Graphs using 
Simulations

An important and open question is that which method (atlas-based ROI vs data-driven ICA) 

can better define the nodes of brain graph in fMRI data. Using simulated data to evaluate the 

node definition methods may be promising, because different scenarios can be estimated and 

graph measures computed with different nodes can be compared to a known ground truth. In 

one recent study [221], simulated data was generated using SimTB (http://mialab.mrn.org/

software/simtb/), a MATLAB toolbox which implements a data generation model consistent 

with spatiotemporal separability, that is, data can be expressed as the product of time courses 

(TCs) and spatial maps (SMs) (for details of the data generation model in SimTB see 

Erhardt et al 2012 [222]). Four scenarios involving different SM configurations were 

analyzed. In scenario 1, spatial maps (SMs) were created with little overlap. In scenario 2, 

twenty-nine SMs were with little overlap plus three artificial SMs. In scenario 3, SMs were 

with large overlapping. In scenario 4, SMs were with large overlapping and included 3 

“artefactual” SMs.

Four kinds of undirected weighted graphs were built based on the simulated data in each 

scenario. The number of nodes (N) was same in all graphs (N = 29). In scenarios 2 and 4, 
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three artefactual SMs associated nodes were excluded when building the four types of 

graphs.

1. Ground truth graph. In this graph, the nodes were SMs (excluding artifacts if 

any) in the simulation. Edges were the Pearson correlation between each pair of 

simulated time courses of the SMs.

2. ICA graph. In this graph, the nodes were spatial independent components 

obtained by group ICA performed on the simulated data. Edges were the Pearson 

correlation between each pair of ICA time courses of the components.

3. ROI graph. In this graph, the nodes were ROIs which were defined base on the 

SMs of the simulation using a threshold of 0.8. Time series of voxels within each 

ROI were averaged into one representative time course. Edge weights of the 

graph were the Pearson correlation between each pair of representative time 

courses of the ROIs.

4. Modified ROI graph (MROI-graph). When using ROIs as graph nodes, the ROIs 

are usually defined base on a brain atlas which will not perfectly match the 

variation in an individual subject. To simulate the effects of individual subject 

variability in brain shape and functional domains, and compare with the ideal 

ROI scenario, a MROI-graph (in which nodes deviate from the ground truth ROIs 

to reflect subject variability) was built and examined. In this graph, the nodes 

were spatially moved up to 15% of the area of the ROI. See Yu et al. [221] for 

details of the method. See figure 1 for a pipeline of the analysis in that study.

When comparing the measures including connectivity strength, clustering coefficient, and 

global efficiency of graphs with ROI nodes and ICA nodes with ground truth, results showed 

that in all scenarios, values of all graph metrics for the data-driven ICA graph (compared to 

the ROI and MROI graphs) were closer to the ground truth graph. In the cases with no 

artifacts (scenarios 1 and 3), graph measures in the MROI graph were far away from ground 

truth compared to the ROI graph. However, in cases with artifacts (scenarios 2 and 4), graph 

measures of the MROI graph were closer to ground truth than the ROI graph (see Figure 2). 

Since ROIs are typically defined using anatomical atlases which may not correspond well to 

real functional boundaries in the brain or to individual subject variability, these findings 

suggest that a data-driven ICA method is more accurate compared to a fixed ROI method for 

defining graph nodes in functional brain network studies. Similar conclusions have also been 

shown in another study [223].

Since previous studies have shown some benefits of using single voxel than ROI with a 

group of voxels as graph node, a voxel level graph was also estimated in that simulation 

study. In this graph, each node was the voxel with the highest intensity value in each of the 

29 SMs. Results were mixed. The clustering coefficient for the voxel level graph was closer 

to ground truth than the ICA graph, the ROI graph, and the MROI graph. Connectivity 

strength of voxel level graph was closer to ground truth then the ICA graph in scenario 2. 

Global efficiency of voxel level graph was further from the ground truth than the ICA graph 

(see Figure 3). These findings suggest that graph metrics of voxel level graphs do not 

consistently reflect ground truth better than ICA graph.
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However, there are limitations of the simulation findings. The simulated data were generated 

using a linear model (the product of time courses and spatial maps). While ICA, which is 

based on a linear model, has revealed robust brain networks in both resting state and task 

fMRI data, it is not clear whether the linear model is a perfect match for real fMRI data. In 

addition, the conclusions are limited to the four scenarios considered here. Future studies 

may simulate more scenarios for generating the ROIs such as functional connectivity based 

pacellation methods [208–214].

E. Comparing graphs with ROI nodes and ICA nodes to differentiate schizophrenia 
patients from controls

To evaluate the ability of differentiating patients from controls using graphs with different 

nodes, we build both an ROI graph (in which nodes are 96 ROIs selected from AAL such 

that each ROI has more than one gray matter voxel) and an ICA graph (in which nodes are 

48 spatial brain components) in resting state fMRI data of 164 (82 controls vs 82 patients 

with schizophrenia) subjects. This work has not been reported before. However, for details 

on data collection and preprocessing see Yu et al. [172]. Results show that though two 

sample t-tests (controls vs patients) of graph measures (including connectivity strength, 

clustering coefficient, and global efficiency) are significant in both ICA and ROI graphs, p-

values are lower and effect sizes (Hedges’ g) [224] are higher in the ICA graph compared to 

the ROI graph (see Table 1). Thus, the ICA nodes outperform the ROI nodes for 

differentiating patients from controls. Group mean values for the graph measures are 

reported in Figure 4. In order to provide a statistical view and to eliminate the possibility 

that the findings may due to the different number of nodes between the two types of graphs, 

we perform 1000 permutation analysis by randomly selecting 48 ROIs from the 96 ROIs to 

build ROI graphs and perform t-tests between HCs and SZs on graph measures. Results 

show that the p values and (Hedges’ g) effect sizes of the ICA graphs listed in Table 1 are 

located at about the 10th percentile of the corresponding 1000 permutated values.

A voxel level graph (with 96 nodes) is also constructed to estimate the ability of single voxel 

graphs in differentiating the two groups. In this graph, each of 96 nodes is a gray matter 

voxel randomly selected in each of the 96 AAL ROIs. Two sample t-tests of graph measures 

in the two groups of subjects show that p values are a little lower than those of the ICA 

graph and the ROI graph, and effect sizes (Hedges’ g) are a little higher than the results of 

those two graphs (see Table 1). Again, we perform 1000 permutation analyses by randomly 

selecting 48 ROIs from the 96 ROIs and build voxel level graphs with 48 single voxels from 

these 48 ROIs. T-tests (HCs vs SZs) are performed in each permutation. This time, the p 

values and (Hedges’ g) effect sizes of the ICA graphs listed in Table 1 are located at about 

the 40th percentile of the corresponding 1000 permutated values. Due to computational load 

for calculating graph measures of large weighted graphs [194], we do not run the tests with 

all voxels in this study.

III. Dynamic BRAIN graphs

Recent brain imaging studies have shown that brain connectivity is dynamic rather than 

static over time [169]. The dynamics of brain connectivity have been studied at different age 
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stages (life span), during different cognitive tasks, and during the resting state. Dynamic 

graph analysis is a powerful tool to quantitatively characterize the time evolving brain 

performance in a system level.

A. Development of Structural and Functional Brain Graphs with ROI Nodes

Using 82 ROIs as graph nodes, a DTI study investigated the development throughout 

childhood and adolescence (7 –23 years). Results showed a simultaneous age-related 

decrease in average path length and increase in node strength and network clustering, which 

may reflect fine-tuning of topological organization in brain development [95]. When 

assessing the developmental changes of diffusion brain image-based graph in an age range 

(19 – 85 years) using 78 cortical ROIs from AAL as graph nodes, a reduction in overall 

cortical connectivity with age, and decreased local efficiency in older brains were revealed 

[225]. Another DTI brain graph study which involved 882 participants (ages 8 – 22) showed 

that structural modules became more segregated with age. Evolving modular topology 

facilitated global efficiency and was driven by age-related strengthening of hub edges. In 

addition, both modular segregation and graph efficiency were associated with enhanced 

executive performance and mediated the improvement of executive functioning with age. 

These results delineated a process of structural network maturation that supports executive 

function in youth [75]. Another more recent brain graph study also used DTI data of 882 

participants (ages 8 – 22) to investigate how structural connectivity facilitates changes and 

constrains patterns of dynamics in the developing brain. That work draw on the 

computational tools and conceptual frameworks of theoretical physics and engineering to 

study two complementary predictors of brain dynamics, controllability and 

synchronizability, which separately predict the brain’s ability to transition to nearby vs. 

distant states, or to maintain a single state characterized by a stable temporal dynamic. 

Results showed that white matter connectivity becomes increasingly optimized for a diverse 

range of predicted dynamics in development. Notably, stable controllers in subcortical areas 

were negatively related to cognitive performance. These findings suggested that the brain 

optimizes the controllability at the expense of the synchronizability. That optimization 

occurred during development in youth aged 8 – 22 years, and individual differences in 

control architecture of white matter were correlated with individual differences in cognitive 

performance. Impressively, that work used forward-modeling computational approaches to 

identify constrained evolutionary trajectories which provided evidence that network control 

is a key mechanism in development [226].

Functional brain graphs in resting state fMRI data were studied using 264 ROIs which were 

identified by meta-analyses in task fMRI data and connectivity mapping of resting state 

fMRI data [227–229] as nodes to quantify the formation of graph modules across age 8 – 22 

years. It was shown that functional graph organization changes in youth through a process of 

modular evolution that was governed by the specific cognitive roles of each system, as 

defined by the balance of within- vs. between-module connectivity, which suggested that 

dynamic maturation of network modules in youth may be a critical driver for the 

development of cognition [68]. Another study used the same 264 ROIs as nodes and 

revealed that brain networks in the elderly (older: 59 – 74 years; younger: 18 –26 years) 

showed decreased modularity and decreased local efficiency [230].
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Using task fMRI data, a study investigated age-related change of brain connectivity during 

memory encoding and recognition. Ninety ROIs from AAL atlas were used as nodes. It was 

found that age-related changes mainly occurred in long-range connections with widespread 

reductions. The older adults (75 – 87 years) had longer path lengths linking different regions 

in the functional brain networks as compared to the younger adults (20 – 27 years). The 

increases in shortest path length in the networks were combined with the loss of long-range 

connections. These findings suggest that normal aging was associated with disruption of 

large-scale brain systems during the performance of memory tasks [231].

Development of functional brain graphs have also been examined with nodes at multiple 

scales. One study in which subjects were 10 – 20 years old used two methods to define 

nodes: 1. voxel-wise approach in which each 4 mm3 gray matter voxel as a node; 2. 160 

ROIs defined based on a meta-analysis of fMRI activation. Results showed that hub 

architecture was evident in late childhood and was stable from adolescence to early 

adulthood. Connectivity between hub and non-hub regions changed with development from 

childhood to adolescence [232].

When examining the developmental changes in graph organization, connectivity strength, 

and integration to inhibitory control development across four stages, childhood (10 – 12 y 

olds), early adolescence (13 –15 y olds), late adolescence (16 – 19 y olds), and adulthood 

(20 – 26 y olds), using 264 ROIs which were identified by meta-analyses in task fMRI data 

and connectivity mapping of resting state fMRI data [227–229] as nodes, results indicated 

that network organization was stable throughout adolescence. However, cross-network 

integration increased with age. Those findings provided compelling evidence that the 

transition to adult-level inhibitory control was dependent upon the refinement and 

strengthening of integration between specialized networks, and supported a novel, two-stage 

model of neural development, in which networks stabilize prior to adolescence and 

subsequently increase their integration to support the cross-domain incorporation of 

information processing critical for mature cognitive control [170].

In summary, brain graphs with ROI nodes initially change with age by decreasing path 

length, and increasing connectivity strength, clustering coefficient, local efficiency, and 

modularity for enhancing the integration of information processing from childhood to 

adolescence (young adult). The change of these graph measures was reversed from young 

adults to elder adults.

B. Functional Brain Graphs across Cognitive Tasks

When using single voxels as nodes to build brain graphs using fMRI data of different tasks 

or cognitive states including resting state, visual stimulation, and multisensory (auditory and 

visual stimulation) conditions, results showed that despite stability of graph measures at 

global level, brain graphs exhibited considerable task-induced changes in connectivity, 

efficiency, and community structure at the nodal level [171].

Another task fMRI study used 264 ROIs which were identified by meta-analyses in task 

fMRI data and connectivity mapping of resting state fMRI data [227–229] as nodes, and 

found that the frontoparietal brain network (FPN)’s brain-wide functional connectivity 
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pattern shifted more than those of other networks across a variety of task states. These 

connectivity patterns could be used to identify the current task which supported a central 

role for frontoparietal flexible hubs in cognitive control and adaptive implementation of task 

demands [233].

C. Sliding Window Based Functional Dynamic Brain Graphs

Sliding window is a popular method for assessing dynamic functional connectivity in fMRI 

data across a short time (a few minutes to a few hours) [169, 234]. When using the sliding 

window method to build a dynamic resting state fMRI graphs with 264 ROIs, which were 

identified by meta-analyses in task fMRI data and connectivity mapping of resting state 

fMRI data [227–229] as nodes, it has been shown that brain regions spontaneously changed 

their module affiliations on a temporal scale of seconds. These dynamics were highly 

reproducible across repeated scanning sessions [82]. Another sliding window graph study 

which used ROIs with multiple scales as nodes discovered that the most dynamic 

connections were inter-module, and localize to known hubs of default mode and 

frontoparietal systems. In addition, spatially distributed regions spontaneously increased the 

efficiency with which they can transfer information, producing temporary, globally efficient 

network states, which suggested that brain dynamics give rise to variations in complex 

network properties over time, possibly achieving a balance between efficient information-

processing and metabolic expenditure [83].

However, some properties have been found to be static across sliding window graphs. For 

example, when using 90 ROIs from AAL atlas and a random parcellation of 1024 ROIs as 

nodes, dynamic functional graphs exhibited evident small-world and assortativity 

architecture, with several regions (e.g., insula, sensorimotor cortex and medial prefrontal 

cortex) emerging as functionally persistent hubs though possessing large temporal variability 

in their degree centrality [235].

Another interesting dynamic graph called a hypergraph [236] can be built based on time-

varying graphs. For example, a study firstly established sliding window graphs using 194 

ROIs as nodes in fMRI data from a task-free resting state, an attention-demanding state, and 

two memory-demanding states. Then hypergraphs in which nodes were the edges in the 

graph of 194 ROIs were constructed. Results identified the presence of groups of functional 

interactions that fluctuated coherently in strength over time both within (task-specific) and 

across (task-general) brain states, demonstrating that brain adaptability can be described by 

common processes that drive the dynamic integration of cognitive systems [67]. Another 

study used a hypergraph approach in fMRI data of 780 participants (ages 8 – 22) to 

investigate the development of functional brain connectivity. Three distinct classes of 

subnetworks (hyperedges) including clusters, bridges, and stars were revealed. Cluster 

hyperedges showed a strong resemblance to previously described functional modules of the 

brain including somatomotor, visual, default mode, and salience systems. In contrast, star 

hyperedges represented highly localized subnetworks centered on a small set of regions, and 

were distributed across the entire cortex. Finally, bridge hyperedges linked clusters and stars 

in a core-periphery fashion, with the greatest developmental effects occurring in networked 

hyperedges within the functional core [89]. The hypergraph method has also been used to 
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evaluate individual differences in dynamic functional brain connectivity across the human 

lifespan [88].

When assessing dynamic functional brain connectivity using the sliding window approach, 

brain states with different connectivity patterns can be detected by k-means clustering or 

decomposition methods [237]. Both k-means and decomposition methods require selecting 

the number of states [168]. One can also use time-varying graph measures to examine the 

brain states during the resting state using ICA nodes. This method was developed by a study 

which firstly constructed time-varying dynamic graphs with ICA nodes using sliding 

windows. Then connectivity states were detected based on the correlation of nodal 

connectivity strength between time-varying brain graphs. Results show that patients with 

schizophrenia exhibit decreased variance in the dynamic graph metrics [172]. For a pipeline 

of this approach see Figure 5.

In summary, functional brain graphs are indeed dynamic across different time scales. Sliding 

window is the most popular method to build dynamic brain graphs across a relatively short 

time (a few minutes to a few hours), though there are many other approaches which are 

adapted as well [238].

IV. Multimodal graphs

As there has been increasing interest in performing multimodal analysis of brain imaging 

data, more approaches are being developed to build multi-modal brain graphs which may be 

helpful to understand the physiological, electrophysiological, or even genetic basis of the 

topological properties in brain connectivity.

A. Associate Single Modal Brain Graph with Other Modalities

Combing functional and structural brain data may reveal the structural basis of the 

functional brain graphs. To this end, one study built functional brain graphs with nodes 

defined by ROIs of AAL atlas using fMRI data acquired during an episodic memory-for-

context task in both healthy controls and patients with schizophrenia, and performed a 

morphometric analysis to investigate schizophrenia-related deficits. Functional graphs 

showed significant reductions in local efficiency in schizophrenia. Structural data showed 

several key network “hub” regions including bilateral dorsal anterior cingulate gyrus with 

reduced gray matter volume in schizophrenia patients. These findings suggest that loss of 

gray matter volume may contribute to local inefficiencies in the architecture of the 

functional graph underlying memory-for-context in schizophrenia [239]. Another study 

combined high-resolution diffusion weighted imaging (DWI) with resting-state fMRI. DWI 

data were used to build structural graph with 1170 ROIs segmented by Freesurfer as nodes, 

and eleven resting state brain networks were detected by ICA in fMRI data. By associating 

structural graphs with functional networks, new evidence suggesting that the brain’s rich 

club serves as a macroscopic anatomical substrate to cross-link functional networks was 

provided. Such links likely play an important role in the integration of information between 

segregated functional domains of the human cortex [240].
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The relationship of functional hubs to measures of brain physiology (regional cerebral blood 

flow, rCBF) had been studied using fMRI data and arterial-spin-labeling (ASL) perfusion 

data during resting state and an N-back working-memory task. During the resting state, 

functional graphs were built at the voxel-level and hubs with higher functional connectivity 

strength (FCS) were identified. The FCS showed a striking spatial correlation with rCBF. 

During the working memory task, task-induced changes of FCS and rCBF in the lateral-

parietal lobe positively correlated with behavioral performance. Together, these findings 

suggest a tight coupling between blood supply and brain functional topology during rest and 

its modulation in response to task demands [241].

B. Associate Graphs Built in Different Modalities

Building graphs with same nodes using different datasets is powerful, because the graphs 

may be directly compared. A life span study built fMRI and diffusion brain image-based 

graphs using 114 ROIs which demonstrated that both whole brain functional and structural 

connectivity exhibit reorganization with age. Components of the control, default mode, 

saliency/ventral attention, dorsal attention, and visual networks became less functionally 

cohesive, as evidenced by decreased component modularity. Paralleling this functional 

reorganization was a decrease in the density and weight of anatomical white-matter 

connections. Hub regions were affected by these changes, and the capacity of those regions 

to communicate with other regions exhibits a lifelong pattern of decline. Functional 

connectivity along multi-step structural paths tends to be stronger in older subjects than in 

younger subjects [85].

Associations between sMRI (gray matter) graphs and magnetoencephalography (MEG) 

graphs were also investigated. One study used 78 AAL cortical ROIs as nodes in both sMRI 

and MEG data to build structural and functional brain networks respectively in both healthy 

controls and multiple sclerosis (MS) patients. A beamformer approach was adopted to map 

the MEG data from sensor level to source space within the cortical ROIs. In MS patients, a 

more regular network organization for structural covariance graphs and for functional graphs 

in the theta band and a more random network organization for functional graphs in the 

alpha2 band were revealed. By computing the correlation coefficient between structural and 

functional connectivity measures across the nodes, a positive association between 

covariation in thickness and functional connectivity in especially the theta band in MS 

patients was revealed [242]. Another work studied the association among three graphs 

(fMRI, MEG, and structural MRI). FMRI and MEG graphs were built using the 78 AAL 

ROIs as well. By computing an overlap metric, a high overlap of nodes with high degree in 

these two resting-state functional graphs was found in fMRI and especially alpha band in 

MEG. This overlap was characterized by a strongly interconnected functional core network 

in temporo-posterior brain regions. After combining with structural data, by building a 

distance vs degree reconfiguration model, it was discovered that this functional core network 

could be explained by a trade-off between the product of the degrees of structurally-

connected regions and the Euclidean distance between them. For both fMRI and MEG, the 

product of the degrees of connected regions was the most important predictor for functional 

network connectivity. Together, these results indicate that, irrespective of the modality, a 
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functional core network in the human brain is especially shaped by communication between 

high degree nodes of the structural network [243].

C. Graphs with Multimodal Nodes

Another interesting approach for analyzing multimodal graph is to build a graph with nodes 

from multi-modalities. For example, an approach for building concurrent EEG-fMRI multi-

modal brain graphs has been developed in which nodes are fMRI ICA spatial maps and EEG 

electrodes [244]. In that study, both static and dynamic EEG-fMRI graphs were estimated. 

Concurrent EEG-fMRI data were simultaneously collected during eyes open (EO) and eyes 

closed (EC) resting states. EEG time series were segmented into time windows with 2 

seconds length (which was the TR of the fMRI data), and then spectral power of 5 frequency 

bands (delta; theta; alpha; beta; low gamma) of each time window was computed. Thus, the 

temporal resolution of EEG spectral power time courses was matched to that of the fMRI 

time series. At the global level, static graph measures and properties of dynamic graph 

measures were different across frequency bands and were mainly showing higher values in 

eyes closed than eyes open. Nodal level graph measures of a few brain components were 

also showing higher values during eyes closed in specific frequency bands. Overall, these 

findings incorporated fMRI spatial localization and EEG frequency information which could 

not be obtained by examining only one modality [244]. However, graph metrics were 

computed based on the formula defined for a single-modal (classical) graph. It is unclear 

how global level graph measures within a multi-modal graph are affected by the distribution 

of edges and nodes from different modalities. Thus, future studies should define new 

methods for computing topological measures in graphs with multimodal nodes. See Figure 6 

for a pipe line of this method.

Another work constructed graphs with multi-modality nodes and investigated how different 

brain areas were associated to genetic disorders and risk genes. In particular, a tripartite 

graph with genes, genetic diseases, and brain areas as nodes was constructed based on the 

associations among them reported in the literature through text mining. In the resulting 

graph, a disproportionately large number of gene-disease and disease-brain associations 

were attributed to a small subset of genes, disease, and brain areas. Furthermore, a small 

number of brain areas were found to be associated with a large number of the same genes 

and diseases. These core brain regions encompassed the areas identified by the previous 

genome-wide association studies, and suggest potential areas of focus in the future imaging 

genetics research [245].

To explore genetic basis of functional brain connectivity, we build a bipartite graph which 

includes fMRI nodes and genetic nodes using a cohort consisted of 97 healthy controls and 

70 patients with schizophrenia for which good-quality resting state fMRI and single 

nucleotide polymorphism (SNP) data have been collected. This analysis has not been 

reported before. However, for details on recruiting information and data processing see 

Damaraju et al. [246] and Chen et al. [247]. To define the brain nodes, fMRI are firstly 

decomposed into spatial components by group ICA. Then functional network connectivity 

(FNC) [248, 249] is estimated using the correlation between time courses of 50 brain 

components (Figure 7AB). In the bipartite graph which is built, fMRI nodes are not brain 
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components. Instead, each fMRI node is a connection in the FNC. A total of 83 connections 

(Figure 7C) of the FNC show significant group difference (p < 0.05, FDR correction) are 

selected as the fMRI nodes. The genetic nodes in the bipartite graph are 81 schizophrenia 

associated SNPs selected base on the Psychiatric Genomics Consortium (PGC) study [250]. 

See Figure 8 for a Manhattan plot of these 81 SNPs. To define edges in the bipartite graph, 

the association between each pair of nodes (one from fMRI and the other from SNPs) is 

assessed across all 167 subjects using a multivariate regression model (http://

mialab.mrn.org/software/mancovan) in which fMRI connectivity (correlation values of FNC 

connections) is the dependent variable, SNP allele (0, 1, or 2) is the independent variable, 

and data sites, diagnosis groups, and race are covariates. If the p value of any pair of fMRI 

node and SNP node is smaller than 0.05 (uncorrected), there is a link between them. Thus, 

the bipartite graph is a binary network. For the structure of this bipartite graph see Figure 9. 

Degree of each node is computed. SNPs with high degree in this SNP-FNC bipartite graph 

may modulate more functional brain connectivity. See Table 2 for the name of 81 SNP nodes 

and their degree. This analysis provides a new model to examine brain imaging and genetic 

associations. It can be adopted to investigate genetic basis of functional brain connectivity 

that is further related to mental illnesses.

In summary, there are three main ways to perform graph analysis in multimodal data. 1. 

Graphs built in one modality and then are associated with information from other modalities. 

2. Graphs built in different modalities with the same nodes so that they are comparable. 3. A 

single multimodal graph in which nodes are formed using multi-modality data. Such 

approaches can expand our knowledge of the brain by linking together various 

complementary modalities.

V. Conclusion and perspective

In this article, we briefly review the findings of brain graphs in which nodes are defined 

using different methods. While structural (gray matter and diffusion image-based) brain 

graphs can be constructed using ROI nodes at different spatial resolutions, functional brain 

graphs may be built using either ROI or ICA nodes. Generally, both structural and functional 

brain graphs show features of complex networks, such as small world and scale free 

topology, rich club and modular organization with highly connected hubs. Moreover, those 

graph properties and some other measures such as clustering coefficient, local efficiency, 

global efficiency, path length show changes in patients with brain disorders in both graphs 

with ROI nodes and ICA nodes. These brain graph features have been studied at different 

time scales (across the life span, in different cognitive states, or moment to moment) as well 

as in multi-modality data.

When building brain graphs with ROI nodes at different spatial resolutions, it has been 

shown that the higher the resolution the more prominent is small-world properties. Region-

based graphs fragmented more tremendously at high thresholds than voxel-based graphs, 

implying more robust graphs with high resolution nodes. ICA is a data-driven method for 

defining brain nodes in fMRI data that may mitigate some of the limitations of anatomical 

atlas-based nodes by providing regions that are temporally coherent and also adaptive to 

individual subjects. Graphs with different numbers of ICA spatial components have not been 
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fully investigated. ROI and ICA-based methods for defining the graph nodes were compared 

in a simulation study, which revealed that graphs built with ICA nodes were closer to the 

ground truth than graphs built with ROI nodes, though this conclusion is limited to the 

scenarios that were simulated. More comparisons among graphs with nodes defined by 

different methods using real fMRI data are required in future studies. A potential direction is 

to perform data mining methods including deep learning, support vector machine 

classification, or clustering on topological measures of the brain graphs built with different 

nodes to evaluate which method performs better for classifying healthy controls and patients. 

Such approaches may have some clinical utility in the future; though it is also important to 

recognize that classification accuracy does not equate to advances in understanding the 

mechanisms of brain disease. For this, it is important to evaluate the predictive features in 

order to build new models of disease that can be tested in future work. Future studies may 

also try to define nodes using ICA or source based morphometry (SBM) [251] in structural 

MRI data.

In terms of dynamic brain graph, nodes with different resolutions within and/or between 

methods (ROI vs ICA) have rarely been compared. Future studies may build multi-layered 

brain graphs by incorporating both spatial-varying and time-varying information to 

investigate the development, growth, and state changes of the human brain [252].

Although multimodal graphs are helpful to better understand the topological properties of 

the brain by combining information from different modalities, and multi-modal parcellation 

of the human brain methods have also been developed [253], how to define the nodes is still 

a challenge when building a multimodal graph. Because different modalities provide 

different spatial or temporal information of the brain, it is hard to define comparable nodes 

across modalities. However, a promising way may be to build bipartite or tripartite graphs in 

which edges may only present within modality nodes not between modality nodes. In 

addition, network control theory may be adopted to investigate the relationship among 

modalities [254, 255]. Building multilayer brain graphs is another approach for performing 

multimodal data analysis [256–260].
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Fig. 1. 
An analysis pipeline of the simulation study which compared graphs with ROI nodes and 

ICA nodes [221]. Simulated fMRI data were generated in four scenarios using SimTB. 

Group ICA was performed on the simulated data. Graphs with different nodes (ground truth 

nodes, ICA nodes, ROI nodes, and modified ROI nodes) were then built. Graph metrics 

between the ground truth graph and any other graph were compared. (The figure was 

reproduced with permission from both author and journal of Yu et al. 2017 [221].)
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Fig. 2. 
Results of a simulation study which compared graphs with ROI nodes and ICA nodes (Yu et 

al. [221]). The measures of graphs with different nodes (GG: ground truth graph; IG: ICA 

graph; RG: ROI graph; MG: modified ROI graph) in all four scenarios. All measures of ICA 

graphs are closer to ground truth than ROI graphs and MROI graphs. (CS: connectivity 

strength; CC: clustering coefficient; GE: global efficiency). (The figure was reused with 

permission from both author and journal of Yu et al. 2017 [221].)
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Fig. 3. 
Measures of graphs built with different node definition methods in simulated data. 

Clustering coefficient of voxel level graph is closer to ground truth than ICA graph, ROI 

graph, and MROI graph. Connectivity strength of voxel level graph is closer to ground truth 

then ICA graph in scenario 2. Global efficiency of voxel level graph is further to ground 

truth than ICA graph. (GG: ground truth graph; IG: ICA graph; SG: single voxel level graph; 

RG: ROI graph; MG: modified ROI graph; CS: connectivity strength; CC: clustering 

coefficient; GE: global efficiency). (The figure was reproduced with permission from both 

author and journal of Yu et al. 2017 [221].).
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Fig. 4. 
Group mean of graph measures in controls and patients with schizophrenia in graph with 

ICA nodes and ROIs. Error bars correspond to standard deviation. Two sample t-tests show 

that graph measures are significantly (p < 0.001) lower in patients than controls in both ICA 

graph and ROI graph. However, p values are lower and effect sizes (Hedges’ g) are higher in 

ICA graph then ROI graph (see Table 1). (HC: healthy controls; SZ: patients with 

schizophrenia; CS: connectivity strength; CC: clustering coefficient; GE; global efficiency)
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Fig. 5. 
The flowchart of the algorithmic pipeline for a method of evaluating connectivity states base 

on graph analysis of ICA nodes developed in one of our studies [172]. Five steps were 

labeled as follows. ➀ do group ICA, segment ICA time courses, and calculate the 

correlation between any pair of (N = 48) independent components (ICs) for each time-

window; ➁ compute nodal connectivity strength of the weighted brain graph for each time-

window; ➂ calculate the correlation of nodal connectivity strength between any pair of 

time-windows (W = 131) across (N = 48) ICs; ➃ reorder the time-windows based on the 

modular organization of the correlation matrix; ➄ compute the brain connectivity states by 

averaging the connectivity matrices of the time windows belonging to the same module. 

(The figure was reused with permission from both author and journal of Yu et al. 2015 

[172].)
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Fig. 6. 
Pipeline for building concurrent EEG-fMRI multi-modal brain graphs (from Yu et al. [244]). 

➀ Segment EEG signal into 2s time windows, and compute the average spectral power 

within a selected frequency window. ➁ Perform group ICA on fMRI data. ➂ Compute the 

correlation coefficient within and across the EEG spectral power’s and fMRI ICA’s full time 

courses, generating one EEG-fMRI static connectivity matrix for each frequency band. ➃ 
Segment EEG spectral power and fMRI ICA time courses into time windows, then compute 

the correlation between each pair of time windowed time courses to get dynamic EEG-fMRI 

brain graphs. (The figure was reused with permission from both author and journal of Yu et 

al. 2016 [244].)
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Fig. 7. 
Spatial maps (A) of 50 brain components which are selected to compute the functional 

network connectivity (FNC). Brain components are divided into groups and arranged based 

on their anatomical and functional properties. Structure of group mean FNC (B; HC: healthy 

controls; SZ: patients with schizophrenia) shows that brain connectivity is lower in SZ. 

Eighty three connections (C) in the FNC are selected to be nodes for constructing the SNP-

FNC bipartite graph.
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Fig. 8. 
Scatter plots which showing schizophrenia associations of the selected 81 SNPs as genetic 

nodes and the distribution of them across chromosomes. The x axis is chromosomal position 

and the y axis is the significance (−log10(p)) of association as reported by the PGC study 

[250].
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Fig. 9. 
Structure of the genetic-fMRI bipartite graph. Some SNP nodes are showing high degree.
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TABLE I

P values and effect sizes (Hedges’ g) of two sample t-tests (controls vs patients) on graph measures in ICA 

graph, ROI graph, and voxel level graph. (CS: connectivity strength; CC: clustering coefficient; GE: global 

efficiency)

CS CC GE

P value

ICA graph 7.73 × 10 (-5) 1.13 × 10 (-4) 7.12 × 10 (-5)

ROI graph 1.89 × 10 (-4) 1.91 × 10 (-4) 1.91 × 10 (-4)

Voxel level graph 5.15 × 10 (-5) 5.09 × 10 (-5) 5.24 × 10 (-5)

Effect size

ICA graph 0.63 0.62 0.63

ROI graph 0.59 0.59 0.59

Voxel level graph 0.65 0.65 0.65
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