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Background: Social anxiety disorder (SAD) is a disabling psychiatric condition with a genetic background. Brain
alterations in gray matter (GM) related to SAD have been previously reported, but it remains to be elucidated
whether GM measures are candidate endophenotypes of SAD. Endophenotypes are measurable characteristics
on the causal pathway from genotype to phenotype, providing insight in genetically-based disease mechanisms.
Based on a review of existing evidence, we examined whether GM characteristics meet two endophenotype
criteria, using data from a unique sample of SAD-patients and their family-members of two generations. First,
we investigatedwhether GMcharacteristics co-segregatewith social anxietywithin families genetically enriched
for SAD. Secondly, heritability of the GM characteristics was estimated.
Methods: Families with a genetic predisposition for SAD participated in the Leiden Family Lab study on SAD;
T1-weighted MRI brain scans were acquired (n = 110, 8 families). Subcortical volumes, cortical thickness and
cortical surface area were determined for a-priori determined regions of interest (ROIs). Next, associations
with social anxiety and heritabilities were estimated.
Findings: Several subcortical and cortical GM characteristics, derived from frontal, parietal and temporal ROIs, co-
segregated with social anxiety within families (uncorrected p-level) and showed moderate to high heritability.
Interpretation: These findings provide preliminary evidence that GM characteristics of multiple ROIs, which are
distributed over the brain, are candidate endophenotypes of SAD. Thereby, they shed light on the genetic vulner-
ability for SAD. Future research is needed to confirm these results and to link them to functional brain alterations
and to genetic variations underlying these GM changes.
Fund: Leiden University Research Profile ‘Health, Prevention and the Human Life Cycle’.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Patients who suffer from social anxiety disorder (SAD) are character-
ized by an intense fear of negative evaluation byothers in social situations
[1,2]. As a result, SAD-patients try to avoid social situations as much as
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possible, which lead to disability and serious impairments in important
areas of life such as education, work, and social activities [3–10]. The dis-
order has a high prevalence [11,12], is often chronic [13,14], and has a
typical onset during late childhood and early adolescence [15–20]. Fur-
thermore, SAD is associated with high psychiatric comorbidity [21–23],
adding to its burden on patients. Insight in the development of and
vulnerability for SAD is therefore of great importance, as this might aid
in developing preventive interventions and effective treatments.

Previous studies indicate that the pathogenesis of SAD is complex:
environmental, biological, temperamental, and genetic factors are
shown to play a interacting role [24–26]. With respect to the latter,
the heritability of SAD is estimated to be between 39 and 56% [27–30].
However, despite the promising results of a handful of studies
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Research in context

Evidence before this study

Social anxiety disorder (SAD) is a prevalent psychiatric condition
characterized by intense fear of negative evaluation in social situ-
ations. SAD typically develops during late childhood or adoles-
cence and has a strong negative impact on patients' lives.
Previous studies showed that SAD has a familial background.
However, it's unknown which heritable characteristics make chil-
dren and adolescents vulnerable for developing SAD. The
endophenotype approach could be helpful to shed more light on
the genetic susceptibility to SAD. Endophenotypes are measur-
able characteristicswhich are associatedwith the disorder, herita-
ble, and co-segregatewith the disorder within families of patients.
Alterations in brain structure are candidate endophenotypes of
SAD, as gray matter (GM) characteristics have been shown to
be highly heritable. Furthermore, several studies have shown ab-
normalities of brain structure in SAD.

Added value of this study

To investigate whether specific GM characteristics could serve as
endophenotypes for SAD, family studies are needed. The Leiden
Family Lab study on Social Anxiety Disorder (LFLSAD) is a unique
neuroimaging study, in which patients with SAD as well as their
family-members of two generations were investigated. Selected
families were genetically enriched for SAD and due to the family-
design of the LFLSAD, we were able to investigate two
endophenotype criteria. First, we examined whether GM charac-
teristics co-segregated with social anxiety within the families.
Second, we estimated the heritability of the GM characteristics.
Our results show that several GM characteristics meet both
endophenotype criteria, making them promising candidate
endophenotypes of social anxiety.

Implications of all available evidence

The findings provide preliminary evidence that several GM
characteristics are genetically linked to social anxiety. Thereby,
the results of this study shed light on the genetic vulnerability
for SAD.
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investigating the genetic background of SAD [30–36], the genetic vari-
ants underlying the vulnerability for SAD are at present still largely un-
identified. Detecting such ‘SAD genes’ is difficult due to several factors.
First of all, SAD is a polygenic disorder, and it iswidely assumed that var-
ious genetic variants, influenced by environmental factors, are involved
in its development [37–39]. Furthermore, SAD is a heterogeneous disor-
der, and the diagnosis is based on clinical interviews and not on
biologically-based parameters [40,41]. Thus, investigating
endophenotypesmight facilitate in unravelling the genetic vulnerability
for complex psychiatric disorders like SAD [42].

Endophenotypes are measurable traits located on the causal path-
way from genotype to phenotype [43,44], and include, for example,
neurobiological changes in brain structure and function. Criteria for
endophenotypes are the following [45–47]: (1) they are associated
with the disorder; (2) they are state-independent traits, already present
in a preclinical state; (3) they are heritable; (4) they co-segregate with
the disorder within families of probands, with non-affected family
members showing altered levels of the endophenotype in comparison
to the general population. As reviewed in our earlier work [48],
endophenotypes have the potential to shed more light on the mecha-
nisms involved in the etiology of SAD.
In the present work, we provide a comprehensive overview of
existing evidence and investigate whether gray matter (GM) structural
brain characteristics, as measured with magnetic resonance imaging
(MRI), are candidate endophenotypes of SAD. Based on previous find-
ings, and as summarized in Bas-Hoogendam et al. (2016) [48], there
are two important reasons to do so. To start, differences in GM between
SAD-patients and healthy controls have been reported for a number of
subcortical, frontal, temporal and parietal regions [49,50,59,60,51–58]
– see Table 1 for an overview of MRI-studies on GM in SAD. Further-
more, changes in brain structurewere shown to be associatedwith clin-
ical characteristics [49,50,54–58,60,61], while treatment-related
changes in brain structure in SAD patients have also been described
[62–64]. Although it should be noted that the findings reported in
these studies are heterogeneous (see Table 1 and review by Brühl and
colleagues [65]), and have small effect sizes [60], a machine learning
study was able to discriminate SAD-patients from healthy controls
based on GM changes over the whole brain [66]. Furthermore, higher
levels of social anxiety in healthywomenwere related to increased vol-
umes of the amygdala, nucleus accumbens, and striatal regions like the
putamen and caudate nucleus [67], while structural brain alterations
have also been reported in anxious children and adolescents [68–72].
In addition, changes in brain structure have been reported in partici-
pants who were classified as being ‘behaviorally inhibited’ [73–79],
which refers to the innate, temperamental trait associated with an in-
creased vulnerability for developing SAD [80]. Together, these results
suggest that structural brain alterations in GMmight be related to SAD.

A second reason to consider GM brain characteristics as candidate
endophenotypes is the fact that numerous studies, both in healthy con-
trols aswell as in several patient groups, have indicated that brain struc-
ture is to a great extent determined by genetic influences. For example,
studies revealed that genetic variants affect the thickness and surface
area of cortical GM [81–86], as well as intracranial volume (ICV) [87]
and subcortical brain volumes [88–92]; thefindingswith respect to sub-
cortical volumetric measures have recently been replicated and extend-
ed in a genome-wide association analysis in over 40,000 individuals
[93]. In addition, the neuroanatomical shape of subcortical structures
has been shown to be significantly heritable [94,95]. Furthermore, the
results of studies in various patient populations, for example in twins
(dis)concordant for bipolar disorder [96] and in families with multiple
cases of schizophrenia [97] corroborate with these findings, showing
that both the volume as well as the shape of subcortical structures are
heritable. A meta-analysis of twin studies confirmed that global brain
volumes, volumes of subcortical brain areas, as well as measures of cor-
tical thickness, are all highly ormoderately-to-highly heritable [98]; see
also the review by Peper and colleagues [99].

The present work used MRI data from the Leiden Family Lab study
on Social Anxiety Disorder (LFLSAD) [100] to explore whether GM
brain characteristics (volumes of subcortical structures; estimations of
cortical thickness (CT), and measures of cortical surface area (CSA))
are endophenotypes of SAD. The LFLSAD is a multiplex (i.e., families
were selected based on aminimumof two (sub)clinical SAD caseswith-
in one nuclear family), multigenerational (i.e., multiple nuclear families
encompassing two generations from the same family took part) family
study on SAD, in which nine families who were genetically enriched
for SAD were included (total n = 132). Such a family design is particu-
larly powerful to investigate genetic and environmental influences on
SAD-related characteristics [101].

We examined two endophenotype criteria. First, we investigated
whether alterations in GMbrain characteristics co-segregatewith social
anxiety within the families (first element of endophenotype criterion
4); second, we estimated the heritability of these measures
(endophenotype criterion 3). The structural brain phenotypes were
established using the FreeSurfer software package (version 5.3) and
we employed a hypothesis-driven region-of-interest (ROI) approach
based on the results of previous studies. With respect to the subcortical
volumes, we focused on the putamen and pallidum, based on the



Table 1
Overview results of studies on GM in SAD.

Publication Method Group Subcortical areas

Amy HiC Thal Putamen Caudate

Potts et al., 1994
[193]

Manual segmentation caudate, thalamus,
putamen

22 SAD vs 22 HC n.a. n.a. = = =

Cassimjee et al.,
2010 [64]

Whole brain VBM (SPM) 11 SAD -
treatment effect

= = = = =

Irle et al., 2010 [61] Manual segmentation amygdala &
hippocampus

24 SAD vs 24 HC − − n.a. n.a. n.a.

Liao et al., 2011 [50] Whole brain VBM (SPM) 18 SAD vs 18 HC = – = = =
Syal et al., 2012 [55] Whole brain CT FreeSurfer; volumes

amygdala & hippocampus
13 SAD vs 13 HC = = n.a. n.a. n.a.

Frick et al., 2013 [51] Whole brain CT using FACE 14 male SAD vs
12 HC

= = = = =

Meng et al., 2013
[53]

Whole brain VBM (SPM) 20 SAD vs 19 HC - And negative correlation
with disease duration

= - And positive
correlation with age of
onset

= =

Talati et al., 2013 –
sample 1 [49]

Whole brain VBM (SPM) 16 SAD vs 20 HC
(16 PD)

= + = = =

Talati et al., 2013 –
sample 2 [49]

Whole brain VBM (SPM) 17 SAD vs 17 HC = = = = =

Brühl et al., 2014
[54]

Whole brain & ROIs CT FreeSurfer; volumes
subcortical ROIs

46 SAD vs 46 HC = = = = =

Frick et al., 2014 [66] Whole brain VBM (SPM) + ROI approach;
SVM study

14 SAD vs 12 HC = = = = =

Frick et al., 2014 [58] Whole brain VBM (SPM) 48 SAD vs 29 HC = = = = =
Irle et al., 2014 [57] Whole brain VBM (SPM); manual

segmentation parietal ROIs
67 SAD vs 64 HC = = = = =

Machado-de-Sousa
et al., 2014 [194]

Manual segmentation amygdala &
hippocampus

12 SAD, 12 SA, 14
HC

+ + n.a. n.a. n.a.

Talati et al., 2015
[62]

Whole brain VBM (SPM) 14 SAD -
treatment effect

= = - After treatment - After
treatment

- After
treatment

Tükel et al., 2015
[56]

Whole brain VBM (SPM) 27 SAD vs 27 HC = = = = =

Månnson et al., 2016,
2017 [195,196]

ROIs (amygdala, ACC, insula, hippocampus)
as well as whole brain VBM (SPM)

13 SAD -
treatment effect

- After treatment = = = =

Steiger et al., 2016
[63]

Whole brain cortical volume & CT using
Freesurfer

33 SAD
-treatment effect

= = = = =

Bas-Hoogendam
et al., 2017 [60]

Whole brain VBM (FSL) 178 SAD vs 213
HC

= = = + =

Zhao et al., 2017 [59] Whole brain VBM (SPM) & whole brain CT
using Freesurfer

24 SAD vs 41 HC
(and 37 MDD)

= = − − =
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findings of a recentmega-analysis on SAD reporting increased GM relat-
ed to SAD in these regions [60], which were recently replicated [67]. In
addition, we investigated the association between social anxiety and
volumes of the amygdala and hippocampus, given the fact that volumet-
ric changes in these areas in SAD have been reported [52,53,61], al-
though it should be noted that other studies were not able to replicate
these effects (see for example [54,60] and Table 1). These subcortical
ROIs are displayed in Fig. 1a.

With respect to the estimates of CT, it should be noted that only a
handful of studies have investigated SAD-related alterations in CT,
with mixed results (Table 1). To determine cortical ROIs for the pres-
ent study, we used the findings from previous work, starting with the
work by Brühl and colleagues [54], who investigated CT in a sample of
46 SAD-patients and 46 matched healthy controls; they reported SAD-
related increases in CT in the anterior cingulate cortex (ACC), the
insula, the dorsolateral prefrontal cortex (DLPFC) including the middle
frontal gyrus and the superior frontal lobule, the temporal pole and
the parietal cortex [54]. Most of these findings were recently replicat-
ed by Zhao and colleagues [59], who described significant cortical
thickening in the ACC, the insula, the superior frontal cortex, as well
as in the temporal pole and parietal areas in SAD; in addition, this
study mentioned cortical thinning in the orbitofrontal cortex,
precentral cortex and the rostral medial frontal cortex. Other work,
by Syal and colleagues [55], reported on cortical thinning in 13 SAD-
patients, in several temporal, frontal and parietal regions, as well as
in the insula and cingulate areas. The selected ROIs based on the
results of these three studies are illustrated in Fig. 1b (cortical
parcellations as defined in the Desikan-Killiany atlas [102]).

As there are, to the best of our knowledge, no studies onmeasures of
CSA in SAD, the same cortical ROIs were used to investigate alterations
in CSA related to SAD. It is of importance to investigate the measures
of CT and CSA separately, as it has been shown that these neuroimaging
phenotypes reflect different features of cerebral cortical structure. That
is, neurons in the cortex are organized in columns running perpendicu-
lar to the surface of the brain; CT represents the number of cells within
these columns, whereas the size of the CSA is determined by the num-
ber of columns in a certain area [103,104]. Previous research indicated
that brain size is primarily determined by the size of CSA (and not by
CT) [105]; in addition, CT and CSA are genetically independent and fol-
low different developmental trajectories [106–113]. Furthermore, CT
and CSA have different predictive values with respect to the develop-
ment of psychopathology [114,115].

Other, nonROI (sub)cortical areaswere investigatedonanexplorato-
ry basis only; results are reported in the Supplementary Material and
only briefly mentioned in the Results section. Analyses were corrected
for multiple comparisons at a false discovery rate (FDR) of 5% [116],
but given the divergent findings of previous studies (Table 1), the inno-
vative nature of the present study (to the best of our knowledge, this is
the first comprehensive family study on social anxiety) and the fact
that brain regions are likely biologically not independent but constitute
structural and functional networks (cf. thework of Brühl et al. [54]), un-
corrected p-values are reported and discussed as well.



Publication Frontal regions Parietal regions

MPFC DLPFC VLPFC OFC PMC ACC PCC Par PC

Potts et al., 1994 [193] n.a. n.a. n.a. n.a. n.a. n.a. n.a n.a. n.a.
Cassimjee et al., 2010
[64]

= = = = = = = = =

Irle et al., 2010 [61] n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Liao et al., 2011 [50] + = = = = = = = =
Syal et al., 2012 [55] = − = − − = − − −
Frick et al., 2013 [51] = = = = = Pos. relation

symptoms
= = =

Meng et al., 2013 [53] = = = = = = = = −
Talati et al., 2013 –
sample 1 [49]

− = = = − − − − −

Talati et al., 2013 –
sample 2 [49]

= − = − + = = + =

Brühl et al., 2014 [54] = + = = = + ROI
approach

= + +

Frick et al., 2014 [66] = = = = = = = = =
Frick et al., 2014 [58] = = = = = = Pos. relation

symptoms
= =

Irle et al., 2014 [57] = = = = + = = Both + and – (neg. relation
LSAS avoidance)

Both + and – (neg. relation
LSAS avoidance)

Machado-de-Sousa
et al., 2014 [194]

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Talati et al., 2015 [62] = = = = = = = = =
Tükel et al., 2015 [56] = = = = = = = + +
Månnson et al., 2016,
2017 [195,196]

- after
treatment

= = = = = = = - after
treatment

Steiger et al., 2016 [63] = Relation with
treatment success

= = = = = - After treatment =

Bas-Hoogendam et al.,
2017 [60]

= = = = = = = = =

Zhao et al., 2017 [59] − = = − − + = + =
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2. Materials and methods

2.1. Participants

Participants included families genetically enriched for SAD, who
were part of the LFLSAD (total sample: n = 132, from nine families).
The background, objectives andmethods of this multiplexmultigenera-
tional family study, as well as the clinical characteristics of the LFLSAD
sample and an a priori power analysis are extensively described else-
where [100]; in addition, a preregistration of the study is available on-
line at https://osf.io/e368h/ [117]. In brief, the LFLSAD sample consists
of families who were selected based on the presence of a primary diag-
nosis of SAD in a parent (aged 25–55 years old; the so-called “proband”)
with a child, living at home and aged 8–21 years of age (“proband's SA-
child”) whomet criteria for clinical or subclinical SAD. The age-criterion
was based on the fact that adolescence appears to be a critical period for
the development of clinical levels of SAD [17,18], while we used the ‘liv-
ing at home’ criterion to minimize the impact of environmental influ-
ences, other than the family environment, on the child's phenotype
and on the gene-environment interaction, in order to optimize the abil-
ity to detect the genotype-endophenotype-phenotype connection.

In addition to the proband and proband's SA-child, the proband's
partner and other children from this nuclear family (aged 8 years or
older), as well as the proband's sibling(s), with their partners and chil-
dren (aged 8 years or older) were invited to participate. This way, the
sample consisted of family members of two generations (generation
1: generation proband; generation 2: generation proband's SA-child),
as depicted in Fig. 2.

Exclusion criteria for the LFLSAD were comorbidity other than
internalizing disorders in the proband or proband's SA-child, espe-
cially developmental disorders like autism; other family members
were included independent from the presence of psychopathology.
Furthermore, general MRI contraindications, like metal implants,
pregnancy or dental braces, were exclusion criteria for the MRI
experiment.
Although we collected MRI data from nine families (n=113) [100],
data from one family were excluded from the present analysis, as the
proband from this family was not able to participate in the MRI experi-
ment due to anMRI contraindication, which limited the analyses on the
data of this proband's family members (n = 3). Therefore, the remain-
ing sample consisted of 110 familymembers (56males) fromeight fam-
ilies (mean number of participating family members per family: 13·8;
range 5–28). These family members were, according to the design, di-
vided over two generations (generation 1: n = 51, 24 males; age
(mean ± SD, range) 46·5 ± 6·7 years, 34·3–61.5 years; generation 2:
n= 59, 32 males, age 18·1 ± 6·0 years, 9·0–32·2 years) who differed
significantly in age (β = −30·3, p b 0·001), but not in male/female
ratio (χ2(1) = 0·56, p = 0·57).

2.2. Ethics

The LFLSAD study was approved by the Medical Ethical Committee
of the Leiden University Medical Center (P12.061). Prior to entering
the study, interested familymembers received verbal andwritten infor-
mation on the objectives and procedure of the study; information let-
ters were age-adjusted, to make them understandable for participants
of all ages. All participants provided informed consent according to
the Declaration of Helsinki; both parents signed the informed consent
form for their children, while children between 12 and 18 years of age
signed the form themselves as well. Every participant received €75 for
participation in the LFLSAD (duration whole test procedure, including
breaks: 8 h) and travel expenseswere reimbursed. Furthermore, partic-
ipants were provided with lunch/dinner, snacks and drinks during their
visit to the lab. Confidentiality of the research data was maintained by
the use of a unique research ID number for each participant.

2.3. Data collection LFLSAD: extensive phenotyping

All included family members participated in a range of measure-
ments, as described in Bas-Hoogendam et al. [100]. The presence of

https://osf.io/e368h


Publication Temporal regions Occipital regions Cerebellum

Ins TC OCC FFG

Potts et al., 1994 [193] n.a. n.a. n.a. n.a. n.a.
Cassimjee et al., 2010 [64] = - After treatment = = - After treatment
Irle et al., 2010 [61] n.a. n.a. n.a. n.a. n.a.
Liao et al., 2011 [50] = − = = n.a.
Syal et al., 2012 [55] − − = − n.a.
Frick et al., 2013 [51] = + = + n.a.
Meng et al., 2013 [53] = = = = n.a.
Talati et al., 2013 – sample 1 [49] = + + + n.a.
Talati et al., 2013 – sample 2 [49] = both – and + = = n.a.
Brühl et al., 2014 [54] + (ROI approach, uncorrected) + (ROI approach, uncorrected) = = n.a.
Frick et al., 2014 [66] = = = = n.a.
Frick et al., 2014 [58] = = + + n.a.
Irle et al., 2014 [57] = = = = n.a.
Machado-de-Sousa et al., 2014 [194] n.a. n.a. n.a. n.a. n.a.
Talati et al., 2015 [62] = = = = + after treatment
Tükel et al., 2015 [56] = + = + n.a.
Månnson et al., 2016, 2017 [195,196] = = = = n.a.
Steiger et al., 2016 [63] = = - After treatment = n.a.
Bas-Hoogendam et al., 2017 [60] = = = = n.a.
Zhao et al., 2017 [59] + + = = n.a.

=: no difference; +: increase;−: decrease; n.a.: not data available.
ACC: anterior cingulate cortex; Amy: amygdala; CT: cortical thickness; DLPFC: dorsolateral prefrontal cortex; FFG: fusiform gyrus; GM: graymatter; HC: healthy control participants; HiC:
hippocampus; Ins: insula; MDD: patients with major depressive disorder; MPFC: medial prefrontal cortex; Occ: occipital cortex; OFC: orbitofrontal cortex; Par: parietal cortex; PC:
(pre)cuneus; PCC: posterior cingulate cortex; PD: patients with panic disorder; PMC: premotor cortex; ROI: region of interest; SA: social anxiety; SAD: patients with social anxiety disor-
der; SVM: support vector machine; TC: temporal cortex; Thal: thalamus; VBM: voxel-based morphometry; VLPFC: ventrolateral prefrontal cortex.
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DSM-IV diagnoses, with special attention to (sub)clinical SAD, was de-
termined using the Mini-International Neuropsychiatric Interview
(M.I.N.I.)-Plus (version 5.0.0) [118,119] or the M.I.N.I.-Kid interview
(version 6.0) [120,121]; these interviews were conducted by experi-
enced clinicians and were recorded. The diagnosis of clinical SAD was
established using the DSM-IV-TR criteria for the generalized subtype
of SAD, but the clinician verified whether the DSM-5 criteria for SAD
Fig. 1. Subcortical and cortical Regions of Interest (ROIs). Subcortical ROIs (1a)Amy: amygdala;
CMF: caudalmiddle frontal; LOF: lateral orbitofrontal;MOF:medial orbitofrontal. PreC: precent
anterior cingulate. RAcc: rostral anterior cingulate. Insula (purple) INS: insula. Parietal regions (re
parietal. Temporal regions (blue) FF: fusiform gyrus; IT: inferior temporal; ST: superior tempora
were alsomet. A diagnosis of subclinical SADwas establishedwhen par-
ticipants met the criteria for SAD as described in the DSM-5, but did not
show impairing limitations in important areas of functioning (criterion
G) [1].

Furthermore, participants completed age-appropriate question-
naires on several anxiety-related constructs, including, among others,
the level of self-reported social anxiety symptoms (Liebowitz Social
Hip: hippocampus; PA: pallidum; PU: putamen. Cortical ROIs (1b)Frontal regions (yellow)
ral; RMF: rostral middle frontal. SF: superior frontal. Anterior cingulate (green) CAcc: caudal
d) IP: inferior parietal; PC: precuneus; PoC: postcentral; SuML supramarginal; SP: superior
l; TT: transverse temporal.



SAD
Subclinical SAD
No SAD
Invited, but did not 
participate

Legend

Not invited

Generation 0

Generation 2

Generation 1

Fig. 2. Example of a familywithin the LFLSAD. Families were included based on the combination of a parent with SAD (‘proband’; depicted in red) and a proband's child with SAD (red) or
(sub)clinical SA (orange). In addition, family members of two generations were invited, independent from the presence of SADwithin these family members (no SAD: light blue; did not
participate: gray). Grandparents (generation 0;white)were not invited for participation. This family is slightlymodified to guarantee anonymity; however, thenumber of familymembers
and the frequency of (sub)clinical SAD are depicted truthfully. Squares and circles represent men andwomen, respectively. This figure is a reprint of Fig. 1 of Bas-Hoogendam et al., 2018,
International Journal of Methods in Psychiatric Research [100].

415J.M. Bas-Hoogendam et al. / EBioMedicine 36 (2018) 410–428
Anxiety Scale (LSAS-SR) [122,123] or the Social Anxiety Scale for adoles-
cents (SAS-A) [124]), the intensity of fear of negative evaluation (re-
vised Brief Fear of Negative Evaluation (BFNE) – II scale) [125,126]
and the level of trait anxiety (State-Trait Anxiety Inventory (STAI)
[127]. The severity of self-reported depressive symptomswas evaluated
using the Beck Depression Inventory (BDI) – II) [128,129] or the
Children's Depression Inventory (CDI) [130,131]. In order to enable
analysing the scores of the age-specific questionnaires, z-scores were
computed as described previously [100]. In addition, an estimate of cog-
nitive functioning was obtained using two subtests of the Wechsler
Adult Intelligence Scale IV (WAIS-IV) [132] or Wechsler Intelligence
Scale for Children III (WISC) [133] consisting of the similarities (verbal
comprehension) and block design (perceptual reasoning) subtests.

2.4. MRI procedure and data acquisition

Prior to the MRI scan, all participants were informed about the MRI
safety procedures and they were told that they could refrain from con-
tinuing the experiment at any time. Children and adolescentswere famil-
iarized with the MRI scanner using a mock scanner [134]. State anxiety
was assessed before and after the MRI scan by a Dutch-translation of
the STAI [127]. Scanning was performed using a 3.0 T Philips Achieva
MRI scanner (Philips Medical Systems, Best, The Netherlands), equipped
with a 32-channel Sensitivity Encoding (SENSE) head coil.

The MRI session (total duration of the MRI protocol: 54 min 47 s)
consisted of several structural and functional scans, as described in the
design paper on this project [100]. Of interest for the present work is a
high-resolution T1-weighted scan, with the following characteristics:
140 slices, resolution 0·875 mm × 0·875 mm × 1·2 mm, FOV =
224 mm × 168 mm × 177·333 mm, TR = 9·8 ms, TE = 4·59 ms, flip
angle = 8°. All structural MRI scans were inspected by a neuroradiolo-
gist; no clinically relevant abnormalities were reported in any of the
participants.

2.5. MRI processing

Reconstruction of cortical surface, cortical parcellation and CT esti-
mation, aswell as segmentation of subcortical brain structures, was per-
formed using standard procedures in the FreeSurfer software (version
5.3). This software is documented and freely available for download on-
line (http://surfer.nmr.mgh.harvard.edu/) and the technical details of
these procedures are described elsewhere [135–142]. These procedures
resulted in the extraction of volumes for seven bilateral subcortical GM
regions (amygdala, caudate, hippocampus, nucleus accumbens,
pallidum, putamen and thalamus) and the lateral ventricles, as well as
in the segmentation of the cortex into 68 (34 left and 34 right) GM re-
gions based on the Desikan-Killiany atlas [102]. For these regions,
mean CT, defined as the closest distance from the gray/white boundary
to the gray/cerebral spinal fluid boundary at each location of each
participant's reconstructed cortical surface, as well as mean CSA, was
determined. The method for the measurement of CT have been validat-
ed against both histological analysis [143] and manual measurements
[144,145], and FreeSurfer morphometric procedures have been demon-
strated to show good test-retest reliability across scanner manufac-
turers and across field strengths [146,147]. Subcortical ROIs in the
current study were the amygdala, hippocampus, pallidum and puta-
men; cortical ROIs were the superior frontal gyrus, the caudal middle
frontal gyrus, the rostral middle frontal gyrus, the lateral orbitofrontal
gyrus, the medial orbitofrontal gyrus, the precentral gyrus, the caudal
anterior cingulate, the rostral anterior cingulate, the insula, the superior
parietal gyrus, the inferior parietal cortex, the precuneus, the
supramarginal gyrus, the postcentral gyrus, the temporal pole, the infe-
rior temporal gyrus, the superior temporal gyrus, the fusiform gyrus and
the transverse temporal gyrus.

Both the subcortical segmentations as well as the segmentations of
the cortical GM regions were visually inspected for accuracy and statis-
tically evaluated for outliers according to standardized protocols de-
signed to facilitate harmonized image analysis across multiple sites
(http://enigma.ini.usc.edu/protocols/imaging-protocols/). This quality
control resulted in the exclusion of, on average, 2·0% (SD: 4·0%) of
the segmentations per participant for the subcortical measures (abso-
lute number: 0·3 segmentations, range: 0–3; SD: 0·6) and 3·4% (SD:
3·2%) of the segmentations per participant for the cortical measures
(absolute number: 2·3 segmentations, range: 0–8; SD: 2·2). In addition,
data of one participant (age 9·0 y, generation 2) had to be excluded
completely from the analyses because FreeSurfer was not able to reli-
ably reconstruct the brain from the T1-weighted scan. This was due to
excessivemovement during data acquisition, whichwas present during
both the structural aswell as the functionalMRI scans of this participant
(relative motion parameters exceeded 2.5 mm) [148].

Data of the FreeSurfer segmentations are available at https://osf.io/
m8q2z [149].

2.6. Statistical analysis

Incidental missing values on the self-report questionnaires were re-
placed by the mean value of the completed items. We investigated dif-
ferences between participants with and without (sub)clinical SAD by
fitting regression models in R [150], with (sub)clinical SAD as the inde-
pendent variable and the outcomes of the self-report questionnaires
(self-reported social anxiety (z-score), fear of negative evaluation,
level of trait anxiety and level of state anxiety before and after the MRI
scan) as dependent variables of interest. Gender and age were included
as covariates, and genetic correlations between family members were

http://surfer.nmr.mgh.harvard.edu
http://enigma.ini.usc.edu/protocols/imaging-protocols/)
https://osf.io/m8q2z
https://osf.io/m8q2z
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modeled by including random effects. P-values were corrected for mul-
tiple comparisons (seven tests, Bonferroni corrected p-value = 0·007).
In addition, we compared the presence of (comorbid) psychopathology
between participants in the (sub)clinical SAD and no SAD group by
performing chi-square tests using IBM SPSS Statistics for Windows
(Version 23.0. Armonk, NY: IBM Corp.), while applying a Bonferroni-
corrected p-value (p = .005 [10 tests]).

Next, we investigated whether GM brain characteristics are candi-
date endophenotypes of SAD by focusing on two endophenotype
criteria. First, the ‘co-segregation of the candidate endophenotype
with the disorder within families’ (first element of endophenotype cri-
terion 4) was examined, by performing multiple regression using a lin-
ear mixed model in R [150]. (Sub)clinical SAD was used as the
independent variable, as we considered the clinical and subclinical
SAD cases to reflect the same phenotype; the GM brain characteristics
(subcortical volumes; CT; CSA) were dependent variables. Again, corre-
lations between family members were modeled by including random
effects; age (centered) and gender were included as covariates of no in-
terest. In addition, total ICV (centered), mean global cortical thickness
(GCT) (centered) or total global cortical surface area (GCSA) (centered)
were added as covariates for the analyses on subcortical volumes, CT
and cortical surface area, respectively. Furthermore, in order to obtain
a reliable estimate of themain effect of (sub)clinical SAD, a (sub)clinical
SAD-by-age interaction term as well as an analysis-dependent interac-
tion term ((sub)clinical SAD-by-total ICV; (sub)clinical SAD-by-mean
GCT; (sub)clinical SAD-by-total GCSA) were included in the model. As
data on the presence of subclinical SAD were, due to technical reasons,
lost for eight family members, data from these participants could not
be used for this analysis (remaining sample: n = 101). For reasons of
completeness, we also investigated the relationship between GM
brain characteristics and two continuous measures of social anxiety:
self-reported levels of social anxiety (z-scores, based on the LSAS and
SAS-A) and levels of fear of negative evaluation (FNE) (sample: n =
109). Because of the non-normal distribution of most of the dependent
variables, we confirmed the robustness of the used linear mixed model
by checking the distribution of the residuals of the phenotypes showing
significant results using Shapiro-Wilk normality tests in R; results
Table 2
Characteristics of participants with and without (sub)clinical SAD.

(Sub)clinical SAD (n = 39)

Demographics
Male / Female (n) 20 / 19
Generation 1 / Generation 2 (n) 19 / 20
Age in years (mean ± SD); range 30.3 ± 15.5; 9.2–59.6
Estimated IQ (mean ± SD) 104.3 ± 12.2

Diagnostic information(n)
Clinical SAD 17
Depressive episode - present 1
Depressive episode - past 12
Dysthymia - present 3
Dysthymia - past 1
Panic disorder lifetime 5
Agoraphobia - present 3
Agoraphobia - past 0
Separation anxiety 0
Specific phobia 2
Generalized anxiety disorder - present 1

Self-report measures (mean ± SD)
Social anxiety symptoms (z-score) 3.0 ± 3.3
FNE 23.3 ± 12.3
Depressive symptoms (z-score) 0.0 ± 0.9
STAI - trait 38.8 ± 9.4
STAI - state pre scan 35.2 ± 7.5
STAI - state post scan 30.8 ± 6.4

FNE: fear of negative evaluation; SAD: social anxiety disorder; SD: standard deviation; SE: stan
⁎ Significant at uncorrected p-value of 0.05. ** Significant at Bonferroni-corrected p-value.
showed that these residuals followed a normal distribution. Analyses
were corrected for multiple comparisons at a false discovery rate
(FDR) of 5% [116]. In addition to these analyses of interest, we per-
formed two sensitivity analyses to examine whether the results of the
association analyses were driven by (comorbid) psychopathology
other than SAD or by the severity of depressive symptoms as measured
by the BDI-II or the CDI. Therefore, we excluded all participants with
past and/or present (comorbid) psychopathology other than SAD (sen-
sitivity analysis 1; note however, that the results may be biased, as the
majority of the probands, on which the selection of the families was
based, were excluded as well) or added the z-score of the level of de-
pressive symptoms as a covariate in the analyses (sensitivity analysis 2).

Second, the heritability of the GMbrain characteristics (h2)was esti-
mated (endophenotype criterion 3) by jointly modelling the GM brain
characteristics and SAD on which the selection of the families was
based. Randomeffectswere included tomodel the familial relationships
[151]. Age (centered and standardized), gender and total ICV (centered
and standardized; analyses on subcortical volume), mean GCT (cen-
tered and standardized; analyses on CT) or total GCSA (centered and
standardized; analyses on surface area) were included as covariates.
This approach takes the ascertainment process into account. We tested
whether the genetic variance was significantly different from zero (cf.
[152]) by using likelihood ratio tests. Significance levels are reported
for heritability estimates N0·10. Again, a FDR of 5% was applied.

3. Results

3.1. Sample characteristics

Characteristics of the sample are summarized in Table 2. Seventeen
participants were diagnosed with clinical SAD, while an additional 22
were classified as having subclinical SAD (total group (sub)clinical
SAD n = 39); the validity of these diagnoses was substantiated by the
scores on the self-report questionnaires as described previously [100].
The family members with (sub)clinical SAD did not differ from family
members without SAD (n = 62) with respect to male/female ratio,
age and estimated IQ. However, family members in the (sub)clinical
No SAD (n = 62) Statistical analysis

31 /31 χ2(1) = 0.02, p = 1.00
27 / 35 χ2(1) = 0.26, p = .68
31.3 ± 15.2; 9.4–61.5 β (± SE) = −1.0 ± 3.1, p = .76
105.6 ± 10.5 β (± SE) = −2.1 ± 2.2, p = .33

0 χ2(1) = 32.5, p b .001 ⁎⁎

1 χ2(1) = 0.15, p = 1.00
9 χ2(1) = 4.8, p = .04 ⁎

0 χ2(1) = 5.3, p = .05 ⁎

1 χ2(1) = 0.2, p = 1.00
2 χ2(1) = 3.9, p = .10
2 χ2(1) = 1.2, p = .35
2 χ2(1) = 1.2, p = .53
1 χ2(1) = 0.8, p = 1.00
3 χ2(1) = 0.02, p = 1.00
0 χ2(1) = 1.7, p = .37

0.6 ± 1.5 β (± SE) = 2.6 ± 0.5, p b .001 ⁎⁎

12.8 ± 8.0 β (± SE) = 10.6 ± 1.9, p b .001 ⁎⁎

−0.5 ± 0.7 β (± SE) = 0.5 ± 0.2, p b .001⁎⁎

33.1 ± 8.5 β (± SE) = 5.5 ± 1.8, p = .002 ⁎⁎

32.2 ± 8.8 β (± SE) = 2.8 ± 1.6, p = .08
28.5 ± 6.4 β (± SE) = 2.2 ± 1.3, p = .09

dard error; STAI: state-trait anxiety inventory;



Table 3
General imaging characteristics participants with and without (sub)clinical SAD.

(Sub)clinical SADa No SADa Effect of
(sub)clinical
SADb

Effect of social
anxiety
(z-score)b

Effect of FNEb Effect of ageb,c Effect of genderb,c

β SE p β SE p β SE p β SE p β SE p

Total ICV 1,599,832.3 ±
161,567.6

1,628,908.4 ±
163,820.3

−0.06 0.07 0.41 0.05 0.07 0.49 −0.07 0.07 0.27 −0.13 0.06 0.04 ⁎ −0.70 0.07 b0.001 ⁎⁎

Mean GCT 2.55 ± 0.13 2.54 ± 0.14 0.05 0.06 0.45 0.01 0.06 0.88 −0.03 0.06 0.66 −0.69 0.05 b0.001 ⁎⁎ 0.07 0.06 0.28
Total
GCSA

174,163.3 ±
16,561.2

176,417.4 ±
17,792.7

0.00 0.07 0.99 0.05 0.06 0.38 0.02 0.06 0.71 −0.38 0.05 b0.001 ⁎⁎ −0.59 0.07 b0.001 ⁎⁎

FNE: fear of negative evaluation;GCSA: global cortical surface area (mm2); GCT: global cortical thickness (mm); ICV: intracranial volume (mm3); SAD: social anxiety disorder; SE: standard
error.
Main effects of (sub)clinical SAD, social anxiety (z-score) and FNE are corrected for age (centered), gender and family structure. Reported p-values are uncorrected for multiple
comparisons.

a Uncorrected mean ± standard deviation.
b Coefficients represent standardized values.
c Effects of age and gender are reported for themodels including (sub)clinical SAD, but are comparable to the effects of these covariates in themodels including social anxiety (z-score)

and FNE. Values of the covariates are reported in Supplementary Table 2.
⁎ Significant at uncorrected p-value of 0.05. ** Significant at Bonferroni-corrected p-value.
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SAD group were more often diagnosed with depression (past) and dys-
thymia (present), although these differences were not significant at a
Bonferroni-corrected p-value. In addition, the prevalence of depressive
episodes within the sample as a whole was in the range of the general
population [153,154], as reported in the design paper on the LFLSAD
[100]. Furthermore, participants with (sub)clinical SAD self-reported
significantly higher levels of social anxiety, FNE, trait anxiety, and in-
creased levels of depressive symptoms. Groups did not differ with re-
spect to state anxiety related to the MRI scan. None of the participants
with SAD received treatment for the disorder before entering the
study [100].

3.2. General imaging phenotypes

Values of general imaging phenotypes are presented in Table 3.
Participants with and without (sub)clinical SAD did not differ with re-
spect to total ICV, mean GCT and total GCSA, but there were effects of
age and gender on these phenotypes, in line with previous findings
[155,156].

3.3. Volumes of subcortical brain structures

Using three different models, we investigated whether indices of
social anxiety ((sub)clinical SAD, z-score of SA, or FNE) were associ-
ated with volumes of the subcortical ROIs. Results of the analyses
are displayed in Table 4 and Supplementary Table 1. There were
no significant associations between the indices of social anxiety
and subcortical volumes at the FDR-corrected significance level,
but there were positive relationships between the level of self-
reported social anxiety and FNE on the one hand and volume of
the left pallidum at the other at an uncorrected significance level
of p b 0·05 (Fig. 3a). Furthermore, volume of the left pallidum
was moderately heritable (h2 = 0·28). Heritability estimates of
the volumes of other subcortical ROIs are depicted in Fig. 4a and
listed in Table 4.

3.4. Cortical thickness of ROIs

Results of the analyses with respect to the thickness of cortical
ROIs are displayed in Table 5 and Supplementary Table 1. Again, we
used three different models to test for associations between cortical
thickness and, respectively, (sub)clinical SAD, self-reported levels of
SA (z-score), and FNE. None of the associations was significant at
the FDR-corrected significance level; at the uncorrected level (p b

0·05), indices of social anxiety were negatively correlated with CT of
the right rostral middle frontal gyrus (effect of (sub)clinical SAD and
effect of self-reported social anxiety), the left medial orbitofrontal cor-
tex (effect of self-reported social anxiety), the right rostral ACC (effect
of (sub)clinical SAD), the left and right superior temporal gyrus (effect
of (sub)clinical SAD and effect of FNE, respectively) and the left fusi-
form gyrus (effect of self-reported social anxiety). Furthermore,
there were positive relationships between social anxiety and CT of
the left rostral ACC (effect of FNE), the right inferior parietal cortex
(effect of (sub)clinical SAD), the left and right supramarginal gyrus
(effect of (sub)clinical SAD and effect of FNE, respectively), the left
temporal pole (effect of (sub)clinical SAD) and the left transverse
temporal gyrus (effect of (sub)clinical SAD) (Fig. 3b). It should be
noted that there were significant interactions between (sub)clinical
SAD and age with respect to the thickness of the right rostral middle
frontal gyrus and the left supramarginal gyrus. These interactions are
illustrated in Supplementary Fig. 1.

Considering the regions showing an association between CT and so-
cial anxiety in thefirst place, heritability analyses revealed that CT of the
left medial orbitofrontal cortex, the bilateral rostral ACC, the left superi-
or temporal gyrus and the left transverse temporal gyrus displayed
moderately high (h2 = 0·4–0.6) or even high (h2 N 0·6) heritability.
Furthermore, CT of the left supramarginal gyrus and the right superior
temporal gyrus had moderate heritability (h2 between 0·2 and 0·4).
These heritability estimates, as well as the estimates for ROIs in which
there was no association with social anxiety, are illustrated in Fig. 4b
and summarized in Table 5.
3.5. Cortical surface area of ROIs

Results of the analyses with respect to the average CSA of the
cortical ROIs are displayed in Table 6 and Supplementary Table 1.
There were no significant relationships between the measures of
social anxiety at the corrected significance level, but self-reported
social anxiety was negatively related to the CSA of the right
fusiform gyrus at the uncorrected level. In addition, the level of
FNE was negatively related to the CSA of the right caudal ACC and
positively associated with CSA of the right precuneus (Fig. 3c). Anal-
yses on the heritability of CSA of these ROIs indicated that CSA of
the right fusiform gyrus was moderately high (h2 = 0·33). Herita-
bility estimates of other ROIs are depicted in Fig. 4c and listed in
Table 6.



Fig. 3. Relationship between indices of social anxiety and gray matter characteristics.
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3.6. Sensitivity analyses

Results of the sensitivity analyses showed comparable associations
between the indices of social anxiety and the GM characteristics as the
main analyses of interest. That is, in both sensitivity analyses (sensitivity
analysis 1: participants with past and/or present (comorbid)
psychopathology other than SAD were excluded; remaining n = 70;
sensitivity analysis 2: the level of depressive symptoms was added as
a covariate), we found a positive association with volume of the left
pallidum, changes in cortical thickness in frontal, parietal and temporal
areas, as well as alterations in cortical surface area of the precuneus and
fusiform gyrus (all at p b .05, uncorrected). These findings are illustrated



Fig. 4. Heritability estimates of gray matter characteristics.
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in Supplementary Figs. 2 and 3; detailed statistics are available in Sup-
plementary Tables 2 and 3.

3.7. Other subcortical and cortical brain regions (non-ROIs)

For reasons of completeness, results of the association analyses
on subcortical and cortical regions that were not a priori selected
(non-ROIs) are reported in Supplementary Table 4. In brief, none
of the subcortical non-ROIs showed an association with any of the
indices of social anxiety. With respect to the cortical measurements:
cortical thickness was positively related to indices of social anxiety
in some regions (right banks of the superior temporal sulcus, bilat-
eral lingual gyrus, right lateral occipital gyrus and left pars
triangularis), while indices of social anxiety were related to cortical
surface area of the left parahippocampal gyrus, the right pars
opercularis and the right banks of the superior temporal sulcus.



Table 4
Effects of social anxiety on volumes of subcortical ROIs; heritability estimates.

(Sub)clinical SADa No SADa Effect of (sub)clinical
SADb

Effect of social anxiety
(z-score)b

Effect of FNEb Heritability estimate

β SE p β SE p β SE p h2 p

Amygdala L 1511.0 ± 150.4 1552.9 ± 190.7 −0.11 0.08 0.19 0.04 0.08 0.58 −0.01 0.08 0.94 0.34 0.009 ⁎⁎

R 1515.1 ± 192.3 1541.4 ± 196.8 −0.04 0.08 0.62 0.07 0.08 0.40 0.05 0.08 0.55 b 0.10 n.a.
Hippocampus L 5009.3 ± 611.3 5150.4 ± 544.7 −0.09 0.08 0.26 0.01 0.08 0.89 0.07 0.08 0.39 0.37 0.001 ⁎⁎

R 4782.6 ± 547.2 4782.3 ± 494.5 0.04 0.08 0.65 0.00 0.08 0.98 0.08 0.08 0.33 0.29 1.1x10- 5⁎⁎

Pallidum L 1777.5 ± 283.8 1711.3 ± 256.1 0.08 0.08 0.35 0.21 0.08 0.01 ⁎ 0.21 0.08 0.01 ⁎ 0.28 0.038 ⁎

R 1516.4 ± 220.0 1497.8 ± 203.5 0.00 0.08 0.96 0.08 0.08 0.33 0.12 0.08 0.13 0.45 1.7x10−5⁎⁎

Putamen L 6741.4 ± 1028.2 6480.6 ± 931.6 0.15 0.09 0.09 0.07 0.08 0.40 0.08 0.09 0.35 b 0.10 n.a.
R 5103.5 ± 688.4 5153.7 ± 568.2 −0.04 0.07 0.57 0.07 15.9 0.54 0.06 0.06 0.39 0.61 5.5x10−6⁎⁎

FNE: fear of negative evaluation; L: left; n.a.: not applicable; R: right; SAD: social anxiety disorder; SE: standard error.

Main effects of (sub)clinical SAD, social anxiety (z-score) and FNE are corrected for age (centered), gender, total intracranial volume (centered) and family-structure. Furthermore, the
models including (sub)clinical SAD contained the interaction terms (sub)clinical SAD*age (centered) and (sub)clinical SAD*total intracranial volume (centered). Values of the covariates
are reported in Supplementary Table 1. Reported p-values are uncorrected for multiple comparisons.

a Uncorrected mean ± standard deviation.
b Coefficients represent standardized values.
⁎ Significant at uncorrected p-value of 0.05. ** Significant at FDR-corrected p-value.

Table 5
Effects of social anxiety on thickness of cortical ROIs; heritability estimates.

Effect of (sub)clinical
SADb

Effect of social anxiety
(z-score)b

Effect of FNEb Heritability estimate

(Sub)clinical SADa No SADa β SE p β SE p β SE p h2 p

Superior frontal L 2.93 ± 0.17 2.93 ± 0.20 −0.07 0.04 0.07 −0.07 0.04 0.10 0.01 0.04 0.85 0.11 n.s.
R 2.92 ± 0.17 2.93 ± 0.20 −0.06 0.04 0.15 0.00 0.04 1.00 0.02 0.04 0.63 b 0.10 n.a.

Caudal middle frontal L 2.68 ± 0.16 2.65 ± 0.17 0.03 0.06 0.56 0.04 0.06 0.53 0.07 0.06 0.25 b 0.10 n.a.
R 2.66 ± 0.16 2.63 ± 0.17 0.05 0.06 0.44 0.03 0.06 0.60 −0.02 0.06 0.73 b 0.10 n.a.

Rostral middle frontal L 2.51 ± 0.17 2.51 ± 0.18 0.00 0.05 0.93 −0.04 0.05 0.41 0.06 0.05 0.26 b 0.10 n.a.
R 2.44 ± 0.17 2.48 ± 0.18 −0.13 0.05 0.02 ⁎ −0.12 0.05 0.03 ⁎ −0.08 0.05 0.15 b 0.10 n.a.

Lateral orbitofrontal L 2.80 ± 0.25 2.81 ± 0.20 −0.08 0.06 0.18 −0.06 0.05 0.28 −0.05 0.06 0.34 b 0.10 n.a.
R 2.71 ± 0.23 2.72 ± 0.22 −0.04 0.06 0.51 −0.02 0.05 0.71 −0.01 0.05 0.86 0.20 n.s.

Medial orbitofrontal L 2.60 ± 0.20 2.62 ± 0.21 −0.08 0.06 0.18 −0.12 0.06 0.04 ⁎ 0.06 0.06 0.32 0.48 0.035 ⁎

R 2.71 ± 0.28 2.67 ± 0.21 0.05 0.06 0.41 0.03 0.06 0.60 0.09 0.06 0.13 0.19 n.s.
Precentral L 2.61 ± 0.17 2.59 ± 0.15 −0.01 0.06 0.90 0.02 0.06 0.75 0.03 0.06 0.62 0.22 n.s.

R 2.59 ± 0.15 2.58 ± 0.16 −0.01 0.06 0.83 0.02 0.06 0.76 0.04 0.06 0.55 b 0.10 n.a.
Caudal anterior cingulate L 2.96 ± 0.25 2.91 ± 0.26 0.05 0.09 0.58 0.12 0.09 0.16 0.02 0.09 0.80 b 0.10 n.a.

R 2.72 ± 0.21 2.76 ± 0.25 −0.08 0.08 0.29 −0.15 0.08 0.06 −0.08 0.08 0.33 b 0.10 n.a.
Rostral anterior cingulate L 3.13 ± 0.26 3.08 ± 0.25 0.05 0.07 0.51 −0.04 0.07 0.60 0.14 0.07 0.05 ⁎ 0.48 0.024 ⁎

R 3.05 ± 0.25 3.15 ± 0.23 −0.18 0.08 0.02 ⁎ −0.07 0.08 0.36 0.09 0.08 0.27 0.48 0.016 ⁎⁎

Insula L 3.16 ± 0.20 3.17 ± 0.20 −0.05 0.06 0.44 −0.07 0.06 0.23 0.02 0.06 0.77 0.43 0.001 ⁎⁎

R 3.16 ± 0.21 3.15 ± 0.20 −0.01 0.07 0.93 −0.04 0.07 0.53 −0.06 0.07 0.38 0.29 0.046 ⁎

Superior parietal L 2.20 ± 0.14 2.19 ± 0.14 0.02 0.05 0.76 0.08 0.05 0.14 0.01 0.05 0.81 0.35 n.s.
R 2.17 ± 0.16 2.15 ± 0.15 0.07 0.05 0.19 0.02 0.05 0.68 −0.02 0.05 0.63 0.53 0.002 ⁎⁎

Inferior parietal L 2.53 ± 0.16 2.50 ± 0.16 0.08 0.05 0.11 −0.03 0.05 0.55 −0.03 0.05 0.52 0.35 n.s.
R 2.56 ± 0.14 2.52 ± 0.15 0.11 0.05 0.03 ⁎ 0.07 0.05 0.12 0.01 0.05 0.86 b 0.10 n.a.

Precuneus L 2.46 ± 0.21 2.44 ± 0.19 0.01 0.05 0.86 0.09 0.05 0.06 0.03 0.05 0.45 0.30 0.045 ⁎

R 2.45 ± 0.19 2.44 ± 0.20 −0.01 0.06 0.84 0.06 0.05 0.29 −0.06 0.05 0.28 b 0.10 n.a.
Supramarginal L 2.64 ± 0.17 2.58 ± 0.16 0.13 0.06 0.03 ⁎ 0.04 0.06 0.53 0.02 0.06 0.73 0.23 n.s.

R 2.62 ± 0.17 2.58 ± 0.17 0.06 0.06 0.32 0.08 0.06 0.14 0.12 0.06 0.04 ⁎ b 0.10 n.a.
Postcentral L 2.11 ± 0.18 2.09 ± 0.12 0.02 0.07 0.77 0.08 0.07 0.26 0.02 0.07 0.78 0.19 n.s.

R 2.03 ± 0.16 2.06 ± 0.13 −0.13 0.07 0.07 −0.03 0.07 0.66 −0.05 0.07 0.50 0.34 n.s.
Temporal pole L 3.63 ± 0.27 3.49 ± 0.28 0.25 0.09 0.01 ⁎ 0.07 0.09 0.48 0.14 0.10 0.15 0.11 n.s.

R 3.53 ± 0.36 3.50 ± 0.38 0.05 0.10 0.59 −0.02 0.09 0.85 −0.06 0.10 0.51 b 0.10 n.a.
Inferior temporal L 2.80 ± 0.14 2.77 ± 0.19 0.06 0.07 0.38 0.02 0.06 0.74 −0.06 0.07 0.33 b 0.10 n.a.

R 2.77 ± 0.15 2.78 ± 0.17 −0.05 0.07 0.47 0.01 0.07 0.89 −0.06 0.07 0.41 b 0.10 n.a.
Superior temporal L 2.84 ± 0.17 2.87 ± 0.19 −0.21 0.07 0.002 ⁎ −0.09 0.07 0.15 −0.08 0.06 0.21 0.74 7.5x10−5⁎⁎

R 2.89 ± 0.15 2.89 ± 0.17 −0.07 0.06 0.28 −0.05 0.06 0.39 −0.17 0.06 0.01 ⁎ 0.23 n.s.
Fusiform L 2.70 ± 0.16 2.71 ± 0.16 −0.06 0.06 0.34 −0.14 0.06 0.02 ⁎ −0.09 0.06 0.15 b 0.10 n.a.

R 2.69 ± 0.14 2.69 ± 0.17 0.00 0.06 0.97 0.02 0.06 0.69 0.07 0.06 0.26 b 0.10 n.a.
Transverse temporal L 2.46 ± 0.30 2.34 ± 0.27 0.15 0.07 0.04 ⁎ 0.09 0.07 0.22 0.03 0.07 0.66 0.64 1.7x10−6⁎⁎

R 2.49 ± 0.28 2.45 ± 0.33 0.02 0.08 0.83 0.01 0.08 0.89 0.03 0.08 0.72 0.47 0.001 ⁎⁎

FNE: fear of negative evaluation; L: left; n.a.: not applicable; n.s.: not significant; R: right; SAD: social anxiety disorder; SE: standard error.

Main effects of (sub)clinical SAD, social anxiety (z-score) and FNE are corrected for age (centered), gender, mean global cortical thickness (centered) and family-structure. Furthermore,
the models including (sub)clinical SAD contained the interaction terms (sub)clinical SAD*age (centered) and (sub)clinical SAD*mean global cortical thickness (centered). Values of the
covariates are reported in Supplementary Table 1. Reported p-values are uncorrected for multiple comparisons.

a Uncorrected mean ± standard deviation.
b Coefficients represent standardized values.
⁎ Significant at uncorrected p-value of 0.05. ** Significant at FDR-corrected p-value.
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Table 6
Effects of social anxiety on surface area of cortical ROIs; heritability estimates.

(Sub)clinical SADa No SADa Effect of (sub)clinical
SADb

Effect of social anxiety
(z-score)b

Effect of FNEb Heritability
estimate

β SE p β SE p β SE p h2 p

Superior frontal L 7412.1 ± 884.9 7448.6 ± 809.4 0.09 0.05 0.07 0.01 0.05 0.91 −0.01 0.05 0.89 0.59 0.003 ⁎⁎

R 7112.2 ± 809.1 7268.8 ± 845.4 −0.04 0.05 0.44 0.00 0.05 0.94 0.07 0.05 0.15 0.48 0.001 ⁎⁎

Caudal middle frontal L 2416.5 ± 360.0 2398.2 ± 400.2 0.05 0.07 0.46 0.08 0.07 0.24 0.10 0.07 0.13 0.31 0.036 ⁎

R 2241.5 ± 371.9 2206.5 ± 355.9 0.07 0.07 0.36 0.02 0.07 0.83 0.01 0.07 0.90 0.54 0.057
Rostral middle frontal L 5947.1 ± 805.4 6080.3 ± 862.2 0.00 0.05 0.97 −0.02 0.05 0.59 0.00 0.04 0.97 0.66 2.7x10−4⁎⁎

R 6277.7 ± 924.3 6347.6 ± 934.5 0.04 0.04 0.33 0.00 0.04 0.92 −0.01 0.04 0.83 0.79 1.6x10−5⁎⁎

Lateral orbitofrontal L 2566.5 ± 215.2 2644.7 ± 287.5 0.03 0.06 0.56 0.08 0.06 0.16 −0.02 0.05 0.75 0.76 9.3x10−6⁎⁎

R 2569.0 ± 260.1 2596.0 ± 282.4 0.01 0.08 0.94 0.01 0.07 0.90 −0.12 0.07 0.09 b 0.10 n.a.
Medial orbitofrontal L 1913.4 ± 239.6 1942.0 ± 253.0 0.00 0.07 0.97 0.06 0.07 0.41 0.03 0.07 0.73 b 0.10 n.a.

R 1872.9 ± 205.4 1872.6 ± 195.2 0.04 0.08 0.61 0.06 0.07 0.45 0.06 0.07 0.41 b 0.10 n.a.
Precentral L 4821.7 ± 450.3 4887.3 ± 491.4 −0.04 0.06 0.54 0.02 0.06 0.77 0.05 0.06 0.45 0.26 0.035 ⁎

R 4924.3 ± 502.2 4925.0 ± 461.3 0.04 0.06 0.48 0.10 0.06 0.09 0.03 0.06 0.57 0.24 0.049 ⁎

Caudal anterior cingulate L 641.3 ± 120.6 678.0 ± 172.2 −0.05 0.08 0.54 0.06 0.08 0.43 −0.01 0.08 0.89 0.17 n.s.
R 819.9 ± 178.4 834.2 ± 150.3 −0.02 0.09 0.79 −0.05 0.08 0.51 −0.16 0.08 0.05⁎ 0.16 n.s.

Rostral anterior cingulate L 828.2 ± 161.3 850.7 ± 155.6 −0.01 0.07 0.93 0.05 0.07 0.50 −0.01 0.07 0.94 b 0.10 n.a.
R 673.7 ± 158.3 711.7 ± 117.4 −0.07 0.08 0.36 0.02 0.08 0.79 −0.06 0.08 0.42 0.44 0.002 ⁎⁎

Insula L 2277.4 ± 188.0 2275.6 ± 225.0 0.04 0.06 0.56 0.00 0.06 0.98 −0.04 0.06 0.47 0.49 0.004 ⁎⁎

R 2272.2 ± 271.2 2327.7 ± 262.0 −0.03 0.08 0.69 −0.08 0.07 0.30 0.06 0.07 0.39 0.45 0.002 ⁎⁎

Superior parietal L 5611.9 ± 584.8 5609.0 ± 693.8 0.00 0.06 0.99 0.04 0.06 0.54 0.00 0.06 0.99 0.39 0.029 ⁎

R 5620.2 ± 734.3 5631.8 ± 664.2 0.00 0.07 0.98 0.06 0.06 0.35 0.09 0.07 0.19 0.35 n.s.
Inferior parietal L 4751.4 ± 749.4 4880.4 ± 663.4 −0.02 0.06 0.78 −0.02 0.06 0.67 −0.01 0.05 0.78 b 0.10 n.a.

R 5618.7 ± 811.9 5843.9 ± 918.8 −0.10 0.06 0.06 −0.09 0.05 0.10 −0.04 0.06 0.43 0.17 n.s.
Precuneus L 3853.2 ± 504.3 3922.2 ± 504.2 0.00 0.05 0.94 0.02 0.05 0.73 0.02 0.05 0.66 0.47 2.4x10−5⁎⁎

R 4063.1 ± 527.7 4095.5 ± 534.8 0.04 0.06 0.48 0.03 0.06 0.65 0.13 0.06 0.02⁎ b 0.10 n.a.
Supramarginal L 3966.7 ± 608.7 4110.0 ± 664.4 −0.09 0.06 0.16 −0.01 0.06 0.85 −0.02 0.06 0.67 0.75 1.1x10−6⁎⁎

R 3895.4 ± 616.5 3922.6 ± 652.1 0.06 0.06 0.30 −0.03 0.06 0.62 −0.05 0.06 0.36 0.32 0.005 ⁎⁎

Postcentral L 4249.8 ± 634.9 4323.8 ± 511.6 −0.02 0.06 0.70 −0.03 0.06 0.60 −0.02 0.06 0.79 0.29 0.034 ⁎

R 4086.7 ± 597.0 4147.1 ± 536.8 −0.01 0.06 0.89 0.03 0.06 0.63 −0.06 0.06 0.35 0.22 0.049 ⁎

Temporal pole L 474.7 ± 59.4 484.3 ± 64.4 −0.05 0.09 0.56 0.03 0.08 0.74 −0.02 0.09 0.82 0.15 0.028 ⁎

R 403.2 ± 64.7 407.1 ± 52.8 0.01 0.09 0.93 0.02 0.09 0.80 0.02 0.09 0.82 0.34 0.005 ⁎⁎

Inferior temporal L 3544.0 ± 452.0 3583.9 ± 591.1 0.02 0.06 0.70 −0.02 0.06 0.75 −0.04 0.06 0.51 b 0.10 n.a.
R 3314.4 ± 508.7 3367.0 ± 490.0 0.01 0.05 0.91 −0.02 0.06 0.69 −0.02 0.05 0.70 0.38 0.004 ⁎⁎

Superior temporal L 3947.8 ± 457.5 3921.2 ± 476.2 0.06 0.06 0.30 0.04 0.06 0.49 0.07 0.05 0.20 0.92 5.8x10−6⁎⁎

R 3773.6 ± 407.2 3675.4 ± 315.8 0.08 0.05 0.15 0.00 0.05 0.96 0.06 0.05 0.26 0.75 3.8x10−4⁎⁎

Fusiform L 3405.1 ± 446.8 3371.7 ± 474.6 0.09 0.07 0.18 −0.08 0.07 0.22 0.01 0.06 0.92 0.34 0.004 ⁎⁎

R 3162.8 ± 408.3 3274.9 ± 451.4 −0.09 0.06 0.13 −0.12 0.05 0.02⁎ −0.04 0.05 0.47 0.33 3.6x10−6⁎⁎

Transverse temporal L 482.6 ± 75.0 495.4 ± 77.4 −0.03 0.08 0.71 −0.01 0.08 0.92 0.01 0.08 0.93 0.55 0.004 ⁎⁎

R 361.1 ± 57.5 368.8 ± 67.7 −0.02 0.08 0.79 0.02 0.08 0.84 0.03 0.08 0.72 0.52 0.002 ⁎⁎

FNE: fear of negative evaluation; L: left; n.a.: not applicable; n.s.: not significant; R: right; SAD: social anxiety disorder; SE: standard error.

Main effects of (sub)clinical SAD, social anxiety (z-score) and FNE are corrected for age (centered), gender, total global cortical surface area (centered) and family-structure. Furthermore,
the models including (sub)clinical SAD contained the interaction terms (sub)clinical SAD*age (centered) and (sub)clinical SAD*total global cortical surface area (centered). Values of the
covariates are reported in Supplementary Table 1.
Reported p-values are uncorrected for multiple comparisons.

a Uncorrected mean ± standard deviation.
b Coefficients represent standardized values.
⁎ Significant at uncorrected p-value of 0.05. ** Significant at FDR-corrected p-value.
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However, none of these results survived multiple comparisons
correction.
4. Discussion

Aim of the present study was to investigate whether structural gray
matter (GM) brain characteristics could serve as candidate
endophenotypes of social anxiety disorder (SAD) [48]. Data from the
Leiden Family Lab study on Social Anxiety Disorder (LFLSAD) were
used, as themultiplex, multigenerational family design of this study en-
ables investigating two important endophenotype criteria [100]. First of
all, we investigated whether the candidate endophenotypes co-
segregatedwith social anxietywithin the families, by studying the asso-
ciation between GM characteristics and three indices of social anxiety in
families genetically enriched for SAD: the diagnosis of (sub)clinical SAD,
self-reported levels of social anxiety, and self-reported levels of fear of
negative evaluation (FNE). Secondly, we examined the heritability of
the GM phenotypes.
We investigated subcortical brain volumes, cortical thickness (CT)
measures and estimates of cortical surface area (CSA) and used a
hypothesis-driven region-of-interest (ROI) approach, focussing on re-
gions in which SAD-related alterations have been reported previously
(Fig. 1), although it should be noted that the results of these studies,
as summarized in Table 1, often lack consistency. Findings of these anal-
yses will be considered in the following. We start with reviewing GM
characteristics meeting both criteria for being a candidate
endophenotype of social anxiety, as they (1) co-segregated with social
anxiety within families, and (2) were at least moderately heritable.
Next, we discuss the results of the association and heritability analyses
in more detail, and consider them in the light of previous work.

4.1. Candidate endophenotypes of SAD

When combining the results of the association analyses with those
of the heritability analyses, several GM characteristics turn out to be
promising candidate endophenotypes of social anxiety, although it
should be noted that the results of the association analyses did not



Fig. 5. Overview of gray matter candidate endophenotypes of social anxiety.
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survive correction for multiple comparisons. We summarized these
findings in Fig. 5. This figure illustrates that the structural changes in
GM which are genetically related to SAD are widespread over the
brain, as they involve subcortical (pallidum) aswell as cortical areas, in-
cluding frontal, parietal and temporal regions. Interestingly, several of
these cortical areas, namely the medial orbitofrontal cortex, the ACC,
the supramarginal gyrus and the fusiform gyrus, are part of the
extended neurobiological model of SAD as proposed by Brühl and col-
leagues [65]. This model of SAD, which is mainly based on data from
functionalMRI and the results of resting-state and functional connectiv-
ity studies, describes a hyperactive fear and anxiety circuit [157,158],
consisting of the amygdala, insula, ACC, and prefrontal cortex, as well
as hyperactive but less connected parieto-occipital regions. Further-
more, recent studies on connectivity showed widespread changes in



Table 7
Summary of results with respect to the association between social anxiety disorder and cortical thickness.

Present work Previous work

LFLSAD [100]
39 (sub)clinical SAD-participants
with their family members (n = 62)

Syal et al. (2012) [55]
13 SAD-patients vs 13 HC

Brühl et al. (2014) [54]
46 SAD-patients vs 46 HC

Zhao et al. (2017) [59]
24 SAD-patients vs 41 HC

Frontal Superior frontal n.s. − + +
Caudal middle frontal n.s. − + +
Rostral middle frontal − − + −
Lateral orbitofrontal n.s. − n.s. −
Medial orbitofrontal − − n.s. n.s.
Precentral n.s. − n.s. −

ACC Caudal anterior cingulate n.s. n.s. + +
Rostral anterior cingulate + (left) and - (right) n.s. + +

Insula Insula n.s. − + +
Parietal Superior parietal n.s. − + +

Inferior parietal + n.s. + n.s.
Precuneus n.s. − + n.s.
Supramarginal + − n.s. +
Postcentral n.s. − n.s. n.s.

Temporal Temporal pole + − + +
Inferior temporal n.s. − n.s. +
Superior temporal − − n.s. n.s.
Fusiform gyrus − − n.s. n.s.
Transverse temporal + − n.s. n.s.

HC: healthy control; n.s.: not significant; SAD: social anxiety disorder; +: increase;−: decrease.
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functional networks in SAD [159–161]. Together, these findings con-
vergewith the results of thepresent study, as they indicate that the neu-
robiological brain changes related to SAD are not limited to the regions
traditionally implicated in fear and anxiety, but are distributed in larger
networks in the brain (cf. the recent commentary by Frick [162]). Al-
though it is difficult to relate the structural alterations described here
to functional brain changes, the results of functional MRI studies on
SAD offer an interesting starting point. Most fMRI studies on SAD em-
ploy paradigms involving faces, as these are anxiety-provoking stimuli,
and the results often point to increased brain responses in several brain
areas, including the candidate endophenotype regions of the present
study (Fig. 5). The rostral ACC, for example, a region involved in emo-
tional processing, resolving emotional conflicts, and guiding socially-
driven human interactions [163–165], showed increased activation in
patients with SAD in response to angry [166], disgust [167] and sad
faces [168]. Furthermore, several studies reported increased responsive-
ness of the superior temporal gyrus and the fusiform gyrus related to fa-
cial emotion processing in SAD [169–172], while increased activation of
the medial orbitofrontal cortex was found when patients with SAD
looked at harsh faces [173]. However, as these results provide only indi-
rect indications of the psychological alterations which might be related
to the structural GM changes, future studies, for example using ad-
vanced MR sequences, are needed to gain more insight in the cellular
bases of structural brain alterations [174] and to link themmore directly
to functional brain changes related to SAD. In addition, animal studies,
in particular in non-human primates, enabling a translational approach,
should further advance our understanding of themolecular and genetic
underpinnings of anxiety-related brain changes (cf. [26,175]).

4.2. Co-segregation of GM characteristicswith social anxietywithin families

When we consider the results of the association analyses, no signif-
icant associations between social anxiety and the GM characteristics
were present at an FDR-corrected significance level (Tables 4, 5, and
6). At an uncorrected significance level (p b 0·05), several interesting
patterns with respect to the association with social anxiety emerged
(Fig. 3), which deserve to be discussed in detail.

To start with the subcorticalROIs, we found a positive association be-
tween both the level of self-reported social anxiety as well as with the
level of self-reported FNE on the one hand and the volume of the left
pallidumon the other (Fig. 3, Table 4). This result is in linewith findings
of a mega-analysis on 174 patients with SAD and 213 healthy control
participants, showing larger GM volume in the dorsal striatum, includ-
ing the pallidum and the putamen; in this study, the increase in GM
was positively related to the level of self-reported social anxiety [60].
Recently, the positive relationship between social anxiety and volume
of the dorsal striatum was replicated in a sample of healthy young
women with a broad range of social anxiety levels [67], while a study
on the structural correlates of ‘intolerance of uncertainty’, a psycholog-
ical construct that is related to anxiety, indicated a positive relationship
between intolerance of uncertainty and bilateral striatal volume, in par-
ticular the putamen and pallidum [176]. Interestingly, these findings
and the increase in pallidum volume reported in the present work fit
within the recent focus on the striatum as being an important structure
in the anxiety circuitry of the brain [177] and are potentially reflective of
the role of the pallidum and putamen in processing emotions and re-
ward [178], as both processes have been shown to be associatedwith al-
tered brain activation levels in these regions in patients with SAD
[170,179–181].

Next, we investigated corticalGM characteristics. We examined esti-
mates of CT as well as of CSA separately, as these measures show differ-
ent developmental courses, are genetically independent, and have
distinct associations with the risk of developing psychopathology
[106–112,114,115]. Our results converge with these findings, as there
were no cortical ROIs in which both the estimates of CT and CSA were
associated with social anxiety (cf. Fig. 3b and c).

The analyses on CT (Table 5) revealed that social anxietywas related
to cortical thickening of the left rostral ACC, the right inferior parietal
cortex, the left and right supramarginal gyrus, the left temporal pole,
and the left transverse temporal gyrus; furthermore, there were associ-
ations between social anxiety and cortical thinning of the right rostral
middle frontal gyrus, the leftmedial orbitofrontal gyrus, the right rostral
ACC, the bilateral superior temporal gyrus, and the left fusiform gyrus
(Fig. 3b). To facilitate the discussion, we summarized these findings to-
gether with the results of previous studies on the association between
social anxiety and CT [54,55,59] in Table 7. This summary shows the di-
vergence of the results with respect to the relation between social anx-
iety and CT. That is, our results showing decreases in CT in frontal ROIs
coincide with those of Syal et al. (2012) [55] and Zhao et al. (2017)
[59], while Brühl and colleagues (2014) [54] reported increased CT in
frontal areas. The increases in CT in the left rostral ACC and several pari-
etal regions found in the present study are in line with the results
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described by Brühl et al. (2014) [54] and Zhao et al. (2017) [59], but it
should be noted that Syal et al. (2012) [55] outlined decreased CT in pa-
rietal regions; furthermore, the cortical thinning of the right rostral ACC
of the present work has not been described previously. In addition, we
found both increases as well as decreases in CT in the temporal ROIs;
the increase in CT of the temporal pole corresponded to the results of
Brühl et al. (2014) [54] and Zhao et al. (2017) [59] (but note that Syal
et al. [55] reported a decrease in CT in this area), while the decreases
in CT (superior temporal gyrus and fusiform gyrus) were in line with
the data of Syal and colleagues (2012) [55] and with the results of a
voxel-based morphometry study involving 68 anxiety patients without
comorbidity [182]. Furthermore, it should be mentioned that we could
not replicate previous findings on SAD-related changes in CT in frontal
areas like the superior frontal gyrus, the caudal middle frontal cortex,
the lateral orbitofrontal gyrus, and the precentral gyrus, nor did we
found changes in CT in the caudal ACC, the insula, the superior parietal
gyrus, the precuneus, the postcentral gyrus, and the inferior temporal
gyrus. Taken together, the inconsistency of the results, as well as the
small effect sizes [54] and the fact that p-values often don't survive com-
parison for multiple comparisons (this study and [54,55]) indicate that
studies with large sample sizes and meta-analyses such as those per-
formed by the Enhancing NeuroImaging Genetics through Meta-
Analysis (ENIGMA) Consortium [183–185] are needed to increase the
reproducibility and validity of results of studies on the relation between
social anxiety and cortical thickness [186]. The results of the present
study could serve as a starting point for such future studies.

To the best of our knowledge, this study was the first to explore the
relationship between social anxiety and CSA, although Steiger and col-
leagues investigated changes in cortical volume, which is the product
of CT and CSA, in a treatment study on SAD-patients [63]. Results
showed decreases in CSA in the right caudal ACC and right fusiform
gyrus, as well as an increase in CSA in the right precuneus (Table 6
and Fig. 3c).

4.3. Heritability of GM characteristics

Weused a newly developedmodel to estimate the heritability of the
GM brain characteristics, which is, to the best of our knowledge, the
only available analysis model taking the specific ascertainment process
of the present study and the familial relationships between the partici-
pants into account [151]. As expected based on the results of previous
studies [81,84–86,88,91,98], the majority of the GM measures of inter-
est were (at least) moderately heritable (Fig. 4; Tables 4, 5, and 6). It
should be noted that we could not replicate the significant heritability
estimates of someof theGMmeasures as reported in otherwork, but es-
timates of heritability are often highly variable across studies [98] and
across brain regions [86]; we refer to the recent work of Patel and col-
leagues reporting on the effects of different estimation approaches on
heritability estimates [187]. Furthermore, these divergent results
could also be due to the relatively small sample size and specific data
structure of the present study, in which a limited number of families
(n = 8) was included, with a broad range in the size of the families
(range in number of participating family members per family 5–28).

4.4. Limitations and suggestions for future studies

The present study is unique as it is the first neuroimaging family-
study on SAD involving two generations, enabling the investigation of
the potential of structural GM characteristics as candidate
endophenotypes of SAD. Several limitations of the present study should
be mentioned. First of all, the sample size of the MRI sample of the
LFLSAD was relatively small, which was partly caused by the loss of
data points due to technical reasons and as a result of thorough quality
control. Secondly, as thiswas a cross-sectional study, the trait stability of
the GM characteristics (endophenotype criterion 2) could not be inves-
tigated. Third, we should mention the issue of psychiatric comorbidity,
which was present in the LFLSAD sample as could be expected based
on the comorbidity associated with SAD [21–23,41]. We performed
two sensitivity analyses to address this issue; in thefirst analysis,we ex-
cluded participants with past and/or present (comorbid) psychopathol-
ogy other than SAD, in the second we added the level of depressive
symptoms as a covariate. The results of these sensitivity analyses were
in line with those of the main analyses, but these analyses were limited
by a small sample size (sensitivity analysis 1) and the fact that we only
controlled for the level of depressive symptoms (sensitivity analysis 2),
and not for other comorbidity. Furthermore, as the regression models
tested were already complex and computationally demanding due to
the family structure of the sample, we could not investigate the poten-
tiallymoderating ormediating effects of factors like trait anxiety, educa-
tion level, IQ, and socioeconomic status [188,189], nor did we examine
the non-linear effects of age on the GM characteristics [107]. As techni-
cal advances are constantly being made, future studies will most likely
be able to performmore advanced analyses taking these factors into ac-
count. In addition, as the LFLSAD did not include control families from
the general population, we were not able to assess the second part of
endophenotype criterion 4, namely, whether the levels of the candidate
endophenotypes differed between nonaffected family members and
participants from the general population. Furthermore, as most of the
results presented here did not survive corrections for multiple compar-
isons, future studies, preferably with a longitudinal design and larger
sample sizes, are needed to confirm these findings. In addition, as we
have not yet analysed the genetic data that was acquired in the
LFLSAD [100], we could not link the GM changes to genetic variations.
Moreover, future studies should investigate to which extent the GM al-
terations are specific to social anxiety (cf [59]). Finally, we employed a
ROI approach in this study, as this enabled implementing the complex
family structure of the sample in the analyses. However, as vertex-
based and voxel based morphometry studies have the potential to de-
tectmore subtle alterations in brain structure [174,190,191], we recom-
mend these techniques for future studies when they become available
for family studies with complex (family) designs.

To conclude, the results of this study suggest that several structural
GMalterations are heritable and co-segregatewith social anxietywithin
families genetically enriched for SAD. Thereby, these GM characteristics
are promising candidate endophenotypes of SAD and have the potential
to offer novel insights in the genetic neurobiological vulnerability for
this disabling psychiatric condition. Future replication studies are im-
portant to confirm these preliminary findings.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.08.048.
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