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Abstract

Theoretical models have often modeled protein folding dynamics as diffusion on a low-

dimensional free energy surface, a remarkable simplification. However, the accuracy of such an 

approximation and the number of dimensions required were not clear. For all-atom folding 

simulations of ten small proteins in explicit solvent we show that the folding dynamics can indeed 

be accurately described as diffusion on just a single coordinate, the fraction of native contacts (Q). 

The diffusion models, parametrized reproduce both folding rates, and finer details such as 

transition-path durations and diffusive propagators. The Q-averaged diffusion coefficients decrease 

with chain length, as anticipated from energy landscape theory. Although the Q-diffusion model 

does not capture transition-path durations for the protein NuG2, we show that this can be 

accomplished by designing an improved coordinate Qopt. Overall, onedimensional diffusion on a 

suitable coordinate turns out to be a remarkably faithful model for the dynamics of the proteins 

considered.
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Introduction

Theory and simulations of simplified models have yielded many insights into protein folding 

dynamics. In particular, the energy landscape framework1–3 has proved successful in 

explaining a wide range of experimental observations, starting from the hypothesis that the 

energy landscape of natural protein sequences is “funneled” toward the native structure. 

Examples include the relative folding rates of two-state proteins near their transition 

midpoints,4 prediction of folding mechanism and folding ϕ-values,5 the mechanism of 

protein-protein association,6 coupled folding-binding,7 domain swapping8 and domain-

swapped misfolding9,10 and the effect of a tensile force on protein folding.11,12 Since 

comparison with experimental observations is the true test of any theory, the above examples 

provide compelling support for a funneled folding energy landscape.

Nonetheless, any theoretical model of a process as complex as protein folding requires well-

chosen simplifying assumptions. There are two such key simplifications in energy landscape 

theory.13,14 The first is that the folding energy landscapes of naturally occurring proteins are 

designed so that the influence of non-native interactions is minimized (known as the 

“principle of minimal frustration”13). This leads to free energy landscapes which are 

“funneled” toward the native state,15 so that lower energy is associated with increasing 

similarity to the native state. In order to describe folding dynamics on the funneled energy 

landscape, a second simplification was also introduced, namely that motion along this 

coordinate was Markovian, and could be described as diffusion on the corresponding free 

energy surface.14 This formed the basis of a theory for computing diffusion coefficients and 

folding rates based on the statistical properties of the landscape14 (although non-Markovian 

effects have also been considered16).

The availability of detailed all-atom simulations of protein folding at equilibrium has now 

made it possible to test the assumptions of energy landscape theory directly. We have 

recently tested the first using simulations of a set of ten small proteins studied by Shaw and 

co-workers,17–19 for which folding was barrier-limited. We found that for all the naturally 

occurring proteins in the data set, folding mechanism was defined by native contacts, with 
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little role for non-native interactions,20 consistent with the results of earlier lattice-model 

studies.21 The single exception was for a designed protein α3D, in which non-native salt 

bridges introduced some frustration on folding transition paths, recently also probed 

experimentally.22 The above assumption allows for a simplified description of protein 

folding energy landscapes, and supports the class of computational models in which only 

native interactions are favourable5,23–26 (Gō models 27). It also helps to explain why reaction 

coordinates measuring similarity to the native state, such as the fraction of native contacts, 

Q,28 are able to capture folding barriers and mechanisms.

The second simplification, namely that diffusion in a low-dimensional space can capture 

protein folding dynamics, has relevance beyond its role in theoretical protein folding 

models. This is because diffusive models for reaction dynamics such as Kramers theory29 

are frequently used to describe folding dynamics and rates in experiments.30–34 The 

assumption of diffusive dynamics has been tested against both lattice models35,36 and off-

lattice Gō models, 37 showing that for these simplified systems, the diffusive picture holds 

rather well. However, all-atom models including explicit solvent have orders of magnitude 

more degrees of freedom and consequently more complex energy landscapes. Therefore, it is 

important also to test how well the above assumption holds for folding of these more 

realistic models.

Here, we consider the question: how faithfully can the folding dynamics of all-atom 

unbiased MD simulations by Shaw and co-workers17–19 be captured with a one-dimensional 

(1D) diffusion model? We use a Bayesian procedure to determine the 1D free energy surface 

and diffusion coefficients which best capture the local dynamics on this landscape.37–40 We 

find that the folding and unfolding rates of the proteins are very well described by these 

diffusion models. In addition to capturing folding rates, which mainly reflect long-time 

dynamics, we find that we can also reproduce the duration of transition paths, which occur 

over a much shorter time scale. Thus, diffusion on the fraction of native contacts Q appears 

to be a remarkably good model for folding dynamics. Since diffusion in a low dimensional 

space is often used in interpreting physical experiments on folding dynamics,32,34 we have 

also investigated the dependence of the 1D landscape parameters on protein properties. We 

find little correlation of barrier heights with protein size (as perhaps expected). More 

interestingly, the barrier curvatures on Q are almost invariant across the set of proteins 

studied, but diffusion coefficients on Q decrease with increasing chain length, consistent 

with the predictions of landscape theory.

Methods

Diffusion model

The one-dimensional diffusion model was fitted using a previously described Bayesian 

procedure37–40 in which the propagators p(Qj,t + ∆t,Qi,t) from the discretized diffusion 

model were used as a likelihood function for the observed statistics of transitions between 

bins in Q after a lag time t, thus the log-likelihood is given by
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L = p(data | Di , Fi ) = ∏
i, j

p Q j, t + Δt Qi, t
N ji

(1)

where Nji is the number of observations within bin Qj a time ∆t after an observation in bin 

Qi in the simulation. A smoothness prior of the form p({Di}) = Пi exp[−(Di−Di+1)2/(γ2 

min(Di,Di+1)2)] was used. Here, the stiffness parameter γ = 0.02 reflects our expectation that 

adjacent discretized diffusion coefficients Di,Di+1 should be similar. Thus the posterior 

distribution was obtained from Monte Carlo sampling of

p Di , Fi  data  ∝ p( data  Di , Fi )p Di (2)

Further details are given in Ref.38 In Fig. S1, we show the sensitivity of the resulting 

positiondependent diffusivity profile D(Q) to the the value of γ. The final value selected was 

chosen to be the smallest which would not appreciably decrease the likelihood of the 

diffusion model; thus we aim to select from the possible models with similar likelihood that 

which has the smoothest D(Q) profile.

Errors on diffusion coefficients and free energies were estimated by block analysis.41

Brownian Dynamics

We use the Ermak-McCammon algorithm42 to simulate Brownian dynamics in one 

dimension. For position-dependent diffusion coefficients D(Q) and free energies βF(Q), the 

position update after time step ∆t can be written as

Qt + Δt = Qt +
dD Qt

dQ Δt − β
dF Qt

dQ D Qt Δt + R(t) (3)

where Qt and Qt+∆t are the positions at times t and t + ∆t, and R(t) is a random displacement 

chosen from a Gaussian distribution with zero mean and variance 2D∆t. A time step of 0.1 

ns was used.

Reaction Coordinate Optimization

We have shown in a previous publication43 that, p(TP|Q), which is the probability of being 

on a transition path given that the system is at Q, should have a single sharp peak, for a two-

state reaction on a good reaction coordinate Q. Using Bayes theorem, p(TP|Q) can be written 

as

p(TP Q) = p(Q TP)p(TP)
peq(Q) (4)
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where peq(Q) and p(Q|TP) are the probability densities on Q of the equilibrium ensemble 

and the transition path ensemble, respectively. Both can be calculated from histogramming 

the MD trajectories. To improve the reaction coordinate Q, we optimize the maximum of a 

Gaussian fit to p(TP|Q) to ensure that all configurations on the transition paths are 

condensed into a single sharp peak in p(TP|Q). We use a Monte Carlo optimization 

procedure in which we modify the relative weights wi in Q (Eq. 8) in three different ways: 

randomly changing the weight wi, swapping the weights wi and wj, and reversing the sign of 

the weight wi. We estimate the projections of the trajectories on a trial coordinate Q’ and 

accept only moves that increase the maximum of the Gaussian fit to p(TP|Q’). We apply this 

procedure iteratively to obtain an optimal wopt, which gives a sharply peaked distribution of 

P(TP|Qopt).

Landscape parameters

We define the Q-averaged diffusion coefficient Dc as:

Dc
−1 =

∫
Qu

Q f
exp[βF(Q)]D(Q)−1dQ

∫
Qu

Q f
exp[βF(Q)]dQ

(5)

where the integral is performed between the unfolded and folded minima on Q, Qu and Qf.

Barrier heights for folding and unfolding are determined from the difference between the 

maximum free energy on the barrier and the minimum in each basin. Stabilities were 

obtained from

ΔGf−u = − kBTln ∫
‡

1
exp[ − F(Q)]dQ/∫

0

‡
exp[ − F(Q)]dQ (6)

Curvatures of stables states u,f and barriers ‡ are determined from:

ωs
−1 ≈ 1

2π∫S
exp λ F Qs − F(Q) dQ (7)

where s ∈ {u,f,‡}, Qs is the location of s on Q, λ = 1 for u and f, and λ = −1 for ‡.

Results and Discussion

We consider as a reaction coordinate the fraction of native contacts28 Q(x) formed in a given 

configuration x (Eq. 8). This coordinate has already been shown to be a good folding 

coordinate in several studies,37,43,44 including for the set of all-atom protein simulations 

considered here,20 in the sense that it is able to discriminate folding transition states from 
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other non-reactive states.45 In supporting Fig. S2, we show a Bayesian criterion for reaction 

coordinate quality for each protein. In all cases but one (CLN025), Q is a good coordinate, 

in the sense the the probability of being on a transition path for a give Q-value, p(TP|Q) has 

a single peak with a maximum near the theoretical value of 0.5.45 However, there is a 

substantial statistical error on these estimates, due to the limited number of transition paths 

sampled. We project the all-atom trajectories onto Q, using a common definition of Q for all 

proteins, as described in our earlier work.20 Our aim is to describe the dynamics using a 

Smoluchowski diffusion equation ∂tp(Q,t) = ∂Q{D(Q)exp(−βF(Q))∂Q[exp(βF(Q))p(Q,t)]}, 

parametrized by positiondependent free-energies F(Q) and diffusion coefficients D(Q). The 

position-dependence of D is a consequence of the projection of the high-dimensional folding 

dynamics onto a single coordinate, Q. We use a Bayesian procedure to determine the one-

dimensional free energies F(Q) and diffusion coefficients D(Q) which best describe the 

observed simulation data for ten of the proteins studied by Shaw and co-workers17,19 (full 

details of the proteins and simulations used are given in Table S1). The optimal free energies 

and diffusion coefficients are shown in Fig. 1.

We have selected the ten proteins with a barrier to folding in the simulations17–19 in order to 

facilitate comparison between MD and diffusion models for folding and unfolding rates and 

transition-path durations, the key observable quantities characterizing folding dynamics. An 

appreciable position-dependence of the diffusion coefficients D(Q) is seen, although the 

coefficient of variation (defined as σ/μ, where the mean μ and standard deviation σ 
characterize the distribution of D) is quite modest, in the range of 0.15–0.5 for all proteins. 

Thus, the position-dependence of D is not expected to have a large influence on the folding 

dynamics, and should be reasonably approximated by a constant D (see further below).

Diffusion models capture folding dynamics

The parameters presented in Fig. 1 represent the optimal diffusive models for each protein – 

but how well does each model reproduce dynamics of folding? To answer this question we 

have performed Brownian dynamics (BD) simulations42 using the fitted parameters (Eq. 3). 

Examples of the trajectories Q(t) obtained from MD and BD are shown in Fig. 2A and 2B 

for the GTT WW domain. Superficially, the trajectories have rather similar characteristics, 

and identical free energy surfaces F(Q) as expected. However, there are some small 

differences, for example fast fluctuations in the unfolded state in the MD simulations which 

are not present in the BD trajectories, discussed further below. To make a quantitative 

comparison, we compute three statistics for each protein: the mean first passage time for 

folding τf (average residence time in the unfolded state), the mean first passage time for 

unfolding τu, as well as the mean transition path duration, τTP, i.e. the time taken to cross 

between unfolded and folded (or the reverse). The folding and unfolding times computed 

from BD simulations are in excellent agreement with those from MD (Fig. 2C). This is an 

important requirement for the diffusion model to be useful, but not necessarily a strong 

validation: the model may capture the slow dynamics correctly by virtue of being fitted to 

pairs of observations separated by long lag times, but describe short-time fluctuations 

poorly. The transition-path times τTP provide a more stringent test, since most of them are 

not much longer than the lag time of 100 ns used to construct the diffusion models. In 

Zheng and Best Page 6

J Phys Chem B. Author manuscript; available in PMC 2018 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



addition, transition paths have a special importance since they reflect the parts of the 

trajectory containing the reaction mechanism.

Remarkably, we find that the diffusion models also capture very well the transition-path 

durations (Fig. 2D), which range from approximately 0.1 to 2 μs, only just longer than the 

lag time used to construct the diffusion model. There is one notable outlier, the NuG2 

protein. This corresponds to an engineered variant of protein G46 with a further three 

mutations,17 which has recently been shown to be a stable two-state folder.47 We show in the 

next section that the reason for this failure is that the vanilla definition of Q is not a 

sufficiently good reaction coordinate for NuG2.

To determine how important it is to use a position-dependent diffusion coefficient, we have 

also computed the rates and transition-path durations using a constant diffusion coefficient 

Dc, derived from the position-dependent diffusion coefficients via Eq. 5 (Insets to Fig. 

2C,D). We find that we obtain almost identical folding rates with the position-dependent and 

constant diffusion coefficients, however this is expected because the diffusion coefficients 

were averaged in a way which optimizes the calculation of rates. A more sensitive test is 

again the reproduction of transition-path durations. In this case, some discrepancies are 

evident, indicating that the use of position-dependent diffusion coefficients can capture 

details of dynamics better than the constant diffusion coefficient which is optimal for 

reproducing folding rates. Although it would be possible to instead define a constant 

diffusion coefficient to fit transition path times, it is clear that it is difficult to reproduce both 

rates and transition-path times without allowing position-dependent diffusivity.

A last check uses the propagators of the diffusion model, p(Q,t|Q0,0) which give the 

probability density on Q, given that the protein was at Q0 a time t earlier. Comparison of the 

diffusive propagators with the estimate constructed directly from observations in the MD 

trajectores provides an even more sensitive and detailed test of the model. In Fig. 3, we 

compare propagators computed from the diffusion model for ubiquitin with those estimated 

from MD. For a number of different origins Q0, we compute the propagators at different lag 

times t, ranging from 1 ns to 1 μs. At all except the very earliest lag time of 1 ns, we find that 

the diffusion model propagators agree remarkably well with the simulations. This is true 

even for a lag of 10 ns, shorter than the 100 ns lag used to fit the diffusion model. The 

disagreement for very short lags is likely due to short-time memory effects not captured by a 

diffusion model (and not relevant to the dynamics at longer times), and explains the 

additional fast fluctuations of Q visible in the unfolded state of the MD, but not in the BD 

trajectory. The accuracy of the diffusive propagators at intermediate times helps to explain 

the quality of the transition-path time predictions.

Finally, we have also compared the Q correlation functions computed analytically from the 

diffusion model48 with those determined directly from the original trajectories (Fig. S3). In 

many cases, the relatively small number of transitions make an accurate estimate of the 

correlation function from the trajectories difficult; however for the proteins which have a 

large number of folding/unfolding transitions (CLN025, Trp Cage TC10b, NLE Villin), 

there is a good agreement between the two, further confirming the quality of the diffusion 

model.
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Optimized reaction coordinate for NuG21

The overestimate of the transition-path time from the diffusion model for the variant of 

protein G, NuG2, (Fig. 2D) might be explained by the quality of vanilla Q as a reaction 

coordinate. For example, if Q did not separate configurations on the barrier from those 

which belong in the stable (folded,unfolded) minima, the barrier in F(Q) would appear lower 

than the true barrier. Then, in order to correctly capture the slow relaxation on Q (i.e. 

folding/unfolding rates), the diffusion coefficient D(Q) is forced to be too low near the 

barrier. However, unlike the folding rates which are exponentially sensitive to the barrier 

height, the transition-path durations depend mainly on the diffusion coefficient and hence 

will be overestimated.49 Although the maximum of the Bayesian criterion for reaction 

coordinate quality, p(TP|Q), for NuG2 in Fig. S1 does not differ appreciably from many of 

the other proteins, there is a large statistical error on the estimate of this quantity. In 

addition, the shape of the function p(TP|Q) is rather lopsided, suggesting the possible 

existence of an off-pathway intermediate in the barrier region.

We set out to test this hypothesis by optimizing the maximum of a Gaussian fit to p(TP|Q), 

which is the probability of being on a transition path given that the system is located at 

position Q, by varying the weights wi of the Nc native contacts in calculating the fraction of 

native contacts

Q(x) = ∑
i = 1

Nc
wi

1

1 + e
β ri(x) − γri

0 (8)

where wi is defined as 1/Nc in the original Q, ri
0 is the native distance of the i-th native 

contact, ri(x) the distance of the i-th native contact in configuration x, β = 50 nm−1 and γ = 

1.8, Native contacts were defined between all heavy atom pairs within 4.5 Å in the native 

structure.

The optimization procedure is described in detail in Ref.,43 and is briefly summarized in the 

Methods. We found that by allowing also negative weights wi, we are able to improve Q 
significantly. This is immediately apparent from the increase in the free-energy barrier in 

F(Qopt) relative to that for the original F(Q), by ∼ 1 kBT, shown in the 1D free energy 

surface of Fig. 4A. The optimization also improves the quality of the reaction coordinate 

assessed by the maximum of p(TP|Q) (4B). The maximum of p(TP|Q) in fact slightly 

exceeds the theoretical maximum of 0.5 for Qopt, which is most likely related to the limited 

statistics of transition paths in these simulations. As hoped, the diffusion model determined 

for the optimized coordinate results in much improved agreement of the transition path time 

from Brownian dynamics with MD, while retaining the good match with the folding rates 

(orange-filled symbols in Fig. 2C,D).

Some insight into the origin of the improvement can be obtained from the 2D projection of 

the free energy onto the original and optimized coordinate (Fig. 4C). Both coordinates 

separate the main folded and unfolded basins fairly well, but the dividing surface defined by 

the top of the free energy barrier for the original Q (shown by the blue line of Fig. 4C) 
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passes through the boundary of the unfolded minimum and one intermediate close to the 

folded minimum, and therefore underestimates the barrier height. In contrast, the new 

division (vertical red line) is able to separate the folded and unfolded minima even on the top 

of the barrier, which should reduce apparent recrossings.

We note that although Q should in general be a good coordinate for folding on a funneled 

landscape, the folding of NuG2 may exhibit more frustration than the other proteins, thus 

requiring the coordinate optimization. This frustration is also suggested by the presence of 

both positive and negative contact weights in the optimal coordinate, as shown in Fig. S4. 

One possible reason for the frustration is simply force field deficiencies, which have been 

widely discussed.50–52 Specifically, an imperfect force field may lead to intermediates being 

over-stabilized, resulting in a more rugged energy landscape. Alternatively, the frustration 

may be related to the sequence itself, which has undergone two redesign steps from the 

original evolved sequence.17,46 Nevertheless, an optimized Q is still able to describe the 

dynamics.

Dependence of landscape parameters on protein size

The fact that a 1D diffusion model is a good first approximation for folding dynamics lends 

support to analytical models for folding which parametrize a one-dimensional description.
14,53,54 An important consideration for such models is whether there is any systematic 

dependence of the landscape parameters (free energy surface and diffusion coefficients) on 

the protein under consideration.14,53,54 This dependence is also relevant to the development 

of one-dimensional models for describing experimental observations.55,56 We characterize 

the free energy landscape using the parameters of Kramers theory, namely the barrier heights 

for folding and unfolding, ∆Gu and ∆Gf, and the curvatures of the folded and unfolded states 

and of the barrier, ωf, ωu and ω‡, respectively. To simplify the comparison of the diffusion 

coefficiencts D(Q), given that position-dependence is slightly different for each protein, we 

can consider a position-averaged diffusion coefficient Dc (Eq. 5), defined so that it would 

result in the same rate as the position-dependent diffusion coefficients if used in Kramers 

rate theory.29 A full list of landscape parameters is given in Table S1.

Since we have a limited number of proteins to consider, we restrict attention to correlations 

with protein size, illustrated in Fig. 5. We find that most properties are not significantly 

correlated with chain length L, by considering the Spearman correlation coefficients, Table 

S2. At a 5 % significance level, the only parameters which are correlated with L are the 

position of the unfolded state minimum on Q, Qu (Fig. 5A), and the average diffusion 

coefficient, Dc (Fig. 5D). The lack of correlation in most cases is not surprising, for example 

the stability and barrier height (Fig. 5B) are expected to be only weakly correlated to protein 

size54,57 and we are considering a small data set (Figure 5B). The barrier curvature ω‡ and 

well curvatures ωu, ωf are also approximately independent of protein size (Fig. 5C). The 

relation between the average amount of native structure in the unfolded state (as given by 

Qu) and L is interesting – unlike the position of the barrier height Q‡ and folded state, Qf, 

which have no systematic dependence on L, Qu increases approximately linearly with L. 

This may be because a larger protein can tolerate more native structure in the unfolded state 

and still have a cooperative folding transition. However, it is also possible that this is related 
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to force field deficiencies which result in too low cooperativity of folding, leading to 

excessive structure formation in the unfolded state.47,52

The most interesting result is that, consistent with the expectations of landscape theory,14 we 

find a clear decrease of average diffusion coefficient Dc with chain length (Fig. 5D). A fit to 

a power law Dc = ALα yields A = 240 (170) μs−1 and α = −2.1 (0.5). This dependence on L 
is qualitatively consistent with, although slightly stronger than, the L−1 dependence 

previously employed in 1D folding models53 and predictions of the folding speed limit,58 

and suggested by energy landscape theory,14 and theories of polymer collapse.59 While the 

magnitude of α estimated here is larger, our estimate has a large statistical uncertainty and is 

based on a limited number of proteins and range of protein lengths.

These results have significant implications for the interpretation of experimental data 

because, although 1D models are often used, it is not clear how they should be parametrized 

and some assumptions are usually required to reduce the number of free parameters. For 

example, a common assumption in interpreting experimental data, is that the curvatures in 

the unfolded state and at the barrier top are the same.34,60 Remarkably, the similarity of 

these curvatures in our data supports this assumption. If the prefactor k0 for the folding rate 

is to be estimated directly via Kramers theory29 (i.e. k0 = Dcωuω‡/2πkBT), the curvatures of 

the unfolded state and the transition state, and the diffusion coefficient are all required. Our 

data suggest some empirical values for these parameters, if using Q as a reaction coordinate. 

With the exception of the smallest peptide, the tenresidue CLN025, the curvatures of the 

unfolded state and barrier are very similar, with averages (standard deviations), excluding 

CLN025, of (ωu) = 11.7 (3.4) (kBT)1/2 and (ω‡) = 11.2 (2.8) (kBT)1/2, (the curvatures for the 

folded state are somewhat higher, hωfi = 26.9 (7.7) (kBT)1/2). The diffusion coefficients are 

approximately given by the power law above. Thus a first approximation for the prefactor 

for folding can be made using this common curvature in conjunction with a chain length-

dependent diffusion coefficient. The dominant role for the diffusion coefficients in 

determining the prefactor variations is confirmed by the close correlation between the 

computed prefactors (Table S1) and the diffusion coefficients Dc on Q (Spearman correlation 

coefficient of 0.94).

Nonetheless, Q is clearly not an experimental observable, and it will not in general be true 

that observables are also good reaction coordinates. For pulling experiments, the molecular 

extension can be a good coordinate, once at least a small pulling force is applied.61–64 

However, in the absence of force, such as in single molecule Förster resonance energy 

transfer experiments, a single intramolecular distance will not generally be good, because 

even the folded and unfolded states may be overlapped when projected onto it. Other 

observables, such as tryptophan fluorescence, may also fail (in general) as folding reaction 

coordinates. Nonetheless, it is important to note that even if the observable itself is not a 

good coordinate, it can still be used in a diffusion model provided that averaging of the 

observable Φ at a given value of the folding coordinate Q is fast relative to motion along Q, 

in which case Q parametrizes the mean as Φ(Q). Then, by estimating a given dependence of 

Φ on Q (e.g. from molecular simulations), the experimentally resolved slow dynamics can 

still be modeled as diffusion along Q. This is the motivation for the low dimensional 

diffusion models which have sometimes been used to interpret experimental kinetics.65–67 
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The present simulations suffer from unfolded states which are much too collapsed,47,52 

precluding a meaningful calculation of experimental observables. However, this deficiency 

is currently being addressed via force field improvements,68–70 so that future folding 

trajectories might be used to test the assumption of fast dynamics orthogonal to Q.

Conclusions

Although one-dimensional diffusion had previously been shown to be sufficient to describe 

the dynamics of lattice36 and off-lattice37 models of folding, the complexity of all-atom 

folding suggested that it might require more coordinates.36 We find that only a single folding 

coordinate, the fraction of native contacts Q, captures remarkably accurately the folding 

dynamics of all but one of the proteins considered; for that exception, we find that a small 

reweighting of native contacts to optimize the folding coordinate is sufficient to produce an 

accurate diffusive model. While the force fields used give an imperfect description of the 

unfolded state,47,52,69 this should have less effect on the folding transition paths as they 

approach the native state which is much better captured.

In general the description of folding as diffusion in one or few dimensions could only be 

tested indirectly by experiment, e.g. by comparison of folding rates to predictions made 

from diffusion models. The only way it could conceivably be tested directly is via the use of 

single molecule experiments, if a coordinate which captures the folding dynamics could be 

monitored with sufficient time resolution. Woodside and co-workers have recently reported 

that folding in the presence of an external pulling force can be described as one-dimensional 

diffusion, using the protein extension as a coordinate,71,72 after careful deconvolution of the 

effects of the linkers. This conclusion is consistent with the expectation that molecular 

extension can become a good coordinate in the presence of a pulling force,61–64 despite not 

being evidently so at low force.

In addition to showing that 1D diffusion models can capture the dynamics of folding in all-

atom simulations, we have also attempted to delineate common features of the free energy 

and diffusion parameters for the different proteins. Albeit based on a limited data set, we 

find that the curvatures of the unfolded free energy minimum and the barrier top each vary 

little from protein to protein, and in fact are very similar to each other. The similarity of the 

diffusion coefficients at different Q, and accuracy of folding rates and transition path times 

computed with this approximation, support the assumption of constant D made in 

interpreting single-molecule experiments.34,60 We also find that the diffusion coefficient on 

Q decreases strongly with chain length L, in qualitative agreement with energy landscape 

theory predictions. Combined with the information on barrier curvatures, this should aid in 

the estimation of prefactors for protein folding in experiments, and the development of 

simplified theoretical models for describing protein folding kinetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Free energy surfaces and diffusion coefficients. Discretized free energies F(Q) (black curves) 

and D(Q) (red curves) have been determined using a Bayesian procedure,38,43 with a lag 

time of 100 ns, for each of the ten proteins considered. The length of each protein is given in 

brackets next to its name.
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Figure 2: 
Comparison of MD simulations with diffusive dynamics. A: Brownian dynamics (BD) 

simulations Q(t) using parameters from the 1D diffusion model on Q for the GTT WW 

domain. The first and second halves of the trajectory are shown as lines and points 

respectively; the potential of mean force (PMF) is shown on the right. B: Corresponding 

projection Q(x(t)) of MD trajectories x(t) for GTT WW domain, and PMF on right. C: 

Folding (blue) and unfolding (green) times from MD simulation compared to those 

predicted from Brownian dynamics (BD) using the 1D diffusion model. D: Transition-path 

durations τTP for BD and MD compared. The outlier NuG2 is indicated. Orange-filled 

symbols in (C) and (D) indicate results obtained with the optimized Qopt coordinate for 

NuG2. Insets in (C) and (D) compare results obtained with the original diffusion model 

using position-dependent diffusion coefficients D(Q) and with one using a constant diffusion 

coefficient, Dc defined in Eq. 5.
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Figure 3: 
Diffusive propagators for Ubiquitin. Comparison of propagators p(Q,t|Q0,0) from the 1D 

diffusion model (lines) with those estimated directly from MD statistics (symbols). 

Propagators for lag times of 1 ns, 10 ns, 100 ns and 1 μs are shown in green, black, red and 

blue respectively (a lag of 100 ns was used to parametrize the diffusion model). The initial 

positions Q0 are shown by vertical broken lines in each plot.
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Figure 4: 
Protein G reaction coordinates. A: 1D free energy profiles for the original fraction of native 

contacts Q (blue) and the optimized coordinate Qopt (red). The diffusion coefficient as a 

function of Qopt is shown by a broken line. B: p(TP|Q) for Q (blue) and Qopt (red). C: 2D 

free energy surface as a function of Q, Qopt. Blue and red lines indicate the barrier position 

on 1D free energy profile for Q and Qopt, respectively. Color bar indicates the free energy in 

unit of kBT.

Zheng and Best Page 19

J Phys Chem B. Author manuscript; available in PMC 2018 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Dependence of landscape parameters on protein size. (A) Position of unfolded state, barrier 

and folded state on Q, Qu (black), Q‡ (red) and Qf (blue) respectively. (B) Free energy 

barriers for folding, ∆Gf (black) and unfolding ∆Gu (red). (C) Curvatures of unfolded well 

ωu (black), barrier top ω‡ (red) and folded well ωf (blue). (D) Average diffusion coefficient 

on Q. Lines shown are fits of Qf, Q‡, ωu, ω‡, ωf to constants, a linear fit of Qu and a power 

law fit of Db.
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