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Abstract. Spectral computed tomography (SCT) has advantages in multienergy material decomposition for
material discrimination and quantitative image reconstruction. However, due to the nonideal physical effects
of photon counting detectors, including charge sharing, pulse pileup and K -escape, it is difficult to obtain precise
system models in practical SCT systems. Serious spectral distortion is unavoidable, which introduces error into
the decomposition model and affects material decomposition accuracy. Recently, neural networks demonstrated
great potential in image segmentation, object detection, natural language processing, etc. By adjusting the inter-
connection relationship among internal nodes, it provides a way to mine information from data. Considering the
difficulty in modeling SCT system spectra and the superiority of data-driven characteristics of neural networks,
we proposed a spectral information extraction method for virtual monochromatic attenuation maps using a sim-
ple fully connected neural network without knowing spectral information. In our method, virtual monochromatic
linear attenuation coefficients can be obtained directly through our neural network, which could contribute to
further material recognition. Our method also provides outstanding performance on denoising and artifacts
suppression. It can be furnished for SCT systems with different settings of energy bins or thresholds.
Various substances available can be used for training. The trained neural network has a good generalization
ability according to our results. The testing mean square errors are about 1 × 10−05 cm−2. © 2018 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.1.011006]
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1 Introduction
Machine learning is a systematic study of systems and algo-
rithms based on processing massive data to enhance perfor-
mance or enrich knowledge. The neural network is an
important algorithm in machine learning. It connects multiple
neurons into a network structure and mimics information analy-
sis of biological nerve cells.1,2 Neural networks optimize model
parameters with respect to training data to minimize a task-
based objective function.3 In recent years, the neural network
has become a hot topic in the field of image recognition, arti-
ficial intelligence, etc. It shows excellent performances on vari-
ous tasks, such as hand-written digit classification, face
detection, and image classification.4

Nowadays, the neural network algorithm is gradually applied
to the field of x-ray computed tomography (CT). For example, a
convolutional neural network (CNN, or ConvNet) was designed
to reduce limited angle artifacts.5 Residual CNNs were imple-
mented to recover full-view projections from sparse-view CT.6

A residual U-net was applied to reduce image noise and metal
artifact for better image quality.7

A spectral CT imaging system, based on a photon counting
detector (PCD), provides energy spectrum information.
However, due to the nonuniformity of detector pixels and the
nonideal physical effects of PCD, including charge sharing,
pulse pileup, andK-escape,8 the detected spectrum might be dis-
torted by the nonideal detector response and it is complicated to
construct a detector response function. Hence, it is difficult to

obtain a comprehensive system spectrum model, which consists
of detector response and incident source spectrum. To evaluate
system performance and correct the distortion, researchers have
proposed different methods to model and calibrate the detector
response. Schlomka et al.9 proposed an empirical detector
response model consisting of two Gaussian peaks and a constant
background. Based on the proposed model, they calibrated a
CdTe detector using 25- to 60-keV synchrotron source.
However, synchrotron source might not be commonly available
to ordinary labs. Ding et al.10 used x-ray fluorescence as a cal-
ibration source to determine the response of Si detector. The
model also consists of two Gaussian peaks and a baseline func-
tion. Si detector yields a simpler detector response as there is no
k-edge effect. Li et al.,11 on the other hand, proposed an empiri-
cal model for CZT detector using x-ray fluorescence as source.
Wu et al.12 proposed a hybrid calibration method utilizing
Monte Carlo simulation and experimental results. Geant413

was employed to simulate the spreading and broadcasting of
electron clouds.

Thus, it is a challenge to build an accurate system model for
material decomposition calibration. Some researchers used the
tool of the neural network to decomposed materials. A neural
network could be used for material decomposition by training
images of four different thicknesses of three base materials with
a total of 43 ¼ 64 combinations.14 Zimmerman and Schmidt15

carried out experiments to compare the performance of conven-
tional and neural network-based material decomposition
method. The results demonstrated the experimental feasibility
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of the neural network method. Liao et al.16 explored the feasibil-
ity of neural network in obtaining material decomposition image
using single-energy CTand verified it experimentally with clini-
cal patient data. Zhang et al.17 proposed the Butterfly network to
implement material decomposition in an image domain. They
verified that the Butterfly network yielded excellent perfor-
mance in image quality improvement and noise suppression.

We proposed an empirical material decomposition method
(EMDM) by polynomial fitting before.18 Without knowledge
of spectral information, virtual monochromatic linear attenua-
tion coefficients of substances of interest are obtained directly
through EMDM. Considering the data-driven characteristics of
neural network and the theory that a three-layer neural network
can perform any continuous mapping,3 we proposed a method
for spectral information extraction for spectral CT using a sim-
ple fully connected neural network (FCNN), which does not
require the knowledge of spectral information, either. FCNN
could output virtual monochromatic attenuation (VMA) maps
at arbitrary energies. It is one advantage of our method as virtual
monochromatic spectral images are often used in medical imag-
ing. Moreover, using VMA maps we could easily compute elec-
tron density and atomic number images as well as material
fraction coefficients for material decomposition.

In this task, adequate physical experiments were performed
to verify the effectiveness and robustness of the proposed
method. The results show that the neural network trained by pol-
ychromatic reconstructions of various materials could provide
accurate estimation of virtual monochromatic linear attenuation
coefficients of other materials with good generalization ability.
In our method, the selection of training materials and energy
bins is not limited, i.e., all kinds of matters including k-edge
materials can be used as training materials. The neural network
can simultaneously complete denoising and artifacts suppres-
sion. Moreover, our network is simple and easy to train.

2 Methods

2.1 Basic Neural Network Algorithm

An FCNN is made up of large amounts of elementary neurons,
which is the basic processing unit in a neural network [shown in
Fig. 1(a)]. Each unit takes weighted inputs from all preceding
units and forms a sum with a bias. The processing unit then
passes the linear weighted sum through a nonlinear activation
function. The sigmoid function, the hyperbolic tangent (tanh)
function, and the rectified linear unit (ReLU)19 are commonly

used. A simple basic feed-forward layered structure is shown
in Fig. 1(b). Each processing unit in a layer is fully connected
to all units in the succeeding layer.3 It was proved that an FCNN
with one hidden layer can be constructed to approximate any
polynomial function.20

For the output layer, a cost function is generally defined
according to tasks. To adjust the weights, the neural network
is normally trained by the back propagation algorithm.1

Additional techniques such as batch normalization21 can be
applied to improve the network training.

2.2 Empirical Material Decomposition Method by
Polynomial Fitting

The main idea of EMDM proposed before is to approximate
the polynomial combinations of polychromatic CT reconstruc-
tions to a desired virtual monochromatic linear attenuation
coefficient.18 We successfully conducted experiments on dual-
energy imaging to validate the method. Two sets of polynomial
weights were obtained by fitting linear attenuation coefficients
at two virtual monochromatic energies. The fitting function
could be briefly written as

EQ-TARGET;temp:intralink-;e001;326;513

�
c1
c2

�
· ½μm

Lμn
H� ¼

�
μðE1Þ
μðE2Þ

�
; (1)

where c1 and c2 are the vectors formed by polynomial weights.
μL and μH are the polychromatic CT reconstructions in low- and
high-energy bin, respectively. Actually, the polynomial combi-
nation μm

Lμn
H is the reconstruction of pm

Lp
n
H, where pL and pH

are the polychromatic CT raw data in low- and high-energy bin,
respectively. The polynomial order is compositely provided by
m and n. μðE1Þ and μðE2Þ represent the linear attenuation
coefficients at virtual monochromatic energies E1 and E2,
respectively.

In the study, we found that below the fourth order, the higher
the polynomial order was, the better the fitting results were. The
relationship between fitting results and polynomial orders was
compared by mean squared errors (MSEs) in Fig. 2:

Fig. 1 (a) An elementary neuron, the basic processing unit, takes
weighted inputs (w) from all preceding units and forms a sum with
a bias (b) and (b) a simplified diagram of an FCNN.

Fig. 2 The polynomial fitting results become better as the order of
polynomial combination increases, which are illustrated by their
MSEs. Two solutions, 25% C6H12O6 and 25% NaCl, were two
experimental base materials for calibration. In legend, atVME1 and
atVME2 are short for “at virtual monochromatic energies E1 and
E2,” respectively.
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EQ-TARGET;temp:intralink-;e002;63;752 MSE ¼ 1
N

P ½μ̂ðEiÞ − μðEiÞ�2; i ¼ 1;2; (2)

where μ̂ðEiÞ is the polynomial fitting results and N is the num-
ber of pixels of a certain material.

2.3 Virtual Monochromatic Attenuation Map for
Spectral Computed Tomography Using Fully
Connected Neural Network

For material discrimination or medical applications, VMA maps
at different energies are often of interest for optimal contrast of
materials. Therefore, we aim to obtain VMA maps of scanned
objects from polychromatic CT reconstructions in our task. That
means, polychromatic CT reconstructions are inputs of our net-
work and VMA maps are to be obtained. Data from known
materials are used for training. A whole detailed flowchart of
our method is shown in Fig. 3.

In a PCD-based spectral CT system, a set of polychromatic
raw data pEi

is collected by setting a series of energy bins Ei for
the detector, where i ¼ 1; 2; : : : ; NE are indices of the energy
bin and NE is the total number of energy bins. We denote
the line integral in x-ray imaging by operator Ofg. The poly-
chromatic CT reconstructions for each energy bin are
μEi

¼ O−1fpEi
g, which is a vector of image size and its element

is denoted by μEi
ðm; nÞ with ðm; nÞ representing the pixel posi-

tion. We use Ẽ to denote the virtual monochromatic energy of
interest and μẼ ¼ ½μẼðm; nÞ� the corresponding VMA map. The
ground truth μẼ can be looked up from National Institute of
Standards and Technology (NIST).22

Ideally, the relationship between μEi
ðm; nÞ; i ¼ 1; 2; : : : ; NE

and μẼðm; nÞ is pixel-wise independent. In this case, targeted
μẼðm; nÞ is only a function of μEi

ðm; nÞ. Considering the charge
sharing effect of PCD and the spatial correlation resulted from
CT reconstructions, μEi

ðm; nÞ could be influenced by its neigh-
boring pixels. Hence, we use an image patch Pc

Ei
ðm; nÞ centered

at ðm; nÞ with a neighborhood of c × c pixels as the network
input instead of μEi

ðm; nÞ for a single pixel. The problem
then becomes estimation of a scalar output from a vector
input. A training sample should be a pair composed of an
input of a c × c × NE-dimensional vector and a target of

ground-truth value. In reality, multiple VMA maps could be
of one’s interest. Therefore, μẼðm; nÞ at multiple ~Es will be
the interested outputs. Consequently, we can set a vector to
be the output of the network.

Because of intensive parameters and computations in FCNN,
it is important to limit the dimension of the network. Using
patches instead of whole images as input is an efficient way
to limit the scale of our network. This also helps the convergence
and stableness of the training.

Pei et al.20 made a point that a 70-neuron hidden-layer neural
network architecture could demonstrate the idea of conducting
two-variable polynomial fitting up to third power. Considering
the EMDM performance and the neural network complexity
comprehensively, we constructed a five-layer FCNN with
100-70-70-10-2 neurons in each hidden layer, respectively, in
this work. The last hidden layer gives outputs (i.e., linear attenu-
ation coefficients at two interested virtual monochromatic ener-
gies in our experimental studies). If multiple VMA maps are of
request, the last hidden layer would have multiple neurons
accordingly. We use tanh function

EQ-TARGET;temp:intralink-;e003;326;532

fðxÞ ¼ ex−e−x
exþe−x ; (3)

as the activation function in all hidden layers. MSE is used as the
loss function for the output layer:

EQ-TARGET;temp:intralink-;e004;326;477

MSE ¼ 1
NP

P
ðm;nÞ∈ROIs

½μ̂Ẽðm; nÞ − μẼðm; nÞ�2; (4)

where μ̂Ẽðm; nÞ is the output of the network, and NP is the num-
ber of patches in μEi

as well as the number of pixels within
regions of interest (ROIs). The setting of ROIs is to enforce
data balance, e.g., remove the influence from lots of unimportant
background pixels.

For the whole implementation of spectral information extrac-
tion and multienergy CT reconstruction, training materials or
phantoms are scanned using multiple energy bins first. The
raw data are reconstructed using a normal spatial reconstruction
method. Patches are extracted from resulted polychromatic CT
reconstructions and fed to the network for training. The ground

Fig. 3 A flowchart of using neural network for spectral information extraction and multienergy
CT reconstruction.
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truth of VMA coefficients of training materials is used as target
in the training phase. The deployment of trained network for
actual application is very straightforward. For a practical spec-
tral CT, polychromatic reconstructions are fed into the network
patch-by-patch to obtain the VMA coefficients pixel-by-pixel
corresponding to the patch center. The virtual monochromatic
material attenuation map is aggregated after all patches are
processed.

3 Experiments and Results

3.1 Simulation Study

To validate our method, both numerical simulation and practical
experiments were performed on dual-energy imaging. First, we

conducted simulation experiments. Water (H2O) and four
aqueous solutions, including sodium chloride (NaCl), glucose
(C6H12O6), copper sulfate (CuSO4), and sodium carbonate
(Na2CO3), were simulated. The training and testing concentra-
tions are shown in Table 1. One of the training phantoms and the
test phantom are shown in Fig. 4. We generated a 120 kVp inci-
dent spectrum with 1e06 photons. Two energy bins of PCD were
set to [30, 50] and [50, 70] keV, respectively. In the projection
process, the source-to-isocenter and source-to-detector distances
were set to 45 and 90 cm, respectively. In addition, the real PCD
response23 was used in the simulation. A Gaussian noise with a
variance of 5 × 10−6 was added in the simulated projection raw
data, so that the polychromatic reconstructions would have
almost same noise as practical ones. A filtered back projection
algorithm with Ram–Lak filter24 was used for polychromatic
reconstructions. We tested the performance of our network
on the estimation of VMA maps at three virtual monochromatic
energies (40, 48, and 60 keV) for demonstration.

Patches with size of 5 × 5 were used in this experiment. That
is to say, a training sample would be a 50-D vector (i.e.,
5 × 5 × 2) and corresponding target is a two-dimensional vector.
In total, about 36,000 samples were constructed as the training
dataset. About 80% of samples were used for training and the
other 20% for validation. To balance solution-data and air-data
in training, only a few patches of air were randomly taken into
training process considering their high repeatability, e.g., the
patches of air equaled to the mean patches of all solutions.
The optimizer was simple stochastic gradient descent and learn-
ing rate in this training was 0.03.

All of the training process was running under Mathworks®

MATLAB 2017b on a PC with an Intel I7-3770 3.50 GHz CPU
and a NVIDIA GeForce GTX TITAN GPU if needed. Both
MATLAB Neural Network Toolbox and MatConvNet
MATLAB Toolbox25 could be used for training. It only costed
less than one second for an epoch when using MATLAB Neural
Network Toolbox with GPU acceleration.

In this task, after 4957 epochs, the resulting MSE of training
was 1.32 × 10−05 cm−2, which was stopped by 100 validation
checks. (100 validation check means validation performance
has increased >100 times since the last time it decreased.
This is from the definition of MATLAB.) The training of this
network converges well. The resulted VMA coefficients of
testing phantom at three monochromatic energies (shown in
Fig. 5) are accurate, which are evaluated by mean relative
error (MRE, %)

EQ-TARGET;temp:intralink-;e005;326;258 MRE ¼ jmeanðμ̂ẼÞ−μẼj
μẼ

(5)

Table 1 Four solutions used for simulation. The concentrations are
all mass concentrations.

Solution
Concentration
for training (%)

Concentration
for testing (%)

NaCl 5, 10, 15, 20, 25 12

C6H12O6 5, 10, 15, 20, 25 17

CuSO4 2, 4, 6, 8, 10 3

Na2CO3 2, 4, 6, 8, 10 7

Fig. 4 Phantoms used for simulation, i.e., VMA maps at 40 keV. The
grid of the images is 256 × 256. (a) One of the training phantoms: ①
H2O, ② 10% NaCl, ③ 20% NaCl, ④ 25% NaCl, ⑤ 15% NaCl, and ⑥ 5%
NaCl. The display window is ½0; 0.49� cm−1. Training phantoms are all
made up by circles. (b) The testing phantom: ① 17% C6H12O6, ② 7%
Na2CO3, ③ 3% CuSO4, and ④ 12% NaCl. The display window is
½0; 0.37� cm−1.

Fig. 5 The VMA maps at (a) 40, (b) 48, and (c) 60 keV of testing phantom predicted by FCNN. The
display window is ½0;0.39� cm−1.
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and MSE of the local regions for all solutions (listed in Table 2).
It shows good generalization ability of the trained FCNN.

3.2 Practical Experiments

3.2.1 Experiments setup

We also verified our method and FCNN on practical experi-
ments, using both dual-energy imaging and k-edge imaging.
The experiments were conducted on a laboratory spectral CT

system with an XC-Flite X1 PCD with 750-μm-thick CdTe
crystal. The PCD consists of 1536 × 128 pixels with a pixel
size of 100 μm × 100 μm. The x-ray generator was set to
80 kVp and 1 mA. According to the equivalent-incident-photons
strategy of setting energy bins, three empirical energy bins of
PCD ([25.3, 32.5], [32.5, 46.9], and [46.9; ∞) keV) were set
for this study. For imaging scan, the source-to-isocenter distance
was set to 48.5 cm and the source-to-detector distance was
74.7 cm. We built phantoms of water (H2O) and seven different
aqueous solutions for training our neural network, including

Table 2 MRE and MSE results of testing phantom by FCNN in simulation.

Solution

VMA map at 40 keV VMA map at 48 keV VMA map at 60 keV

MRE (%) MSE (cm−2) MRE (%) MSE (cm−2) MRE (%) MSE (cm−2)

17% C6H12O6 0.09 1.30 × 10−5 0.30 1.04 × 10−5 0.73 1.04 × 10−5

7% Na2CO3 0.16 1.03 × 10−5 0.05 5.89 × 10−6 0.02 4.88 × 10−6

12% NaCl 0.27 1.49 × 10−5 0.01 5.71 × 10−6 0.48 3.38 × 10−6

3% CuSO4 0.33 1.72 × 10−5 0.07 5.89 × 10−6 0.34 3.21 × 10−6

Fig. 6 The attenuation distribution map of all solutions used in training in dual-energy imaging. The linear
attenuation coefficient at 34 keV (on x -axis) and at 43 keV (on y -axis) of a certain solution describe a “*” in
the distribution map.
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sodium chloride (NaCl), ethyl alcohol (CH3CH2OH), glucose
(C6H12O6), copper sulfate (CuSO4), calcium chloride
(CaCl2), sodium acetate (CH3COONa), and sodium carbonate
(Na2CO3) with several unsaturated concentrations each (shown
in Fig. 6). For k-edge imaging, sodium iodide (NaI) was addi-
tionally used for training as well. The trained network was tested
on scanning some other unsaturated concentrations of these sol-
utions. The concentrations used for training and testing are
shown in Table 3.

3.2.2 Dual-energy imaging

For dual-energy CT imaging, we used polychromatic raw data of
two energy bins ([25.3, 32.5] and [32.5, 46.9] keV) and set two
virtual monochromatic energies of interest for demonstration,
Ẽ1 ¼ 34 keV and Ẽ2 ¼ 43 keV. Training phantoms were
made up of all solutions in Table 3 except NaI. Each solution
was contained in a 14-mm diameter test tube and each phantom
consisted of several test tubes. FCNN training was conducted in
the same way as in the simulation. The resulting MSE over the
whole training dataset was 3.39 × 10−05 cm−2.

For generalization ability, we took two of testing phantoms
for examples to illustrate (shown in Fig. 7). Testing phantom I

Table 3 The solutions used in practical experiments. All solutions
except NaI were used in dual-energy imaging. All solutions were
used in k -edge imaging. All concentrations are mass concentrations
except that concentration of CH3CH2OH is volume concentration.
(Due to space limitations, only results of testing concentrations listed
in the table would be shown below.)

Solution
Concentration
for training (%)

Concentration
for testing (%)

NaCl 5, 10, 15, 20, 25 7, 12, 19

C6H12O6 5, 10, 15, 20, 25 17, 21

CH3COONa 5, 10, 15, 20, 25 17

CuSO4 2, 4, 6, 8, 10 3, 7, 9

CaCl2 2, 4, 6, 8, 10 7

Na2CO3 2, 4, 6, 8, 10 7

CH3CH2OH 10, 20, 30, 40, 50,
60, 70, 80, 90, 100

22, 47

NaI 2, 4, 6, 8, 10 3

Fig. 7 The FCNN outputs of testing phantom I and testing phantom II, compared with results of EMDM.
Testing phantom I consists of ① 17% CH3COONa, ② 7% NaCl, ③ 7% CaCl2, ④ 19% NaCl, ⑤ 7% CuSO4,
⑥ 7% Na2CO3 and ⑦ H2O. Testing phantom II consists of ① 17% C6H12O6, ② 7% CaCl2, ③ 9% CuSO4,
④ 12% NaCl, ⑤ 21% C6H12O6, ⑥ 22% CH3CH2OH, and ⑦ 47% CH3CH2OH. The dual-energy CT images
(450 × 450, the same below) are reconstructed in low energy bin [25.3 32.5] keV and high energy bin
[32.5 46.9] keV. Due to the nonuniformity of PCD, the CT images were severely influenced by ring arti-
facts. Target images are ground truth of linear attenuation coefficients obtained from NIST. The FCNN
outputs VMA maps at Ẽ1 ¼ 34 keV and Ẽ2 ¼ 43 keV. The difference between FCNN VMA maps and
target images can be seen clearly. Additionally, we compared the VMA maps with ones from EMDM by
polynomial fitting. The difference between two methods can be observed as well. The profiles of red line
show that FCNN could reduce noises evidently. In both EMDM and FCNN methods, pixels of tube walls
and out of FOV are not taken into consideration. The display window of differences between FCNN out-
puts and target images is ½−0.07; 0.08� and of differences between FCNN outputs and EMDM fitting
results is ½−0.27; 0.20�. Others all are [0, 0.70]. The units of display windows are all cm−1.
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was composed of ① 17% CH3COONa, ② 7% NaCl, ③ 7%
CaCl2, ④ 19% NaCl, ⑤ 7% CuSO4, ⑥ 7% Na2CO3, and ⑦ H2O.
Testing Phantom II was composed of ① 17% C6H12O6, ② 7%
CaCl2, ③ 9% CuSO4, ④ 12% NaCl, ⑤ 21% C6H12O6, ⑥ 22%
CH3CH2OH, and ⑦ 47% CH3CH2OH. Figure 7 shows that
compared with EMDM, VMA maps predicted by FCNN
have accurate results of linear attenuation coefficients. It
shows FCNN outputs have great performance on image denois-
ing and artifacts suppression, including beam-hardening and
ring artifacts, as well. Among all testing solutions, solution ⑦

47% CH3CH2OH at the center of testing phantom II has the
largest deviation. It is because of the severe ring artifacts
being in the center of FOV and 47% CH3CH2OH not being
trained by FCNN. However, solution ⑦ H2O at the center of
testing phantom I has small deviation. It is owing to that
H2O, especially in the center of FOV with severe ring artifacts,
has been trained by FCNN.

We also compared the results from FCNN with results from
EMDM through evaluating performance by MRE and MSE of
each regional solution. Figure 8 shows that FCNN performs bet-
ter than EMDM.

Additionally, a complicated phantom with richer edges and
details was used to test the spatial resolution of our method.
From Fig. 9, we could tell that spatial information is well pre-
served. However, the ring artifacts remain obviously, but much

Fig. 8 Comparison of MREs and MSEs between VMAmaps obtained from FCNN and EMDM. Among all
regional testing solutions, both MRE and MSE of FCNN are better than those of EMDM, except 47%
CH3CH2OH in testing phantom II. In legend, “atVME1” and “atVME2” are short for “at virtual monochro-
matic energies E1 and E2,” respectively.

Fig. 9 Validation on a phantom of complicated shapes. The phantom
was composed of solutions of ① 14% NaCl and ② 17% C6H12O6. The
display windows for polychromatic reconstructions and VMA maps
are ½−0.36;0.77� and ½−0.03;0.56� cm−1, respectively.
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better than original reconstructions. The MRE and MSE of each
regional solution are shown in Table 4.

3.2.3 K-edge imaging

For k-edge CT imaging, we used polychromatic raw data of
three energy bins ([25.3, 32.5], [32.5, 46.9] and [46.9;∞)

keV) and set three virtual monochromatic energies of
interest for demonstration, Ẽ1 ¼ 32 keV, Ẽ2 ¼ 34 keV, and
Ẽ2 ¼ 43 keV. Training phantoms were made up of all solutions
in Table 3. The neurons in the output layer of the FCNN were
extended to 3. The resulting MSE over the whole training data-
set was 1.14 × 10−05 cm−2. The testing phantom for k-edge im-
aging consists of ① 47% CH3CH2OH, ② 21% C6H12O6, ③ 3%
NaI, ④ 3% CuSO4, ⑤ 19% NaCl, ⑥ 1% KI, and ⑦ H2O. The
reconstructed VMA map of this phantom through FCNN
could state the generalization ability of the trained FCNN as
shown in Fig. 10 and Table 5. According to the VMA maps
at Ẽ1 ¼ 32 keV, Ẽ2 ¼ 34 keV, the FCNN has good k-edge
discrimination ability. However, the predicted results of solution
⑥ 1% KI are slightly bigger in bias than others because K is a
never-seen element to the FCNN. All other elements in
solutions (though of different concentrations) have been seen
by this FCNN.

Table 4 MRE and MSE results of testing phantom by FCNN in dual-
energy imaging in practical experiments.

Solution

VMA map at 34 keV VMA map at 43 keV

MRE (%) MSE (cm−2) MRE (%) MSE (cm−2)

14% NaCl 1.45 3.18 × 10−04 0.87 1.64 × 10−04

17% C6H12O6 1.26 7.32 × 10−05 0.93 4.36 × 10−05

Fig. 10 A testing phantom used in k -edge imaging. The phantom consists of ① 47% CH3CH2OH,
② 21% C6H12O6, ③ 3% NaI, ④ 3% CuSO4, ⑤ 19% NaCl, ⑥ 1% KI, and ⑦ H2O. The display windows
for polychromatic reconstructions and VMA maps are ½−0.16;0.79� and ½−0.03;1.41� cm−1, respectively.

Table 5 MRE and MSE results of testing phantom by FCNN in k -edge imaging in practical experiments.

Solutions

VMA map at 32 keV VMA map at 34 keV VMA map at 43 keV

MRE (%) MSE (cm−2) MRE (%) MSE (cm−2) MRE (%) MSE (cm−2)

1 47% CH3CH2OH 1.12 5.21 × 10−05 1.09 4.22 × 10−05 1.59 2.62 × 10−05

2 21% C6H12O6 0.30 3.88 × 10−05 0.13 3.33 × 10−05 0.18 2.17 × 10−05

3 3% NaI 1.74 2.60 × 10−04 1.37 6.18 × 10−04 1.00 2.19 × 10−04

4 3% CuSO4 0.81 1.01 × 10−04 0.26 6.69 × 10−05 0.01 1.69 × 10−05

5 19% NaCl 1.38 2.91 × 10−04 0.83 1.89 × 10−04 0.33 5.45 × 10−05

6 1% KI 2.85 3.12 × 10−04 1.33 4.00 × 10−04 1.22 1.52 × 10−04

7 H2O 1.21 3.32 × 10−04 0.58 2.84 × 10−04 0.43 8.48 × 10−05
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4 Discussion and Conclusion
In this work, we proposed a method to reconstruct VMA maps
for spectral CT using neural network. The trained network dem-
onstrated its effectiveness and robustness in our study. It could
provide accurate virtual monochromatic linear attenuation coef-
ficients directly. The reconstructed images also suggested good
potential in reducing image noise and suppressing artifacts.

Large-noisy polychromatic CT reconstructions are suggested
to go through denoising preprocess before training by FCNN.
Through mean filtering, the reconstructions become smoother.
In the training process, we chose image patch with a size of
5 × 5 as the neural network input considering the charge sharing
effect of PCD and local spatial correlation of the image. Smaller
image patch would cause a big fluctuation in the neural network
and make the network unstable. A larger image patch would
increase the complexity of the network and training costs. In
addition, weights and biases of FCNN trained by a small number
of samples could help parameter initialization with FCNN to
be trained by all samples. Also, deeper and larger FCNNs
were constructed tentatively, only limited improvements of
MSE were presented but with apparent overfitting and training
costs dramatically increased.

The training and implementation of this proposed method are
easy and computationally efficient. Moreover, it can be flexibly
extended to other cases of different numbers of multiple energy
bins and/or different choices of virtual monochromatic energies,
though the consistency in system setting between training and
testing shall be preserved. As all the information is from the
dataset of training phantoms, a reasonable variability and cover-
age in the choices of training materials would be suggested
depending on the tasks.
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