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Abstract

This white paper examines recent progress, applications and challenges in predicting unbound and 

total tissue and intra/subcellular drug concentrations using in vitro and preclinical models, imaging 

techniques and physiologically-based pharmacokinetic (PBPK) modeling. Published examples, 

regulatory submissions and case studies illustrate the application of different types of data in drug 

development to support modeling and decision making for compounds with transporter-mediated 

disposition, and likely disconnects between tissue and systemic drug exposure. The goals of this 

manuscript are to illustrate current best practices and outline practical strategies for selecting 

appropriate in vitro and in vivo experimental methods to estimate or predict tissue and plasma 

concentrations, and to use these data in the application of PBPK modeling for human PK, efficacy 

and safety assessment in drug development.
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Knowledge of unbound tissue drug concentrations is critical to the understanding of efficacy, 

toxicity and drug-drug interactions (DDI) (1). Use of local interstitial concentrations to 

predict receptor occupancy at the target tissue should improve decision making for candidate 

molecules that meet the desired pharmacokinetic (PK) and pharmacodynamic (PD) profile. 

For highly-permeable drugs interacting with plasma membrane receptor(s), the unbound 

concentration at the site of action is assumed to be equal to the blood or plasma unbound 

drug concentrations. However, when intracellular and subcellular targets are of interest, this 

assumption may not be valid, especially for drugs with transporter-mediated disposition, as 

the activity of transporters at the tissue-blood barrier can result in “asymmetry” between the 

tissue and blood unbound drug concentrations (2). Transporter-mediated drug disposition 

often entails the complex interplay of multiple processes and defining the rate determining 

step and outcome of these multiple factors is a challenge (1, 3–5). As a result, profound 

DDIs can occur at the tissue level which cannot be discerned in a typical clinical DDI study 
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where only the systemic concentrations of the substrate drug are measured. For example, 

changes in liver (metformin) and brain (verapamil) concentrations in the presence of a 

transporter inhibitor, which may have consequences on projected drug efficacy and safety, 

may not be reflected in changes in plasma exposure (6, 7). The opposite can occur where a 

profound DDI is observed in terms of changes in systemic concentrations, but without 

impacting tissue drug exposure (e.g., no change in statin efficacy as a result of OATP1B1 

polymorphism) (3). Furthermore, subcellular drug accumulation can result in toxicity, as 

illustrated by fialuridine where a mitochondrial-membrane transporter is associated with 

drug-induced liver injury (8). The extended clearance model defines the fundamental 

principles to describe the interplay between passive diffusion, transporter-mediated 

clearances and metabolism, which together with intracellular binding determine tissue drug 

concentration (4, 5, 9, 10). The consequences of inhibition of certain transporter processes 

on liver exposure will vary depending on the rate-determining step(s) of drug clearance and 

whether liver is the predominant eliminating organ (Figure 1), or if there is also a significant 

non-hepatic contribution to the elimination (Figure S1).

Physiologically-based pharmacokinetic (PBPK) modeling is a key translational tool that 

allows mechanistic evaluation of the interplay of all processes governing drug distribution 

and clearance, and simulation of both systemic and tissue exposure as a result of changes in 

enzyme and/or transporter activity (1, 10, 11). The increased use of PBPK modeling in drug 

development is reflected in the number and diversity of examples reported in the literature 

and in regulatory submissions summarized here, together with recently published DDI and 

PBPK guidance documents from regulatory agencies and ongoing discussions on PBPK 

model verification/qualification (http://www.ema.europa.eu/docs/en_GB/document_library/

Scientific_guideline/2016/07/WC500211315.pdf; https://www.fda.gov/Drugs/

GuidanceComplianceRegulatoryInformation/Guidances/ucm064982.htm). Application of in 
vitro-in vivo extrapolation (IVIVE) for transporter-mediated disposition in PBPK models 

requires kinetic determinations of transport processes in well-defined cellular systems and 

knowledge of the transporter expression in vitro in relation to in vivo. The best practices for 

selection of in vitro systems, data analyses for acquiring transporter kinetics, and the most 

commonly used principles in transporter IVIVE have been summarized previously (10). 

Recent progress in translation of transporter-mediated PK, including also specific 

populations (organ impairment, disease), will be discussed in the sections below. Routine 

verification of PBPK-based tissue predictions is not possible in humans, and the best 

approach to circumvent this limitation is to verify predicted tissue drug concentrations for 

selected model substrates that can interrogate the transporters of interest. Such verification is 

possible with non-invasive imaging such as positron emission tomography (PET), single-

photon emission CT (SPECT), magnetic resonance imaging (MRI), or the more invasive 

method, microdialysis (2).

Focusing on the progress since publication by Chu et al. (2), this whitepaper highlights 

advantages and limitations of in vitro/preclinical models, imaging methods and PBPK 

modeling as tools to estimate or predict intracellular drug concentrations and potential 

differences between tissue and systemic exposure in case of transporter-mediated 

disposition. Integration of different approaches is illustrated by selected published examples, 

regulatory submissions, industrial case studies and a proposed workflow. Opportunities and 
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recommendations for future directions are discussed with a focus on refining translational 

modeling of transporter-mediated PK and DDIs.

IN VITRO METHODS FOR ESTIMATION OF INTRACELLULAR/

SUBCELLULAR DRUG CONCENTRATIONS

In vitro systems are important tools in analyzing determinants of intracellular/subcellular 

drug disposition and establishing appropriate parameters for transporter IVIVE (2, 10). In 
vitro studies also provide estimates for crucial parameters such as fraction unbound in cell 

(fu,cell) and steady-state unbound tissue-to-blood partition coefficient (Kp,uu) that can be 

used as inputs in mechanistic modeling. As detailed previously (2, 3) and conceptually 

illustrated in Figure 1, Kp,uu reflects the complex interplay of multiple processes governing 

unbound tissue drug concentrations. This section provides a critical overview of in vitro 
methods to determine intracellular and subcellular drug concentrations, with a focus on the 

recent progress in determining Kp,uu. In addition, application of transporter expression data 

in proteomic-informed transporter IVIVE is illustrated.

Most drug accumulation assays measure total cellular drug concentrations, which represents 

the sum of drug accessible to the cytosol, drug bound to cellular membranes and 

macromolecules, and drug that is distributed to subcellular organelle compartments 

including lysosomes, mitochondria and nuclei. Current methods to determine in vitro Kp,uu 

and estimate cellular drug binding can be divided into five categories (details in Table 1): i) 

Binding Method to directly measure binding to cell or tissue homogenate (12–15); ii) 

Temperature Method to calculate binding from total cellular drug accumulation at 37°C and 

4°C (16, 17); iii) Structure-based Prediction Method to estimate binding from molecular 

properties by structure-property relationship models (12, 18); iv) Kinetic Modeling Method 

to derive binding by fitting mechanistic models to drug accumulation data (18); and v) 

Extended Clearance Model (ECM) Method to calculate Kp,uu based on transporter kinetic 

parameters derived from in vitro assays (15, 17). Each method is associated with specific 

assumptions that should be considered when comparing results and selecting the most 

suitable approach for a particular application.

Binding Method—Total cell to medium concentration ratio (Kp), fu,cell or fraction 

unbound in tissue (e.g., fu,liver) and fraction unbound in medium (fu,medium) are individually 

measured and combined to derive the Kp,uu value (Table 1). Binding may be determined 

using equilibrium dialysis of cell or tissue homogenate. By accounting for the dilution of 

homogenate in the assay, fu,cell or fu,liver can be calculated. The method thus represents a 

comparatively direct measurement of cellular drug binding with a central assumption that 

binding is not altered by the homogenization procedure. Non-saturation of binding for a 

chemically diverse set of compounds, along with the nature of the molecular properties most 

strongly associated with binding (high lipophilicity, small cross-sectional area, and a 

preference for positive molecular charge) suggests that partitioning to phospholipid 

membranes is a major contributor to cell binding (12). However, binding equilibrium 

between cellular compartments may shift in homogenized vs. live cells, different dilution 

factors which impact cell density may be used for homogenized cells/tissues (19), incubation 
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media may differ regarding albumin content (20), and depending on the homogenization 

procedures (2), intracellular organelle membranes may or may not be disrupted. These 

factors may have contributed to some contradictory findings in fu,cell values between 

laboratories discussed below.

Temperature Method—Instead of combining two distinct assays for fu,cell and Kp as in 

the Binding Method, Kp,uu is determined by measuring steady-state medium and cell 

concentration with the same method, but at two different temperatures: 37°C and 4°C (16) 

(Table 1). The estimation of fu,cell is based on the steady-state uptake at 4°C. Important 

assumptions underlying this method are that tissue binding does not involve temperature- or 

energy-dependent processes (e.g., transporter-mediated flux, metabolism, and ion gradients 

that might shift cellular equilibria when non-functional at 4°C). However, the impact of 

temperature on tissue binding, membrane potential and fluidity are not well established. In 

addition, disadvantages associated with disruption and release of organelle proteins remain. 

Initial studies have indicated certain temperature dependence of binding and tissue 

permeability (15, 17, 21), but this needs to be confirmed with large, chemically diverse 

datasets.

Structure-based Prediction Method—Initial studies in suspended rat hepatocytes 

showed a correlation between Logfu,cell and LogD7.4 for 13 anionic transporter substrates 

(18). The correlation of anionic drugs was later extended to plated (22) and suspended 

human hepatocytes (15). LogD7.4 was also an important predictor of fu,cell, along with 

additional molecular properties (charge and steric descriptors putatively describing 

interactions with cellular membranes) for a larger set of anionic, cationic and neutral drugs 

(12). The fu,cell estimated based on physicochemical properties has been further utilized to 

calculate Kp,uu (Table 1). Since either Binding or Temperature Methods were used to derive 

initial experimental data, the associated limitations have been carried over (Table 1).

Kinetic Modeling Method—This method uses mathematical modeling to derive Kp,uu 

estimates from cellular drug accumulation experiments. For example, the initial drug uptake 

rate was measured in suspended hepatocytes in the presence of a nonspecific cytochrome 

P450 inhibitor (18). Kinetic parameters including active uptake Vmax, Km, and passive 

diffusion were obtained simultaneously to calculate Kp,uu (Table 1), using a reduced form of 

the extended clearance equation. The method assumes knowledge of the mechanisms 

involved in cellular drug disposition, and may lead to overestimation of the true Kp,uu for the 

following reasons: 1) the system does not consider the influence of efflux transporters, 

biliary excretion or unaccounted non-CYP mediated metabolism), 2) active influx clearance 

is calculated based on the initial uptake rate, which may include drug transport mediated by 

both facilitated diffusion transporters and active transporters, and 3) the passive influx 

diffusion permeation is assumed to be equal to the passive efflux diffusion permeation; this 

may not always be true, for example in the case of anions (17).

Extended Clearance Model (ECM) Method—Steady-state Kp,uu can be described 

using the extended clearance equation incorporating the individual processes involved in in 
vitro hepatic clearances (15, 17). The fundamental difference from the above-mentioned 
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Kinetic Modeling method is that the impact of compound disappearance via sinusoidal 

efflux, biliary excretion, and metabolism is explicitly considered. One limitation is that in 
vitro-in vivo correlation (IVIVC) for the parameters used to calculate Kp,uu has not been 

fully validated. As in the Kinetic Modeling method, accurate predictions rely on knowledge 

of relevant drug disposition mechanisms and their adequate parameterization. In both the 

Kinetic Modeling method and ECM method, binding is not addressed explicitly, and can be 

calculated from the model-based Kp,uu if combined with a Kp measurement in the same 

system. However, errors in estimating parameters contributing to Kp,uu would propagate to 

calculation of fu,cell.

Overall, the Kinetic Modeling method and ECM method rely on assumptions that the 

relevant cellular processes are known and respective parameters can be accurately 

determined. These methods require rich datasets generated by laborious experimental 

processes in order to minimize uncertainty in parameter estimates. In contrast, the Structure-

based Prediction Method may provide an initial fu,cell estimate in the absence of in vitro data 

if the compound properties are within the physicochemical space of compounds in the 

training set used to define the relationship with fu,cell. The Binding and Temperature 

methods are more agnostic regarding the processes involved compared to the Kinetic 

Modeling method and ECM method, while at the same time less mechanistically 

informative.

Estimation of Subcellular Drug Concentrations—To fully understand the factors 

determining drug cellular concentrations it is important to consider subcellular drug 

distribution. Drug molecules may distribute preferentially to various subcellular organelles 

even without transporter effects, due to the electrochemical and pH gradients across 

membranes and interactions driven by compound lipophilicity, charge, and ionization 

potential. The subcellular accumulation of lipophilic bases may impact Kp,uu (15, 23). 

Indirect experimental methodologies used for estimation of subcellular drug concentrations 

have been discussed previously (2, 23, 24). Recent examples in combining experimental 

approaches with mechanistic modeling to predict subcellular drug concentrations are 

highlighted here.

Lysosomal sequestration may be an important contributor to the accumulation of drugs that 

are lipophilic (LogP>1) and amphiphilic with ionizable amines (pKa>6) in lysosome-rich 

cells such as Kupffer cells, and alveolar macrophages. The extent of lysosomal sequestration 

can be determined by measuring drug concentrations in cultured cells using indirect methods 

that abolish the lysosome-cytosol pH gradient, e.g., ammonium chloride (NH4Cl) (23) or 

chloroquine (12). Of note, modulating the pH gradient affects both total cell-to-unbound 

medium concentration ratio (Kp,u) and Kp,uu. Alternatively, cellular accumulation can be 

measured at low and high drug concentrations, assuming that saturable cellular uptake at a 

low drug concentration is driven by lysosomal sequestration rather than a transporter-

mediated process. Lysosomal sequestration may change accumulation kinetics, as observed 

with the altered uptake rate of clarithromycin in the presence of NH4Cl in the macrophage 

cell line NR8383 (23). Indirect experimental methods do not account for the impact on drug 

binding to membranes due to changes in ionic strength and membrane surface potential at 

higher drug concentrations. Lysosomal drug concentrations can be directly measured by 
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isolating lysosomes with novel techniques using magnetic nanoparticles (25); evaluation of 

this method is in progress.

Previously, generic in silico cell models were proposed to describe the dynamics of drug 

accumulation in lysosomes (26). Recently, these models were refined and adapted to specific 

cell types (e.g., macrophages) accounting for pH gradients and electrochemical potentials 

across cell and organelle membranes to simulate drug concentrations in cytosol, lysosomes 

and mitochondria. Membrane partitioning either predicted from phospholipid membrane 

composition data or measured by indirect methods was incorporated into models to predict 

lysosomotropic properties of respiratory drugs (27). The application of this mechanistic 

cellular model to predict lysosomal drug concentrations needs further evaluation with larger 

basic drug datasets and extension of the model to other cell types (e.g., hepatocytes) where 

lysosomotropic drugs may accumulate and induce phospholipidosis. Recently, an extended 

mechanistic tissue-composition based model accounting for lysosomal sequestration was 

proposed and evaluated using a dataset of 28 basic drugs. Differences in cytosolic and 

lysosomal pH and in lysosomal volume fractions of the individual cell types/tissues were 

implemented in the model. Consideration of lysosomal sequestration moderately improved 

the accuracy of Kp,u predictions (up to 3-fold change) for lysosome-rich tissues. This result 

is not entirely surprising as the fraction of lysosome-rich cells (e.g., Kupffer cells) is 

generally low (<5%) in tissues (28).

Positively charged drug molecules may be trapped in mitochondria as a result of the negative 

transmembrane electrical potential relative to the cytosol. A mechanistic model accounting 

for pH and electrochemical potentials across plasma and organelle membranes (including 

mitochondria) and permeability of both ionized and neutral species explained reasonably the 

observed Kp,uu for multiple tissues in rats treated with investigational drugs (e.g., 

hepatoselective glucokinase activators) (29). Utilizing a similar approach and additional 

incorporation of a bi-directional, saturable effect on the ionized permeability to characterize 

transporter uptake kinetics, metformin subcellular concentrations, including mitochondria, 

were predicted in stably transfected human embryonic kidney 293 (HEK293) cells (30).

Method comparison and qualification

Comparison of Cellular Systems—Various in vitro cellular systems have been used to 

determine in vitro Kp,uu and estimate cellular drug binding (Table 1), and the associated 

advantages and limitations are summarized below. Most methods have focused on suspended 

hepatocytes, except for the Binding Method which uses multiple cell systems. In principle, 

the above-mentioned fundamental approaches can be applied for diverse primary cell types 

to estimate unbound drug concentrations in various human tissues. These predicted regional 

exposures can then be correlated with efficacy and/or safety endpoints, as illustrated in the 

Table S1a for brain Kp,uu.

Cell lines such as HEK293 (12) and HeLa (31) are most commonly used as hosts to express 

membrane transporters or proteins that are therapeutic drug targets. These cell systems are 

relatively deficient in baseline drug transport/metabolic activities, but may be used in multi-

well formats and optimized into high-throughput tools for exploring Kp,uu during early drug 

discovery. However, the intracellular architecture of these cell lines does not exactly mimic 
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native human primary cell systems and reproducibility of Kp,uu estimates from different cell 

passages has not been reported.

Kp,uu has been determined in different formats of primary hepatocytes, namely suspended 

and plated hepatocytes (14, 17, 18, 32), as well as sandwich-cultured hepatocytes (SCH) (13, 

33). Culture conditions have been shown to affect the expression and activity of uptake and 

efflux transporters, as well as drug-metabolizing enzymes, which should be considered when 

comparing Kp,uu results. For instance, suspended hepatocytes (fresh rat and cryopreserved 

human hepatocytes) are known to exhibit passive, active uptake and metabolic activity, but 

not efflux, which is captured in SCH. Determination of Kp,uu in SCH may be useful when 

attempting to correlate unbound intracellular drug concentrations with endpoints including 

1) efflux clearance, 2) hepatotoxicity potentially due to perturbation of hepatic efflux 

transporters, 3) drug efficacy when the target protein is intracellularly located, and 4) DDI 

predictions due to inhibition of metabolism and efflux transporters (34). Although a good 

correlation was observed between Kp,uu in rat SCH and in situ rat liver perfusion systems for 

selected compounds (13), a recent study reported that rat SCH Kp,uu estimates were lower 

compared to data from suspended or plated hepatocytes (33).

Brain homogenates and slices (2) from preclinical species are commonly utilized for 

estimating tissue Kp,uu. Brain slices may be more physiologically relevant than brain 

homogenates because of intact cell-cell interactions, retention of pH gradients and active 

transport systems (Table S1b). However, due to the absence of the blood-brain barrier, brain 

slices are not an appropriate model to evaluate permeability across the blood-brain barrier 

and the role of efflux transporters.

Kp,uu and fu,cell Comparisons—Side-by-side comparisons of different Kp,uu and fu,cell 

methodologies are rare to date, and published datasets include only partially overlapping 

compounds. The intracellular binding of model drugs measured by the Binding Method has 

shown high correlation between values obtained in the HEK293 cell line, human or rat 

hepatocytes (12, 19) and brain tissue (35); differences in lipid and/or protein content were 

suggested to account for differing binding capacity between cell and tissue types. Rat fu,liver 

was proposed as a potential surrogate for liver binding in other species, including human, in 

early drug discovery based on data from 22 structurally diverse compounds (19). A recent 

analysis (17) reported that the model-based estimates were typically higher and more 

sensitive to inter-batch variability than the temperature-based estimates. In a comprehensive 

comparison of the fu,cell values between three methods (the Binding, Temperature and 

Structure-based Prediction Methods), Riede et al. (15) noted a consistently lower unbound 

fraction using the Binding Method, with half of the 18 compounds exhibiting differences 

greater than 10-fold between the methods. However, such a trend is not consistent with data 

obtained by the Binding Method in other laboratories (Figure S2A). A comparison of 

literature reported fu,cell values for the seven compounds for which data were available for 

all three major methods is shown in Figure S2B. Excluding the Riede et al. Binding Method-

based fu,cell data (15), which were consistently lower than the other reports (19-fold on 

average), all the other data were within 1–6-fold of the per-compound average (mean: 1.9-

fold). Thus, for this limited dataset the three major methods appear to provide consistent 

information about cellular drug binding.
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In general, the in vitro Kp,uu data generated from different methods (Table S2) varied with 

the exception of a close correlation between values obtained by the Binding Method and the 

ECM method for 11/18 compounds. The Structure-based Prediction and Temperature 

Methods trended higher in most of the same 18 compounds compared to the ECM method, 

although the Temperature Method has shown better correlation with the ECM method for 

compounds with certain characteristics, i.e., ECM class 2/4 and 1/3 with low intrinsic 

clearance (15). The Kinetic Modeling Method also generated higher in vitro Kp,uu values 

than the ECM method for three statins, but consideration of inside-negative membrane 

potential resulted in a closer agreement with ECM (17). In summary, comparisons of 

different Kp,uu and fu,cell methodologies are currently based on limited datasets, and need to 

be extended to compounds with more diverse chemistry structures and drug disposition 

pathways.

In Vitro-In Vivo Correlation (IVIVC) of In Vitro Kp,uu Data—Rich target-site data 

collected in preclinical species allowed the development and refinement of comprehensive 

models to predict in vivo Kp,uu and understand IVIVC of in vitro Kp,uu. Rat and monkey 

IVIVC studies exemplify this use of preclinical data as a proof-of-concept (Table S2). 

Examples of successful within-species IVIVC have been published recently, as illustrated 

for rosuvastatin and pravastatin (14). Although promising, this approach needs to be 

validated, replicated and examined further using a large diverse group of compounds 

including those with extensive metabolism. Another study reported that ECM-derived in 
vitro Kp,uu combined with intrahepatic concentrations and BSEP inhibition data predicted 

clinical drug-induced cholestasis for 17/18 compounds (36). However, opinions differed 

concerning categorization of the cholestasis class for some of the compounds investigated 

(36, 37). In addition, preclinical whole organ perfusion studies have been used to develop 

predictive models for unbound intracellular concentrations (21) and knockout and human 

transporter ‘knock-in’ rodent models continue to aid mechanistic understanding of the role 

of respective transporter(s) (38, 39). Several recent examples of experimental and modeling 

advances in brain Kp,uu determination and prediction in mouse, rat, and monkey are listed in 

Tables S1a and S1b. Direct scaling of preclinical results to human may not be feasible given 

the known and possibly as yet unknown differences in transporter protein expression/activity 

across species (40).

Proteomics-informed transporter in vitro-in vivo extrapolation (IVIVE)

Consideration of differences in the transporter activity/expression between in vitro systems 

and in vivo is an important factor for the prediction of transporter-mediated clearance. 

Progress to date has been limited for the relative activity factor (RAF) approach (41) due to 

the lack of availability of selective in vitro/in vivo transporter probe substrates. In contrast, 

more advances have been made in quantitative proteomics informing the relative expression 

factor (REF) (42, 43), as illustrated by prediction of transporter-mediated clearance of drugs 

from data obtained in HEK cells individually expressing the relevant transporters (44, 45). 

Multiple studies have quantitatively analyzed cellular systems and tissues by mass 

spectrometry for total transporter abundance in brain, liver, intestine, kidney, lung, as well as 

hepatic uptake transporter expression in the plasma membrane (See supplemental reading 

list for more information). Recent meta-analysis of reported OATP abundance data in plated 
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and sandwich-cultured hepatocytes and liver showed that the mean abundance of hepatic 

uptake transporters, except for OATP2B1, did not differ significantly between cryopreserved 

human hepatocytes and liver tissue (42), while another study indicated significantly lower 

transporter expression in freshly isolated human hepatocytes relative to human liver from the 

same donors (45). Most of the proteomic studies do not provide corresponding 

pharmacogenomic or functional activity data to allow delineation of the true inter-individual 

variability and experimental/technical variability; the latter may result from choices of 

standard peptides (46), sample preparations or the proteomic methodology/membrane 

isolation and fractionation (47). While the majority of transporter IVIVE studies have 

focused on hepatic effects, transporters expressed in other tissues have also been 

investigated. For some renal transporters (e.g., OAT3), IVIVE was successful by applying 

directly the in vitro-derived transporter data to predict in vivo disposition (48), whereas in 

other instances optimization of transporter activity/expression was performed using clinical 

data to bridge the gap between in vitro extrapolation and the actual observation (49–51).

It is evident that expression data alone may not explain the under-prediction of transporter-

mediated clearance and need for compound-dependent scaling factors. But the use of 

transporter abundance data in IVIVE offers added value by allowing rational incorporation 

of inter-individual variability, which enables characterization of different populations (52, 

53). Considering existing methodological differences, even when the same biological 

samples are analyzed (47), it would be prudent to apply the same proteomic methodology 

for the analysis of cellular and tissue samples when possible. Additional studies that provide 

abundance-functional activity correlations are needed to profile enzymes and transporter 

expression of more diverse tissues/disease states and larger sample sizes. This information 

would allow for incorporation of population variability and increase confidence in the use 

proteomic data in PBPK modeling.

IMAGING METHODS FOR MEASURING DRUG CONCENTRATIONS IN 

TISSUES

PET

Nuclear imaging techniques, such as PET and SPECT, involve administration of a 

radiolabeled drug of interest and non-invasively measuring tissue drug concentrations in 3-

dimensions (54). PET imaging utilizes drugs labeled with positron-emitting isotopes such as 
11C or 18F that have short half-lives (~20 and 110 min, respectively). Since these isotopes 

can be incorporated into the structure of the drug, the tissue distribution of the drug itself, 

rather than its derivative/analog, can be studied. When determining tissue drug 

concentrations, PET provides greater spatial localization and resolution (within ~4–5 mm) 

than γS/SPECT (~10 mm) because the latter uses radioisotopes that emit gamma photons in 

only one direction. The resolution of PET imaging is sufficient to discern in vivo regional 

distribution of drugs within an organ (e.g., different parts of the brain, Table 2), but like all 

other imaging methods currently available, it is not sufficient to discern drug distribution at 

the cellular/subcellular level. The advantage of the short half-life of PET isotopes is that 

radiation exposure to the subject is limited and studies can be conducted in the same subject 

with and without transport inhibitor(s) on the same day. Due to sensitivity of PET, the 
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labeled drug can be administered in micro or tracer doses (picomolar to nanomolar for PET 

vs. nanomolar to micromolar for SPECT) and, therefore, pharmacological effects are 

avoided. If nonlinearity in tissue distribution is a concern, the PET tracer could be co-

administered with pharmacological doses of the unlabeled drug (examples in Table 2). The 

disadvantages of PET imaging are that the synthesis of the labeled drug has to be conducted 

in-house immediately prior to drug administration, and PET requires a multidisciplinary 

team and costly equipment.

Imaging methods have the further disadvantage that they cannot distinguish between the 

parent drug and metabolite(s) if the metabolite(s) retain(s) the label; therefore, metabolically 

stable PET tracers are preferred (6, 54, 55). For drugs that are extensively metabolized and 

administered as tracers, tissue drug distribution must be conducted over a period of time 

when the metabolism of the drug is minimal. This can be determined in vitro (e.g., 

hepatocytes (55)) or in vivo in real-time (necessary due to short half-life of the isotopes), 

using the metabolite-to-parent drug concentration ratio in the blood/plasma as a surrogate 

for the degree of metabolism in the tissue (6). In addition, both PET and γS/SPECT cannot 

distinguish between the total and unbound drug. However, this disadvantage can be 

mitigated by correcting the measured tissue drug concentration for binding using the 

methods described above. For the purposes of verifying the prediction of total tissue drug 

concentrations from in vitro data in conjunction with proteomics and PBPK modeling, this 

disadvantage is not an issue provided the intracellular binding of the drug in the in vitro 
system is representative of that in vivo.

Numerous PET imaging studies have been conducted to quantify tissue distribution and to 

elucidate the impact of transporter DDIs/polymorphisms on drug tissue exposure. 

Representative examples summarized in Table 2 focus primarily on the efflux transporters in 

the blood-brain barrier (BBB), hepatobiliary transporters and quantification of changes in 

renal exposure relative to systemic.

γ Scintigraphy/SPECT

The imaging agent 99mTc–mebrofenin (MEB) has been used as a transporter probe to assess 

liver exposure and DDIs or disease-mediated alterations in hepatic transporter function in 

humans (56, 57). OATP1B1 and OATP1B3 are responsible for the MEB hepatic uptake, 

which is rapidly excreted into bile by the canalicular transporter MRP2. MEB is highly 

extracted by the liver with minimal urinary excretion (~1–2%), moderate protein binding 

(~90%) and negligible metabolism (See supplemental reading list for more information). 

MEB liver concentrations were significantly increased in patients with non-alcoholic 

steatohepatitis (NASH) due to impaired MRP2 function (57). The transporter inhibitor 

ritonavir at clinically relevant concentrations significantly increased MEB systemic exposure 

in healthy subjects without affecting overall hepatic exposure or biliary recovery of MEB. In 
vitro studies in human SCH confirmed predictions from the semi-PBPK model that ritonavir 

inhibited MEB hepatic uptake, but not biliary excretion (56). Advantages of the 99mTc 

radiotracer include a suitable half-life (6h), labeling does not require a cyclotron, and 

gamma cameras are routinely available in health care facilities. However, localization of the 
99mTc label on the substrate may influence the affinity for transporters. For example, OATPs 
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and MRP2 were primarily responsible for the uptake and efflux, respectively, of 99mTc-

labeled chenodeoxycholic acid and 99mTc-cholic acid rather than NTCP and BSEP, 

respectively, due to localization of [99mTc]-DTPA- on the acidic side chain of the bile acids. 

Quantitative scintigraphy provides a rich dataset that is ideal for pharmacokinetic modeling 

but this approach has been underutilized to assess organ/tissue exposure and hepatic 

transporter DDIs in humans, possibly due to lack of methodological expertise and the 

limitations cited above.

Contrast-Enhanced Magnetic Resonance Imaging (MRI)

Dynamic gadoxetate-enhanced liver MRI has been used to quantify hepatic transporter 

function in rodents (58) and humans (59). Gadoxetate is an OATP1B1, OATP1B3 and MRP2 

substrate. Gadoxetate is metabolically stable with minimal protein binding (~10%); ~50% of 

an injected dose is recovered in human urine (See supplemental reading list for more 

information). Gadoxetate is used routinely in the clinic as a MRI contrast agent, which 

makes it particularly attractive as a probe to assess hepatic transporter function and DDIs. 

Physiologically-based (60) and compartmental (61) models have been proposed to describe 

gadoxetate disposition, but further work is needed to establish an approach to assess hepatic 

exposure and transporter function in routine clinical workflows.

These imaging studies can provide rich relevant data to verify other methods (e.g., PBPK 

modeling of transporter disposition) used to predict total tissue drug concentrations. In a 

recent study (44), in vivo rat hepatic concentrations of rosuvastatin (Oatp but not Ntcp 

substrate in rat, although it is a substrate of human NTCP), determined by PET imaging, 

were predicted well by combining a proteomics informed bottom-up approach with in vitro 
kinetic data from rat SCH. The proteomic data in tandem with transfected cells expressing 

each Oatp were used to predict rosuvastatin hepatic uptake clearance, while the rat SCH data 

were used to predict biliary clearance.

APPLICATION OF PBPK MODELING FOR PREDICTION OF TRANSPORTER-

MEDIATED DISPOSITION AND POTENTIAL DISCONNECT BETWEEN 

SYSTEMIC AND TISSUE DRUG CONCENTRATIONS

Although PBPK models allow simulation of tissue profiles, direct verification of these 

predictions is typically not possible (Table 3) due to a lack of quantitative tissue drug 

concentration data (except through imaging, see above). In the case of statins, clinical data 

on reduction of cholesterol and on muscle toxicity in certain clinical settings have provided 

indirect verification of the models (3, 62). The time course of statin cholesterol response 

(>few weeks) is a practical challenge for wider use of this PD endpoint to describe changes 

in liver exposure as a result of transporter modulation. PBPK modeling explains successfully 

the observed lack of a significant effect of the SLCO1B1 c.521T>C polymorphism on the 

efficacy of both simvastatin acid and rosuvastatin. Opposite trends, i.e., increased efficacy, 

are seen when either hepatic metabolism (CYP3A4) or biliary excretion (BCRP) are 

inhibited, consistent with an understanding of the rate-determining processes that affect 

hepatic AUC of these drugs (2, 3, 63). Recent PET data (Table 2) illustrate the effect of 

reduced OCT1 activity on metformin hepatic distribution; in this case, the consequences of 
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reduced hepatic uptake are different from statins, reflecting the importance of predominant 

non-hepatic (renal) elimination in the case of metformin (Kp,uu simulations of such scenarios 

are shown in Figure S1). In addition, combined PBPK-PD modeling has demonstrated the 

importance of using simulated liver concentrations to drive the response for rosuvastatin 

(62). However, confidence in model-simulated tissue concentrations is still low based on 

limited means to qualify those aspects of the models, and therefore, plasma data are often 

relied on as a surrogate, with the caveat that variability in plasma PK may not necessarily 

reflect variability at the site of action.

Extension of PBPK models to predict transporter-mediated PK in specific populations

A number of recently published studies and regulatory submissions have implemented 

mechanistic liver and kidney models to simulate transporter-mediated disposition/DDIs in 

organ impairment and/or to extrapolate across ethnic groups/diseased populations (Table 3, 

Table S3). All these examples highlight limited knowledge or gaps in some physiological/

system data such as enzyme or transporter expression/activity and proximal tubule 

cellularity in diseased kidneys. In order to capture reduced active secretion clearance in renal 

impairment, models have employed a range of potential mechanisms: reduced proximal 

tubule cellularity, reduced transporter expression and/or inhibition of renal transporters by 

uremic solutes (64–66). In some instances reduction of transporter expression proportional 

to glomerular filtration rate (GFR) was sufficient (e.g., OATP4C1/digoxin), whereas in the 

case of the OAT1 transporter, more pronounced reduction in activity associated with the 

inhibitory effect of uremic solutes was required for severe chronic kidney disease (CKD). In 

all the cases shown, a step-wise model verification against independent clinical data (renal 

clearance, urinary excretion and/or renal DDI data) was performed. Limited examples of 

simulated proximal tubule concentrations highlighted that different plausible CKD 

mechanisms considered in these PBPK models may result in comparable net predicted 

systemic exposure/renal clearance; however, predicted proximal tubule concentrations may 

differ depending on the assumptions made (66). The latter may have significant 

consequences if the model is used subsequently for prospective evaluation of transporter-

mediated DDIs/nephrotoxicity risk in patients with severe organ impairment. In addition to 

physiological changes at the level of the proximal renal tubule, increasing severity of CKD 

has been reported to have a differential effect on the activity of hepatic enzymes/transporters 

(e.g., reduced activity of CYP2D6 and OATP1B1, in contrast to variable and marginal effect 

on CYP3A (67, 68)). These changes need to be considered when model-informed 

approaches are applied to guide dosing recommendations of nonrenally eliminated drugs in 

severe CKD patients.

A number of literature and regulatory examples in Table 3 illustrate the use of late stage 

clinical data to calibrate the missing system or drug-dependent parameters (e.g., transporter-

mediated clearance or RAF/REF to account for activity/expression differences between in 
vitro and in vivo). Methodological challenges associated with the use of plasma data to 

inform some of the parameters of the model, structural identifiability concerns and 

uncertainty associated with parameter estimates have been discussed previously (See 

supplemental reading list for more information). A general concern is that multiple solutions 

of the ‘optimized’ parameter may all recapitulate systemic PK exposure reasonably well and 
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can therefore not be differentiated on the systemic level, yet they will result in differing 

levels of drug exposure in the tissues. One possible approach to mitigate potential bias is the 

application of the integrated population PBPK approach, which overcomes reliance on fixed 

parameters by using a Bayesian framework. This method generates a statistical distribution 

of the output parameters, rather than just a single estimate. However, rich clinical data are 

required to update the priors in this ‘reverse translation’ exercise and hence would not be 

applicable for early stages of model development. Further, while this addresses the data 

limitations in the most robust fashion, it still may not result in improved precision in 

predicting changes in tissue concentrations.

Key points from transporter PBPK regulatory cases

Regulatory submissions of PBPK modeling have included simulations of transporter-

mediated DDIs as well as simulations of tissue concentrations (e.g., liver) in the context of 

evaluating the need for dosage adjustment due to patient factors, as exemplified by 

simeprevir and obeticholic acid (OCA).

The simeprevir PBPK model incorporated saturable CYP3A4 and OATP1B kinetics, and 

was used to investigate DDI risk for a number of untested clinical interactions ((69), Table 

3). Higher simeprevir plasma exposure was predicted when moderate/strong CYP3A 

inhibitors were co-administered with multiple-doses of simeprevir compared with a single-

dose due to the saturation of CYP3A4/OATP1B. Concomitant administration of moderate/

strong CYP3A inhibitors are not recommended per simeprevir US labeling. Simeprevir 

PBPK modeling was also used to evaluate changes in liver concentrations (70) as the target 

organ (PBPK-PD details shown in Case Study 3). Simulations of 100 mg daily 

administration in Chinese and Japanese patients and 150 mg daily in Caucasian patients 

resulted in comparable predicted liver exposure in the Chinese and Japanese population. 

Although no dose adjustment was initially recommended based on ethnicity, 150 mg QD is 

the approved regimen in the FDA label and 100 mg QD is the recommended dose in the 

Pharmaceuticals and Medical Devices Agency (PMDA) label. The FDA also issued a post-

marketing requirement for simeprevir to evaluate safety signals in patients with East Asian 

ancestry.

In the case of OCA, PBPK modelling was used to predict steady-state plasma and liver 

exposures in subjects with different degrees of hepatic impairment. Considering significantly 

higher predicted OCA plasma exposure and liver-related adverse reactions, a less frequent 

starting dosage regimen was recommended in patients with moderate or severe hepatic 

impairment (from 5 mg daily to 5 mg weekly). Unfortunately, since approval, severe liver 

injury and deaths have been reported in patients with moderate/severe hepatic impairment 

when OCA was dosed more frequently than recommended. Consequently, a ‘Dear 

Healthcare Provider’ letter by the applicant and a Drug Safety Communication by the FDA 

were issued to warn about OCA liver toxicity and emphasize adherence to recommended 

dosing regimens in patients with moderate or severe hepatic impairment.

In the cases highlighted above, PBPK modelling enabled assessment of transporter-

metabolism interplay and the impact of physiological differences associated with organ 

disease or ethnicity on plasma/tissue exposure. This integrative platform was used to bridge 
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the differences between changes in systemic and tissue concentrations (where relevant) to 

support important regulatory decisions for the ultimate goal of optimizing patient benefit. As 

illustrated in case examples below, the structure and complexity of the selected model/

modeling approach depend both on the key questions and the availability of the 

physiological, in vitro, in vivo (plasma or tissue) and/or PD data necessary to describe and 

verify multiple processes/parameters in the model.

Case Study 1—Consideration of intracellular drug concentrations is critical when 

estimating a starting dose for the first clinical study with a novel therapeutic that is actively 

transported to an intracellular site of action, as illustrated in this example for a novel 

Hepatitis B Virus (HBV) inhibitor. The molecule exhibited low passive membrane 

permeability in vitro and was a substrate of OATP1B1 and OATP1B3 (transfected CHO 

cells) and BCRP (transfected MDCKII cells), but was not a P-gp substrate (71) (Table S4). 

In vitro inhibition of viral DNA production was measured in hepatoma cell lines 

HepG2.2.15 and HepaRG, but translation of in vitro potency to in vivo was challenging as 

these systems are deficient in baseline drug transport/metabolic activities, so the Kp,uu is not 

expected to mimic the situation in human hepatocytes. Additionally, PKPD studies in mice 

were performed to characterize HBV DNA inhibition in vivo. Translation of efficacy from 

these animal data faces the challenge that the specific transporters involved in hepatic 

disposition in rodents were not known. However, primary plated rat and human hepatocytes 

both showed active contributions amounting to ~70% of the total uptake, supportive of a 

similar relationship between hepatic intracellular and plasma concentrations in rodents and 

humans. PKPD modeling with mouse data estimated a trough concentration above which 

plasma concentrations should lie throughout the dosing interval and this was used as the 

target for estimation of an efficacious dose in humans.

For the prediction of human pharmacokinetics, a published strategy was followed (72) 

whereby PBPK simulations were first verified in mouse, rat, dog and monkey before 

prediction of human PK. Simulations in preclinical species were compared to measured 

plasma and tissue concentrations obtained after intravenous and oral administration. The 

volume of distribution (Vss) predicted from physicochemical and drug binding properties, 

and assuming passive diffusion across membranes (73), underestimated the measured 

volume in all the preclinical species. After adjusting for the measured liver Kp in mice and 

rats that were ~100-fold higher than predicted, the predicted and observed Vss were in better 

agreement in these species. Therefore, the measured human hepatocyte Kp of ~80 was 

incorporated in the liver compartment of the human PBPK model. This approach predicted a 

human Vss of 1 L/kg.

In vitro measurements in liver microsomes showed low intrinsic clearance (CLint) across 

species, which could not be reconciled with the moderate to high in vivo clearance in the 

animal species. Although higher CLint values were measured in hepatocyte suspensions, the 

CLint was below a reliable quantitative level for this assay (<3μL/min/million cells). 

Therefore, to obtain a more precise estimate, measurements were repeated in a long-term 

human hepatocyte co-culture system that may provide an improved representation of 

combined contributions of uptake, metabolism and biliary excretion to total hepatic 

clearance (71). CLint obtained was scaled using the physiologically-based approach resulting 
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in a human plasma clearance of 7.4 mL/min/kg which was higher than the value predicted 

with the suspension data. A good agreement between simulations and clinical PK data at low 

doses was observed (Figure 2). However, for doses of 300 mg and above, the observed 

plasma concentrations increased greater than proportionally with the dose, leading to 

average fold-errors of 4.4 for Cmax and 2.2 for AUC. An error of >2-fold in the PBPK 

predicted PK parameters is beyond typical values for permeable molecules with clearance 

mainly determined by metabolism, which exemplifies the current lack of confidence in 

PBPK predictions for transported drugs (74). Unfortunately, intravenous PK data were not 

available, which limited definitive conclusions on the reasons for the poorly predicted PK of 

this molecule at higher doses. The over-proportional increases in oral exposure are likely due 

to saturation of clearance processes. However, such saturation was not anticipated based on 

the available in vitro data. Once clinical data were available, top-down fitting of plasma 

concentrations across the full dose range estimated that an uptake transporter Km of ~0.2 μM 

would recover the observed nonlinearity.

This case study illustrates an example where infection of the co-culture model with patient-

derived HBV has been demonstrated (71). This opens the possibility to use this cellular 

system to develop more relevant PKPD models that account for the relationship between 

human plasma and intracellular concentrations. In addition, the case study highlights the 

potential translational application of more holistic in vitro co-culture systems for evaluation 

of complex transporter-metabolism interplay. However, there are still gaps in understanding, 

as shown in the disconnect between in vitro and in vivo nonlinearity reported here, and more 

detailed characterization of these models is necessary to appreciate their full potential.

Case Study 2—This example illustrates the use of PBPK modeling to characterize 

unanticipated nonlinear human PK that may arise through saturation of transporter-mediated 

hepatic uptake, and to explain differences in PK in different populations for letermovir. 

Letermovir is a novel drug inhibiting the human cytomegalovirus virus (CMV) terminase 

complex recently approved for prophylaxis of clinically significant CMV infection 

(properties in Table S4). Letermovir is a substrate of OATP1B1, and -1B3 (transfected CHO 

cells) and is metabolized by CYP3A4, UGT1A1 and UGT1A3 (data from recombinant 

enzymes). As summarized in the disposition characteristics of letermovir (Figure 3A), the 

model assumed that OATP1B1 is responsible for its saturable active uptake into the liver; the 

CLint via glucuronidation was assigned to UGT1A1. Recovery of intact parent in feces is 

primarily due to biliary excretion of absorbed drug (estimated bioavailability of ~90%).

The workflow of letermovir PBPK model development and the model qualification plan is 

summarized in Figure 3B. The PBPK model was able to capture the nonlinear PK of 

letermovir in Caucasian healthy subjects after receiving single doses of letermovir across the 

dose range of 120 to 720 mg IV and 120 to 480 mg PO (Figure 3C and 3D). The mechanism 

of nonlinear PK of letermovir was best described by saturation of OATP1B-mediated hepatic 

uptake. The exposure of letermovir in Japanese healthy subjects is ~2-fold higher than in 

Caucasians. A population PK analysis identified weight as the primary contributor to this 

higher exposure (unpublished results). Accounting for known demographic and 

physiological differences (body weight and liver mass) in the PBPK model explained some 

of the differences in PK exposure (Table S5). It was hypothesized that reported differences 
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in abundance and/or activities of hepatic OATP1B contribute to the higher systemic 

exposure observed in Japanese due to reduced hepatic uptake (75). To explore this 

hypothesis by simulation, the abundance of OATP1B in Japanese subjects was assigned a 

value of 0.58 (75). Simulations were in good agreement with the observed data, and support 

the hypothesis that the higher exposure in Japanese as compared to Caucasian healthy 

subjects may be rationalized by contributions both from known physiological differences 

between these two populations and differences in hepatic uptake due to transporter OATP1B 

abundance and/or activities.

In addition, the PBPK model was used to evaluate the hypothesis that reduced absorption, 

likely caused by mucositis, could be the cause for decreased exposure observed in 

hematopoietic stem cell transplant (HSCT) recipients after oral administration of 480 mg 

letermovir. To evaluate this by simulation, the Caucasian healthy subject PBPK model was 

modified to account for reduced ka and fraction absorbed using a sensitivity analysis 

approach. The simulations showed that the PK in HSCT recipients after oral administration 

of 480 mg letermovir was best described by a reduction in the fraction absorbed, consistent 

with previous reports of reduced exposure for orally administered drugs in HSCT recipients 

(76). This case study illustrates challenges encountered in PBPK modeling and simulation of 

transporter-mediated disposition and approaches used to rationalize the nonlinear PK and 

observed differences in PK between populations to guide the product development team and 

subsequent regulatory submission.

Case Study 3—Simeprevir is a hepatitis C virus (HCV) NS3/4A protease inhibitor (PI), 

indicated for the treatment of HCV genotype 1 and genotype 4 infections (69). Simeprevir is 

characterized by low solubility and low permeability (properties detailed in (69)). 

Simeprevir is actively taken up into hepatocytes by OATP1B1/OATP1B3, followed by 

metabolism via CYP3A4, and biliary elimination of parent drug and metabolites. PBPK 

modeling was conducted to simulate simeprevir exposure in the liver in different patient 

populations and in DDI studies (Table 3). To evaluate whether the PBPK simulated liver 

exposures could be linked to simeprevir PD, an effort was initiated to compare the simulated 

liver exposures with the estimated liver exposures based on the observed PD effect of 

simeprevir on HCV RNA. Adapting the modeling approaches developed by Ke et al. (77), 

simeprevir PK, PD and viral dynamics (viral load (VL) data) were used to estimate the ratio 

between simeprevir plasma (Cplasma) and liver (Cliver) concentrations in vivo (Table S6). 

VL data from clinical studies with simeprevir monotherapy (5 or 7 days) in treatment-

experienced or treatment-naïve patients were used after 3 days of treatment to ensure that 

VL had reached quasi-equilibrium, i.e., the reduction in VL was set by the clearance rate of 

infected cells. The baseline PD serum shifted EC50 values for every subject in the clinical 

simeprevir monotherapy studies were derived in vitro in chimeric replicon cells using the 

HCV virus from every individual subject, which enabled generation of subject-specific EC50 

values for simeprevir. The outcome of this exercise shows that the PBPK simulated liver-to-

plasma ratios of simeprevir are in very good agreement with the values based on the top-

down viral kinetic, PK and PD mathematical modeling. One of the drivers of the nonlinear 

simeprevir plasma PK in the PBPK simulations was the saturation of active hepatic uptake at 

simeprevir doses above 100 mg daily, which was reflected in lower simeprevir liver Kp 

Guo et al. Page 17

Clin Pharmacol Ther. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



values at doses above 100 mg daily relative to lower doses. Intriguingly, the top-down 

approach also showed a trend towards a 2-fold lower liver Kp at the 200 mg daily dose 

versus the 25 and 75 mg doses. This case study illustrates the indirect evaluation of the 

PBPK-simulated tissue exposure using the PD data and highlights the importance of using 

local tissue concentrations to drive the PD effect.

FUTURE DIRECTIONS

This white paper provides current best practices for the estimation of tissue and intra/

subcellular drug concentrations and their advantages/limitations in clinical translation. These 

approaches have been integrated into a quantitative framework in the context of drug 

development (Figure 4) to illustrate how in vitro, preclinical, imaging, early and late clinical 

data can be utilized to examine plasma and tissue exposure in case of transporter-mediated 

issues. The choice of methods and data considered depend on compound properties and 

stages of drug development; each institution may need to establish consistent internal 

approaches for selection of in vitro and preclinical systems and parameter estimates.

Advances in the following areas may facilitate progress in predicting and verifying unbound 

tissue drug concentrations. First, optimization of in vitro incubation conditions and increased 

availability of preclinical in vivo Kp,uu data (obtained under steady-state conditions and 

modeled appropriately) are required to improve IVIVC of in vitro Kp,uu data and inform 

subsequent human predictions (Figure 4). Second, integrated approaches illustrated here 

(e.g., combination of proteomics informed bottom-up PBPK modeling and imaging data) are 

needed. In this regard, additional imaging studies with model transporter substrates will 

facilitate this process. Further studies to determine whether all hepatic clearance pathways 

(and therefore hepatic drug concentrations) can be simultaneously predicted from certain 

cell systems (e.g., human SCH) or integrated from a range of systems (e.g., knockout/

transfected cell lines combined with data from human liver microsomal/S9) are required. 

Such studies have been reported for the liver (44), brain (e.g. (78)) and kidneys (50) and 

need to be extended to the intestine. With regard to estimation of subcellular concentrations, 

methods are needed to directly measure drug concentrations in lysosomes and mitochondria 

to allow verification of current in silico predictions. Improved understanding of uncertainty 

associated with some of the cellular parameters such as acidic phospholipid content, 

composition of organelle membranes relative to the plasma membrane, and the impact of 

pathophysiological conditions on these parameters, is envisaged to improve performance of 

in silico cellular models. Fatty acid binding proteins have recently emerged as important 

cytosolic binding proteins that chaperone very lipophilic molecules, such as 

endocannabinoids and cannabinoids, to intracellular targets for metabolism in the brain and 

liver (79). Continued research is needed to elucidate the impact of alterations in levels and/or 

binding affinity of chaperone fatty-acid binding proteins on unbound intracellular drug 

concentrations and subsequently, efficacy and toxicity. Finally, utility of microphysiological 

systems (80) for quantitative translation of transporter data, understanding of tissue 

concentrations/complex transporter-mediated DDIs and/or their potential for PKPD 

characterization remains to be established.
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Modeling examples summarized from the literature, regulatory submissions or drug 

development case studies highlight the importance of informative clinical data for model 

verification and/or parameter optimization. For example, urinary excretion data is necessary 

for the optimization of REF/kinetic parameters for transporters expressed on the apical 

membrane of renal proximal tubule cells (e.g., MATEs) (51), whereas plasma data are 

sufficient for optimization of basolateral transporters (e.g., OAT3, (48)). Some examples in 

this white paper illustrate scenarios where efficacy and safety of a drug were linked to 

model-predicted tissue concentrations rather than surrogate plasma concentrations. It is 

envisaged that increased availability of quantitative PET/MRI tissue data will refine/’re-

qualify’ existing PBPK models for clinical transporter probes to improve translation of 

transporter-mediated tissue distribution and increase confidence in the design of prospective 

DDI studies (in combination with corresponding perpetrator PBPK model(s) and monitoring 

of endogenous transporter biomarkers, Figure 4). There is an increasing interest in using 

PBPK modeling to support dose optimization in organ impairment and understand the 

impact of disease on tissue exposure and transporter-mediated DDIs (often in conjunction 

with metabolic enzymes). Although existing mechanistic kidney models account for regional 

differences in blood and tubular fluid flows, implementation of heterogeneity in transporter 

and enzyme expression and regional scalars is still evolving as the data become available. 

Current mechanistic kidney and liver models have not yet implemented the impact of pH on 

transporter activity, or accounted for potential transporter trafficking. Transporter 

bidirectionality, electrochemical gradient driven transport (as proposed for OCT2, (51)), and 

basolateral efflux may all affect our understanding of major transporters driving hepatic/

renal clearance and corresponding DDIs. Further work and increased confidence is required 

for the application of pediatric PBPK models for drugs with transporter-mediated 

disposition, especially considering increased interest in model-informed dose 

recommendations for this patient population (81, 82). Refinement or bridging the knowledge 

gaps in systems parameters is required in the areas of transporter expression and ontogeny 

(53, 83, 84). Similarly, a number of studies suggest that differences in exposure to drugs that 

are OATP1B1 substrates between Japanese and Caucasians may not be solely attributed to 

differences in transporter activity/expression or genotype (75, 85, 86), highlighting 

challenges in extrapolating transporter-mediated PK across ethnic groups. All of the above, 

in conjunction with the potential interplay of transporters with metabolites (especially 

conjugates), both in the liver (enterohepatic circulation) and the kidney (87, 88), highlight 

areas for further work of relevance for predicting tissue/subcellular drug concentrations, 

clearance of drugs and complex DDIs.
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Abbreviations

BBB
blood-brain barrier

B/P
blood to plasma ratio

CHO cells
Chinese hamster ovary cells

CKD
chronic kidney disease

Cliver

liver concentration

CLint

intrinsic clearance

CLs
in,act

sinusoidal active influx clearance

CLs
ef,act

sinusoidal active efflux clearance

CLdif

passive diffusion

CLbile

canalicular efflux (biliary) clearance

CLmet

metabolic clearance

CMV
cytomegalovirus

Cplasma

plasma concentration

DDI
drug-drug interactions

ECM
Extended Clearance Model
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Fa
fraction absorbed

fu,brain

fraction unbound in brain

fu,cell

fraction unbound in cell

fu,liver

fraction unbound in liver

fu,medium

fraction unbound in medium

fu,p

fraction unbound in plasma

Gadoxetate, Gd-EOB-DTPA
gadolinium-ethoxybenzyl-diethylenetriame-pentaacetic acid

GFR
glomerular filtration rate

HCV
hepatitis C virus

HEK293 cells
human embryonic kidney 293 cells

HIDA
hepatobiliary imino diacetic acid

HSCT
hematopoietic stem cell transplant

HV
healthy volunteers

ka
oral absorption rates

IVIVC
in vitro-in vivo correlation

IVIVE
In vitro-in vivo extrapolation

Kp

total cell to medium concentration ratio or measured tissue partition coefficients
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Kp,u

total cell-to-unbound medium concentration ratio

Kp,uu

steady-state unbound tissue-to-blood partition coefficient

LogP
log octanol:water partition coefficient

MEB
99mTc–mebrofenin

MRI
magnetic resonance imaging

MSI
mass spectrometry imaging

MW
Molecular Weight

NASH
non-alcoholic steatohepatitis

NH4Cl
ammonium chloride

OCA
obeticholic acid

Papp

apparent permeability

PBPK
Physiologically-based pharmacokinetic

PD
pharmacodynamics

PET
positron emission tomography

PI
protease inhibitor

PK
pharmacokinetic

pKa
log acid dissociation constant
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PMDA
Pharmaceuticals and Medical Devices Agency

RAF
relative activity factor

REF
relative expression factor

SCH
sandwich-cultured hepatocytes

SPECT
single-photon emission computed tomography

VL
viral load

Vss
apparent volume of distribution.
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Figure 1. 
The extended clearance model for hepatic disposition of a drug described by sinusoidal 

active influx (CLs
in,act) and efflux clearances (CLs

ef,act), passive diffusion (CLdif), 

canalicular efflux (biliary) clearance (CLbile), metabolic clearance (CLmet), hepatic blood 

flow, Qh, and fraction unbound of the drug in the blood (fub). Total CLs
in and CLs

ef shown 

in governing equations include both active and passive processes (e.g., CLs
in = CLs

in,act + 

CLdif). For all graphs, the red and blue lines represent the systemic and hepatic drug 

concentration-time profile, respectively. The blue and red shaded areas represent the relative 

systemic and hepatic drug AUC, respectively. A–C) CLs
in is the rate determining step in the 

hepatic CL of a drug (CLs
ef ≪ (CLmet + CLbile)) thus creating a sink condition in the liver 

(e.g., rosuvastatin). When the aforementioned condition is met, the systemic AUC of the 

drug will increase when CLs
in,act is inhibited (A vs. B, top/red panels) but not when CLmet + 

CLbile is inhibited (A vs. C, top/red panels), even if there is significant elimination of the 

drug via metabolism or biliary efflux. In contrast, the hepatic AUC of the drug will not 

change when CLs
in,act is inhibited (A vs. B, bottom/blue panels) provided that the liver is the 

predominant or sole elimination organ but the hepatic drug concentration-time profile (e.g., 

Cmax and Tmax) will be altered. The hepatic AUC of the drug will increase when CLmet (or 
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CLbile) is inhibited (A vs. C, bottom/blue panels). D–E) CLmet and/or CLbile become the 

rate determining step in the hepatic CL of a drug when a drug can easily traverse the 

sinusoidal membrane (CLs
in =CLs

ef and much greater than CLmet + CLbile, perfusion limited 

model). When this condition is met, the systemic and hepatic AUC of the drug will increase 

if either CLmet or CLbile is inhibited (D vs. E). F–I) All hepatobiliary clearances affect 

hepatic CL of the drug when the drug is substrate of both enzymes and transporters but 

neither of the previous extreme conditions apply (e.g., repaglinide). Under this condition, 

inhibition of any of the hepatobiliary clearance will result in changes in the systemic AUC of 

the drug: increase due to CLs
in,act, decrease due to CLs

ef,act, and increase due to CLmet or 

CLbile (F vs. G, H, I top/red panels, respectively). However, as long as the liver is the 

predominant elimination organ, the hepatic AUC of the drug will not change if CLs
in,act or 

CLs
ef,act are inhibited (F vs. G and H, bottom/blue panels, respectively). Hepatic AUC of the 

drug will increase when CLmet or CLbile is inhibited (F vs. I, bottom/blue panels). The 

following values were used for simulation A–C: CLdif= 0.1 L/min, CLs
in,act = 10 L/min, 

CLs
ef,act = 0 L/min, CLmet + CLbile = 1.2 L/min, 95% inhibition of CLs

in,act or CLmet + 

CLbile was simulated. D–E: CLdif= 10 L/min, CLs
in,act = CLs

ef,act = 0.1 L/min (CLs
in = 

CLs
ef), CLmet + CLbile = 1.2 L/min, 95% inhibition of CLmet + CLbile was simulated. F–I: 

CLdif= 0.1 L/min, CLs
in,act = 1 L/min, CLs

ef,act = 0.5 L/min, CLmet + CLbile = 1.2 L/min, 

95% inhibition of individual parameters was simulated. In all scenarios, liver is the main 

eliminating organ, Qh was set arbitrarily at 1 L/min, and fub = fu,liver =1. Steady-state Kpuu 

values calculated from individual parameters are shown. Figure is adapted and revised from 

Patilea-Vrana and Unadkat (Patilea-Vrana, G. & Unadkat, J.D. Transport vs. Metabolism: 

What Determines the Pharmacokinetics and Pharmacodynamics of Drugs? Insights From the 

Extended Clearance Model. Clin Pharmacol Ther 100, 413–8 [2016].).
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Figure 2. 
(Upper) Simulated and individual observed plasma concentrations for an oral dose of 100 

mg. (Lower) Predicted and Observed Cmax and AUC at doses of 30 mg to 2000 mg.

Guo et al. Page 32

Clin Pharmacol Ther. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A) A summary of the disposition characteristics of letermovir. B) The workflow of 

letermovir PBPK model development and the model qualification plan. An initial PBPK 

model was built in Simcyp® using a combination of physicochemical properties, preclinical 

data (in vitro and in vivo), and human ADME information of letermovir. In the next stage, 

the letermovir PBPK model was refined after the model parameters were optimized by 

plasma concentration-time profiles and PK data from Caucasian healthy volunteers (HV) 

receiving single IV and oral doses of letermovir at various dose levels in Phase 1 studies. 

Selected parameters, including the intrinsic clearance via oxidative metabolism and biliary 

excretion, Vmax and Km parameters characterizing OATP1B-mediated transport into the 

liver, the unbound fraction in intracellular water, Kp scalar and first order oral absorption 

rates (ka) were optimized by the observed IV and oral healthy volunteer PK data. The final 

PBPK model was qualified based on PK and concentration-time profiles after multiple IV 

and oral doses of letermovir administered to Caucasian HV. Subsequently, the qualified 

letermovir PBPK model was applied to address the following questions for the development 

program: 1) explain mechanistically the difference in letermovir exposure observed in 

Caucasian and Japanese healthy subjects; 2) generate hypotheses that describe the exposure 

difference observed in Caucasian HV and hematopoietic stem cell transplant (HSCT) 

recipients after oral dosing. C - D) Observed and simulated systemic PK of letermovir in 

Caucasian healthy volunteers after single doses across the dose range of 120 to 720 mg IV 

(C) and 120 to 480 mg PO (D).
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Figure 4. 
Integrated workflow to illustrate in vitro, preclinical and clinical data generation and 

modeling considerations to identify, characterize and predict human pharmacokinetics in 

plasma and tissues for molecules where transport plays an important role.
aCase study 1, bCase study 3, cTable 1, dCase study 2
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	Abstract
	IN VITRO METHODS FOR ESTIMATION OF INTRACELLULAR/SUBCELLULAR DRUG CONCENTRATIONS
	Binding Method—Total cell to medium concentration ratio (Kp), fu,cell or fraction unbound in tissue (e.g., fu,liver) and fraction unbound in medium (fu,medium) are individually measured and combined to derive the Kp,uu value (Table 1). Binding may be determined using equilibrium dialysis of cell or tissue homogenate. By accounting for the dilution of homogenate in the assay, fu,cell or fu,liver can be calculated. The method thus represents a comparatively direct measurement of cellular drug binding with a central assumption that binding is not altered by the homogenization procedure. Non-saturation of binding for a chemically diverse set of compounds, along with the nature of the molecular properties most strongly associated with binding (high lipophilicity, small cross-sectional area, and a preference for positive molecular charge) suggests that partitioning to phospholipid membranes is a major contributor to cell binding (12). However, binding equilibrium between cellular compartments may shift in homogenized vs. live cells, different dilution factors which impact cell density may be used for homogenized cells/tissues (19), incubation media may differ regarding albumin content (20), and depending on the homogenization procedures (2), intracellular organelle membranes may or may not be disrupted. These factors may have contributed to some contradictory findings in fu,cell values between laboratories discussed below.Temperature Method—Instead of combining two distinct assays for fu,cell and Kp as in the Binding Method, Kp,uu is determined by measuring steady-state medium and cell concentration with the same method, but at two different temperatures: 37°C and 4°C (16) (Table 1). The estimation of fu,cell is based on the steady-state uptake at 4°C. Important assumptions underlying this method are that tissue binding does not involve temperature- or energy-dependent processes (e.g., transporter-mediated flux, metabolism, and ion gradients that might shift cellular equilibria when non-functional at 4°C). However, the impact of temperature on tissue binding, membrane potential and fluidity are not well established. In addition, disadvantages associated with disruption and release of organelle proteins remain. Initial studies have indicated certain temperature dependence of binding and tissue permeability (15, 17, 21), but this needs to be confirmed with large, chemically diverse datasets.Structure-based Prediction Method—Initial studies in suspended rat hepatocytes showed a correlation between Logfu,cell and LogD7.4 for 13 anionic transporter substrates (18). The correlation of anionic drugs was later extended to plated (22) and suspended human hepatocytes (15). LogD7.4 was also an important predictor of fu,cell, along with additional molecular properties (charge and steric descriptors putatively describing interactions with cellular membranes) for a larger set of anionic, cationic and neutral drugs (12). The fu,cell estimated based on physicochemical properties has been further utilized to calculate Kp,uu (Table 1). Since either Binding or Temperature Methods were used to derive initial experimental data, the associated limitations have been carried over (Table 1).Kinetic Modeling Method—This method uses mathematical modeling to derive Kp,uu estimates from cellular drug accumulation experiments. For example, the initial drug uptake rate was measured in suspended hepatocytes in the presence of a nonspecific cytochrome P450 inhibitor (18). Kinetic parameters including active uptake Vmax, Km, and passive diffusion were obtained simultaneously to calculate Kp,uu (Table 1), using a reduced form of the extended clearance equation. The method assumes knowledge of the mechanisms involved in cellular drug disposition, and may lead to overestimation of the true Kp,uu for the following reasons: 1) the system does not consider the influence of efflux transporters, biliary excretion or unaccounted non-CYP mediated metabolism), 2) active influx clearance is calculated based on the initial uptake rate, which may include drug transport mediated by both facilitated diffusion transporters and active transporters, and 3) the passive influx diffusion permeation is assumed to be equal to the passive efflux diffusion permeation; this may not always be true, for example in the case of anions (17).Extended Clearance Model (ECM) Method—Steady-state Kp,uu can be described using the extended clearance equation incorporating the individual processes involved in in vitro hepatic clearances (15, 17). The fundamental difference from the above-mentioned Kinetic Modeling method is that the impact of compound disappearance via sinusoidal efflux, biliary excretion, and metabolism is explicitly considered. One limitation is that in vitro-in vivo correlation (IVIVC) for the parameters used to calculate Kp,uu has not been fully validated. As in the Kinetic Modeling method, accurate predictions rely on knowledge of relevant drug disposition mechanisms and their adequate parameterization. In both the Kinetic Modeling method and ECM method, binding is not addressed explicitly, and can be calculated from the model-based Kp,uu if combined with a Kp measurement in the same system. However, errors in estimating parameters contributing to Kp,uu would propagate to calculation of fu,cell.Overall, the Kinetic Modeling method and ECM method rely on assumptions that the relevant cellular processes are known and respective parameters can be accurately determined. These methods require rich datasets generated by laborious experimental processes in order to minimize uncertainty in parameter estimates. In contrast, the Structure-based Prediction Method may provide an initial fu,cell estimate in the absence of in vitro data if the compound properties are within the physicochemical space of compounds in the training set used to define the relationship with fu,cell. The Binding and Temperature methods are more agnostic regarding the processes involved compared to the Kinetic Modeling method and ECM method, while at the same time less mechanistically informative.Estimation of Subcellular Drug Concentrations—To fully understand the factors determining drug cellular concentrations it is important to consider subcellular drug distribution. Drug molecules may distribute preferentially to various subcellular organelles even without transporter effects, due to the electrochemical and pH gradients across membranes and interactions driven by compound lipophilicity, charge, and ionization potential. The subcellular accumulation of lipophilic bases may impact Kp,uu (15, 23). Indirect experimental methodologies used for estimation of subcellular drug concentrations have been discussed previously (2, 23, 24). Recent examples in combining experimental approaches with mechanistic modeling to predict subcellular drug concentrations are highlighted here.Lysosomal sequestration may be an important contributor to the accumulation of drugs that are lipophilic (LogP>1) and amphiphilic with ionizable amines (pKa>6) in lysosome-rich cells such as Kupffer cells, and alveolar macrophages. The extent of lysosomal sequestration can be determined by measuring drug concentrations in cultured cells using indirect methods that abolish the lysosome-cytosol pH gradient, e.g., ammonium chloride (NH4Cl) (23) or chloroquine (12). Of note, modulating the pH gradient affects both total cell-to-unbound medium concentration ratio (Kp,u) and Kp,uu. Alternatively, cellular accumulation can be measured at low and high drug concentrations, assuming that saturable cellular uptake at a low drug concentration is driven by lysosomal sequestration rather than a transporter-mediated process. Lysosomal sequestration may change accumulation kinetics, as observed with the altered uptake rate of clarithromycin in the presence of NH4Cl in the macrophage cell line NR8383 (23). Indirect experimental methods do not account for the impact on drug binding to membranes due to changes in ionic strength and membrane surface potential at higher drug concentrations. Lysosomal drug concentrations can be directly measured by isolating lysosomes with novel techniques using magnetic nanoparticles (25); evaluation of this method is in progress.Previously, generic in silico cell models were proposed to describe the dynamics of drug accumulation in lysosomes (26). Recently, these models were refined and adapted to specific cell types (e.g., macrophages) accounting for pH gradients and electrochemical potentials across cell and organelle membranes to simulate drug concentrations in cytosol, lysosomes and mitochondria. Membrane partitioning either predicted from phospholipid membrane composition data or measured by indirect methods was incorporated into models to predict lysosomotropic properties of respiratory drugs (27). The application of this mechanistic cellular model to predict lysosomal drug concentrations needs further evaluation with larger basic drug datasets and extension of the model to other cell types (e.g., hepatocytes) where lysosomotropic drugs may accumulate and induce phospholipidosis. Recently, an extended mechanistic tissue-composition based model accounting for lysosomal sequestration was proposed and evaluated using a dataset of 28 basic drugs. Differences in cytosolic and lysosomal pH and in lysosomal volume fractions of the individual cell types/tissues were implemented in the model. Consideration of lysosomal sequestration moderately improved the accuracy of Kp,u predictions (up to 3-fold change) for lysosome-rich tissues. This result is not entirely surprising as the fraction of lysosome-rich cells (e.g., Kupffer cells) is generally low (<5%) in tissues (28).Positively charged drug molecules may be trapped in mitochondria as a result of the negative transmembrane electrical potential relative to the cytosol. A mechanistic model accounting for pH and electrochemical potentials across plasma and organelle membranes (including mitochondria) and permeability of both ionized and neutral species explained reasonably the observed Kp,uu for multiple tissues in rats treated with investigational drugs (e.g., hepatoselective glucokinase activators) (29). Utilizing a similar approach and additional incorporation of a bi-directional, saturable effect on the ionized permeability to characterize transporter uptake kinetics, metformin subcellular concentrations, including mitochondria, were predicted in stably transfected human embryonic kidney 293 (HEK293) cells (30).
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