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Abstract

This white paper examines recent progress, applications and challenges in predicting unbound and
total tissue and intra/subcellular drug concentrations using /n vitro and preclinical models, imaging
techniques and physiologically-based pharmacokinetic (PBPK) modeling. Published examples,
regulatory submissions and case studies illustrate the application of different types of data in drug
development to support modeling and decision making for compounds with transporter-mediated
disposition, and likely disconnects between tissue and systemic drug exposure. The goals of this
manuscript are to illustrate current best practices and outline practical strategies for selecting
appropriate /n vitro and in vivo experimental methods to estimate or predict tissue and plasma
concentrations, and to use these data in the application of PBPK modeling for human PK, efficacy
and safety assessment in drug development.

Keywords

Physiology-based pharmacokinetics; Transporters; In Vitro; Imaging; In-vitro in-vivo correlation;
Drug Development; Drug Transport; Drug-Drug Interactions; Distribution

Knowledge of unbound tissue drug concentrations is critical to the understanding of efficacy,
toxicity and drug-drug interactions (DDI) (1). Use of local interstitial concentrations to
predict receptor occupancy at the target tissue should improve decision making for candidate
molecules that meet the desired pharmacokinetic (PK) and pharmacodynamic (PD) profile.
For highly-permeable drugs interacting with plasma membrane receptor(s), the unbound
concentration at the site of action is assumed to be equal to the blood or plasma unbound
drug concentrations. However, when intracellular and subcellular targets are of interest, this
assumption may not be valid, especially for drugs with transporter-mediated disposition, as
the activity of transporters at the tissue-blood barrier can result in “asymmetry” between the
tissue and blood unbound drug concentrations (2). Transporter-mediated drug disposition
often entails the complex interplay of multiple processes and defining the rate determining
step and outcome of these multiple factors is a challenge (1, 3-5). As a result, profound
DDlIs can occur at the tissue level which cannot be discerned in a typical clinical DDI study
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where only the systemic concentrations of the substrate drug are measured. For example,
changes in liver (metformin) and brain (verapamil) concentrations in the presence of a
transporter inhibitor, which may have consequences on projected drug efficacy and safety,
may not be reflected in changes in plasma exposure (6, 7). The opposite can occur where a
profound DDI is observed in terms of changes in systemic concentrations, but without
impacting tissue drug exposure (e.g., no change in statin efficacy as a result of OATP1B1
polymorphism) (3). Furthermore, subcellular drug accumulation can result in toxicity, as
illustrated by fialuridine where a mitochondrial-membrane transporter is associated with
drug-induced liver injury (8). The extended clearance model defines the fundamental
principles to describe the interplay between passive diffusion, transporter-mediated
clearances and metabolism, which together with intracellular binding determine tissue drug
concentration (4, 5, 9, 10). The consequences of inhibition of certain transporter processes
on liver exposure will vary depending on the rate-determining step(s) of drug clearance and
whether liver is the predominant eliminating organ (Figure 1), or if there is also a significant
non-hepatic contribution to the elimination (Figure S1).

Physiologically-based pharmacokinetic (PBPK) modeling is a key translational tool that
allows mechanistic evaluation of the interplay of all processes governing drug distribution
and clearance, and simulation of both systemic and tissue exposure as a result of changes in
enzyme and/or transporter activity (1, 10, 11). The increased use of PBPK modeling in drug
development is reflected in the number and diversity of examples reported in the literature
and in regulatory submissions summarized here, together with recently published DDI and
PBPK guidance documents from regulatory agencies and ongoing discussions on PBPK
model verification/qualification (http://www.ema.europa.eu/docs/en_GB/document_library/
Scientific_guideline/2016/07/WC500211315.pdf; https://www.fda.gov/Drugs/
GuidanceComplianceRegulatorylnformation/Guidances/ucm064982.htm). Application of in
vitro-in vivo extrapolation (IVIVE) for transporter-mediated disposition in PBPK models
requires Kinetic determinations of transport processes in well-defined cellular systems and
knowledge of the transporter expression /in vitro in relation to /n vivo. The best practices for
selection of /n vitro systems, data analyses for acquiring transporter Kinetics, and the most
commonly used principles in transporter IVIVE have been summarized previously (10).
Recent progress in translation of transporter-mediated PK, including also specific
populations (organ impairment, disease), will be discussed in the sections below. Routine
verification of PBPK-based tissue predictions is not possible in humans, and the best
approach to circumvent this limitation is to verify predicted tissue drug concentrations for
selected model substrates that can interrogate the transporters of interest. Such verification is
possible with non-invasive imaging such as positron emission tomography (PET), single-
photon emission CT (SPECT), magnetic resonance imaging (MRI), or the more invasive
method, microdialysis (2).

Focusing on the progress since publication by Chu et al. (2), this whitepaper highlights
advantages and limitations of /n vitralpreclinical models, imaging methods and PBPK
modeling as tools to estimate or predict intracellular drug concentrations and potential
differences between tissue and systemic exposure in case of transporter-mediated
disposition. Integration of different approaches is illustrated by selected published examples,
regulatory submissions, industrial case studies and a proposed workflow. Opportunities and
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recommendations for future directions are discussed with a focus on refining translational
modeling of transporter-mediated PK and DDlIs.

IN VITRO METHODS FOR ESTIMATION OF INTRACELLULAR/
SUBCELLULAR DRUG CONCENTRATIONS

In vitro systems are important tools in analyzing determinants of intracellular/subcellular
drug disposition and establishing appropriate parameters for transporter IVIVE (2, 10). /n
vitro studies also provide estimates for crucial parameters such as fraction unbound in cell
(fu,cen) and steady-state unbound tissue-to-blood partition coefficient (Kp ) that can be
used as inputs in mechanistic modeling. As detailed previously (2, 3) and conceptually
illustrated in Figure 1, K, reflects the complex interplay of multiple processes governing
unbound tissue drug concentrations. This section provides a critical overview of /n vitro
methods to determine intracellular and subcellular drug concentrations, with a focus on the
recent progress in determining Kp, . In addition, application of transporter expression data
in proteomic-informed transporter IVIVE is illustrated.

Most drug accumulation assays measure total cellular drug concentrations, which represents
the sum of drug accessible to the cytosol, drug bound to cellular membranes and
macromolecules, and drug that is distributed to subcellular organelle compartments
including lysosomes, mitochondria and nuclei. Current methods to determine 7 vitro Ky
and estimate cellular drug binding can be divided into five categories (details in Table 1): i)
Binding Method to directly measure binding to cell or tissue homogenate (12-15); ii)
Temperature Method to calculate binding from total cellular drug accumulation at 37°C and
4°C (16, 17); iii) Structure-based Prediction Method to estimate binding from molecular
properties by structure-property relationship models (12, 18); iv) Kinetic Modeling Method
to derive binding by fitting mechanistic models to drug accumulation data (18); and v)
Extended Clearance Model (ECM) Method to calculate Ky, ,, based on transporter kinetic
parameters derived from in vitro assays (15, 17). Each method is associated with specific
assumptions that should be considered when comparing results and selecting the most
suitable approach for a particular application.

Binding Method—Total cell to medium concentration ratio (Kp), fy cer or fraction
unbound in tissue (e.g., f, jiver) and fraction unbound in medium (f; medium) are individually
measured and combined to derive the Kp ,, value (Table 1). Binding may be determined
using equilibrium dialysis of cell or tissue homogenate. By accounting for the dilution of
homogenate in the assay, f, celj Or Ty, jiver Can be calculated. The method thus represents a
comparatively direct measurement of cellular drug binding with a central assumption that
binding is not altered by the homogenization procedure. Non-saturation of binding for a
chemically diverse set of compounds, along with the nature of the molecular properties most
strongly associated with binding (high lipophilicity, small cross-sectional area, and a
preference for positive molecular charge) suggests that partitioning to phospholipid
membranes is a major contributor to cell binding (12). However, binding equilibrium
between cellular compartments may shift in homogenized vs. live cells, different dilution
factors which impact cell density may be used for homogenized cells/tissues (19), incubation
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media may differ regarding albumin content (20), and depending on the homogenization
procedures (2), intracellular organelle membranes may or may not be disrupted. These
factors may have contributed to some contradictory findings in fy, cej values between
laboratories discussed below.

Temperature Method—Instead of combining two distinct assays for f, ceyj and Ky as in
the Binding Method, K, is determined by measuring steady-state medium and cell
concentration with the same method, but at two different temperatures: 37°C and 4°C (16)
(Table 1). The estimation of f, ¢ is based on the steady-state uptake at 4°C. Important
assumptions underlying this method are that tissue binding does not involve temperature- or
energy-dependent processes (e.g., transporter-mediated flux, metabolism, and ion gradients
that might shift cellular equilibria when non-functional at 4°C). However, the impact of
temperature on tissue binding, membrane potential and fluidity are not well established. In
addition, disadvantages associated with disruption and release of organelle proteins remain.
Initial studies have indicated certain temperature dependence of binding and tissue
permeability (15, 17, 21), but this needs to be confirmed with large, chemically diverse
datasets.

Structure-based Prediction Method—Initial studies in suspended rat hepatocytes
showed a correlation between Logf, ce; and LogD7 4 for 13 anionic transporter substrates
(18). The correlation of anionic drugs was later extended to plated (22) and suspended
human hepatocytes (15). LogD7 4 was also an important predictor of f;, c¢j, along with
additional molecular properties (charge and steric descriptors putatively describing
interactions with cellular membranes) for a larger set of anionic, cationic and neutral drugs
(12). The f,, cey) estimated based on physicochemical properties has been further utilized to
calculate Kp ,, (Table 1). Since either Binding or Temperature Methods were used to derive
initial experimental data, the associated limitations have been carried over (Table 1).

Kinetic Modeling Method—This method uses mathematical modeling to derive Ky yy
estimates from cellular drug accumulation experiments. For example, the initial drug uptake
rate was measured in suspended hepatocytes in the presence of a nonspecific cytochrome
P450 inhibitor (18). Kinetic parameters including active uptake Vmax, Km, and passive
diffusion were obtained simultaneously to calculate K, (Table 1), using a reduced form of
the extended clearance equation. The method assumes knowledge of the mechanisms
involved in cellular drug disposition, and may lead to overestimation of the true Kp, ,, for the
following reasons: 1) the system does not consider the influence of efflux transporters,
biliary excretion or unaccounted non-CYP mediated metabolism), 2) active influx clearance
is calculated based on the initial uptake rate, which may include drug transport mediated by
both facilitated diffusion transporters and active transporters, and 3) the passive influx
diffusion permeation is assumed to be equal to the passive efflux diffusion permeation; this
may not always be true, for example in the case of anions (17).

Extended Clearance Model (ECM) Method—Steady-state Kp ,, can be described
using the extended clearance equation incorporating the individual processes involved in /n
vitro hepatic clearances (15, 17). The fundamental difference from the above-mentioned
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Kinetic Modeling method is that the impact of compound disappearance via sinusoidal
efflux, biliary excretion, and metabolism is explicitly considered. One limitation is that /n
vitro-in vivo correlation (IVIVC) for the parameters used to calculate Ky, has not been
fully validated. As in the Kinetic Modeling method, accurate predictions rely on knowledge
of relevant drug disposition mechanisms and their adequate parameterization. In both the
Kinetic Modeling method and ECM method, binding is not addressed explicitly, and can be
calculated from the model-based Ky, , if combined with a K, measurement in the same
system. However, errors in estimating parameters contributing to Kp, ,, would propagate to
calculation of f; ce.

Overall, the Kinetic Modeling method and ECM method rely on assumptions that the
relevant cellular processes are known and respective parameters can be accurately
determined. These methods require rich datasets generated by laborious experimental
processes in order to minimize uncertainty in parameter estimates. In contrast, the Structure-
based Prediction Method may provide an initial f, c¢)) estimate in the absence of /i vitro data
if the compound properties are within the physicochemical space of compounds in the
training set used to define the relationship with f,, cej;. The Binding and Temperature
methods are more agnostic regarding the processes involved compared to the Kinetic
Modeling method and ECM method, while at the same time less mechanistically
informative.

Estimation of Subcellular Drug Concentrations—To fully understand the factors
determining drug cellular concentrations it is important to consider subcellular drug
distribution. Drug molecules may distribute preferentially to various subcellular organelles
even without transporter effects, due to the electrochemical and pH gradients across
membranes and interactions driven by compound lipophilicity, charge, and ionization
potential. The subcellular accumulation of lipophilic bases may impact K , (15, 23).
Indirect experimental methodologies used for estimation of subcellular drug concentrations
have been discussed previously (2, 23, 24). Recent examples in combining experimental
approaches with mechanistic modeling to predict subcellular drug concentrations are
highlighted here.

Lysosomal sequestration may be an important contributor to the accumulation of drugs that
are lipophilic (LogP>1) and amphiphilic with ionizable amines (pKa>6) in lysosome-rich
cells such as Kupffer cells, and alveolar macrophages. The extent of lysosomal sequestration
can be determined by measuring drug concentrations in cultured cells using indirect methods
that abolish the lysosome-cytosol pH gradient, e.g., ammonium chloride (NH4CI) (23) or
chloroquine (12). Of note, modulating the pH gradient affects both total cell-to-unbound
medium concentration ratio (Kp y) and Ky yy. Alternatively, cellular accumulation can be
measured at low and high drug concentrations, assuming that saturable cellular uptake at a
low drug concentration is driven by lysosomal sequestration rather than a transporter-
mediated process. Lysosomal sequestration may change accumulation kinetics, as observed
with the altered uptake rate of clarithromycin in the presence of NH,4CI in the macrophage
cell line NR8383 (23). Indirect experimental methods do not account for the impact on drug
binding to membranes due to changes in ionic strength and membrane surface potential at
higher drug concentrations. Lysosomal drug concentrations can be directly measured by
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isolating lysosomes with novel techniques using magnetic nanoparticles (25); evaluation of
this method is in progress.

Previously, generic in silico cell models were proposed to describe the dynamics of drug
accumulation in lysosomes (26). Recently, these models were refined and adapted to specific
cell types (e.g., macrophages) accounting for pH gradients and electrochemical potentials
across cell and organelle membranes to simulate drug concentrations in cytosol, lysosomes
and mitochondria. Membrane partitioning either predicted from phospholipid membrane
composition data or measured by indirect methods was incorporated into models to predict
lysosomotropic properties of respiratory drugs (27). The application of this mechanistic
cellular model to predict lysosomal drug concentrations needs further evaluation with larger
basic drug datasets and extension of the model to other cell types (e.g., hepatocytes) where
lysosomotropic drugs may accumulate and induce phospholipidosis. Recently, an extended
mechanistic tissue-composition based model accounting for lysosomal sequestration was
proposed and evaluated using a dataset of 28 basic drugs. Differences in cytosolic and
lysosomal pH and in lysosomal volume fractions of the individual cell types/tissues were
implemented in the model. Consideration of lysosomal sequestration moderately improved
the accuracy of K, , predictions (up to 3-fold change) for lysosome-rich tissues. This result
is not entirely surprising as the fraction of lysosome-rich cells (e.g., Kupffer cells) is
generally low (<5%) in tissues (28).

Positively charged drug molecules may be trapped in mitochondria as a result of the negative
transmembrane electrical potential relative to the cytosol. A mechanistic model accounting
for pH and electrochemical potentials across plasma and organelle membranes (including
mitochondria) and permeability of both ionized and neutral species explained reasonably the
observed Ky yy for multiple tissues in rats treated with investigational drugs (e.g.,
hepatoselective glucokinase activators) (29). Utilizing a similar approach and additional
incorporation of a bi-directional, saturable effect on the ionized permeability to characterize
transporter uptake kinetics, metformin subcellular concentrations, including mitochondria,
were predicted in stably transfected human embryonic kidney 293 (HEK293) cells (30).

Method comparison and qualification

Comparison of Cellular Systems—\Various /n vitro cellular systems have been used to
determine /n vitro K, yy and estimate cellular drug binding (Table 1), and the associated
advantages and limitations are summarized below. Most methods have focused on suspended
hepatocytes, except for the Binding Method which uses multiple cell systems. In principle,
the above-mentioned fundamental approaches can be applied for diverse primary cell types
to estimate unbound drug concentrations in various human tissues. These predicted regional
exposures can then be correlated with efficacy and/or safety endpoints, as illustrated in the
Table S1a for brain Ky yy.

Cell lines such as HEK293 (12) and HelLa (31) are most commonly used as hosts to express
membrane transporters or proteins that are therapeutic drug targets. These cell systems are
relatively deficient in baseline drug transport/metabolic activities, but may be used in multi-
well formats and optimized into high-throughput tools for exploring K, y, during early drug
discovery. However, the intracellular architecture of these cell lines does not exactly mimic
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native human primary cell systems and reproducibility of K ,, estimates from different cell
passages has not been reported.

Kp,uu has been determined in different formats of primary hepatocytes, namely suspended
and plated hepatocytes (14, 17, 18, 32), as well as sandwich-cultured hepatocytes (SCH) (13,
33). Culture conditions have been shown to affect the expression and activity of uptake and
efflux transporters, as well as drug-metabolizing enzymes, which should be considered when
comparing K, ,y results. For instance, suspended hepatocytes (fresh rat and cryopreserved
human hepatocytes) are known to exhibit passive, active uptake and metabolic activity, but
not efflux, which is captured in SCH. Determination of Kp, ,, in SCH may be useful when
attempting to correlate unbound intracellular drug concentrations with endpoints including
1) efflux clearance, 2) hepatotoxicity potentially due to perturbation of hepatic efflux
transporters, 3) drug efficacy when the target protein is intracellularly located, and 4) DDI
predictions due to inhibition of metabolism and efflux transporters (34). Although a good
correlation was observed between K, y in rat SCH and /n siturat liver perfusion systems for
selected compounds (13), a recent study reported that rat SCH K ,, estimates were lower
compared to data from suspended or plated hepatocytes (33).

Brain homogenates and slices (2) from preclinical species are commonly utilized for
estimating tissue Ky, yy. Brain slices may be more physiologically relevant than brain
homogenates because of intact cell-cell interactions, retention of pH gradients and active
transport systems (Table S1b). However, due to the absence of the blood-brain barrier, brain
slices are not an appropriate model to evaluate permeability across the blood-brain barrier
and the role of efflux transporters.

Kp,uu @and fy cei Comparisons—Side-by-side comparisons of different Ky, and'f, ceiy
methodologies are rare to date, and published datasets include only partially overlapping
compounds. The intracellular binding of model drugs measured by the Binding Method has
shown high correlation between values obtained in the HEK293 cell line, human or rat
hepatocytes (12, 19) and brain tissue (35); differences in lipid and/or protein content were
suggested to account for differing binding capacity between cell and tissue types. Rat fy; jiver
was proposed as a potential surrogate for liver binding in other species, including human, in
early drug discovery based on data from 22 structurally diverse compounds (19). A recent
analysis (17) reported that the model-based estimates were typically higher and more
sensitive to inter-batch variability than the temperature-based estimates. In a comprehensive
comparison of the f, ¢ values between three methods (the Binding, Temperature and
Structure-based Prediction Methods), Riede et al. (15) noted a consistently lower unbound
fraction using the Binding Method, with half of the 18 compounds exhibiting differences
greater than 10-fold between the methods. However, such a trend is not consistent with data
obtained by the Binding Method in other laboratories (Figure S2A). A comparison of
literature reported f,, cej values for the seven compounds for which data were available for
all three major methods is shown in Figure S2B. Excluding the Riede et al. Binding Method-
based f cep data (15), which were consistently lower than the other reports (19-fold on
average), all the other data were within 1-6-fold of the per-compound average (mean: 1.9-
fold). Thus, for this limited dataset the three major methods appear to provide consistent
information about cellular drug binding.
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In general, the /n vitro K, data generated from different methods (Table S2) varied with
the exception of a close correlation between values obtained by the Binding Method and the
ECM method for 11/18 compounds. The Structure-based Prediction and Temperature
Methods trended higher in most of the same 18 compounds compared to the ECM method,
although the Temperature Method has shown better correlation with the ECM method for
compounds with certain characteristics, i.e., ECM class 2/4 and 1/3 with low intrinsic
clearance (15). The Kinetic Modeling Method also generated higher /n vitro K, , values
than the ECM method for three statins, but consideration of inside-negative membrane
potential resulted in a closer agreement with ECM (17). In summary, comparisons of
different Ky yy andfy cei methodologies are currently based on limited datasets, and need to
be extended to compounds with more diverse chemistry structures and drug disposition
pathways.

In Vitro-In Vivo Correlation (IVIVC) of In Vitro K, ,,, Data—Rich target-site data
collected in preclinical species allowed the development and refinement of comprehensive
models to predict /n vivo K, and understand IVIVC of /in vitro K, . Rat and monkey
IVIVC studies exemplify this use of preclinical data as a proof-of-concept (Table S2).
Examples of successful within-species IVIVVC have been published recently, as illustrated
for rosuvastatin and pravastatin (14). Although promising, this approach needs to be
validated, replicated and examined further using a large diverse group of compounds
including those with extensive metabolism. Another study reported that ECM-derived /n
vitro Kp, yy combined with intrahepatic concentrations and BSEP inhibition data predicted
clinical drug-induced cholestasis for 17/18 compounds (36). However, opinions differed
concerning categorization of the cholestasis class for some of the compounds investigated
(36, 37). In addition, preclinical whole organ perfusion studies have been used to develop
predictive models for unbound intracellular concentrations (21) and knockout and human
transporter ‘knock-in’ rodent models continue to aid mechanistic understanding of the role
of respective transporter(s) (38, 39). Several recent examples of experimental and modeling
advances in brain Kp ,, determination and prediction in mouse, rat, and monkey are listed in
Tables S1a and S1b. Direct scaling of preclinical results to human may not be feasible given
the known and possibly as yet unknown differences in transporter protein expression/activity
across species (40).

nformed transporter in vitro-in vivo extrapolation (IVIVE)

Consideration of differences in the transporter activity/expression between /n vitro systems
and /n vivois an important factor for the prediction of transporter-mediated clearance.
Progress to date has been limited for the relative activity factor (RAF) approach (41) due to
the lack of availability of selective in vitro/in vivo transporter probe substrates. In contrast,
more advances have been made in quantitative proteomics informing the relative expression
factor (REF) (42, 43), as illustrated by prediction of transporter-mediated clearance of drugs
from data obtained in HEK cells individually expressing the relevant transporters (44, 45).
Multiple studies have quantitatively analyzed cellular systems and tissues by mass
spectrometry for total transporter abundance in brain, liver, intestine, kidney, lung, as well as
hepatic uptake transporter expression in the plasma membrane (See supplemental reading
list for more information). Recent meta-analysis of reported OATP abundance data in plated
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and sandwich-cultured hepatocytes and liver showed that the mean abundance of hepatic
uptake transporters, except for OATP2B1, did not differ significantly between cryopreserved
human hepatocytes and liver tissue (42), while another study indicated significantly lower
transporter expression in freshly isolated human hepatocytes relative to human liver from the
same donors (45). Most of the proteomic studies do not provide corresponding
pharmacogenomic or functional activity data to allow delineation of the true inter-individual
variability and experimental/technical variability; the latter may result from choices of
standard peptides (46), sample preparations or the proteomic methodology/membrane
isolation and fractionation (47). While the majority of transporter IVIVE studies have
focused on hepatic effects, transporters expressed in other tissues have also been
investigated. For some renal transporters (e.g., OAT3), IVIVE was successful by applying
directly the /in vitro-derived transporter data to predict /n vivo disposition (48), whereas in
other instances optimization of transporter activity/expression was performed using clinical
data to bridge the gap between in vitro extrapolation and the actual observation (49-51).

It is evident that expression data alone may not explain the under-prediction of transporter-
mediated clearance and need for compound-dependent scaling factors. But the use of
transporter abundance data in IVIVE offers added value by allowing rational incorporation
of inter-individual variability, which enables characterization of different populations (52,
53). Considering existing methodological differences, even when the same biological
samples are analyzed (47), it would be prudent to apply the same proteomic methodology
for the analysis of cellular and tissue samples when possible. Additional studies that provide
abundance-functional activity correlations are needed to profile enzymes and transporter
expression of more diverse tissues/disease states and larger sample sizes. This information
would allow for incorporation of population variability and increase confidence in the use
proteomic data in PBPK modeling.

IMAGING METHODS FOR MEASURING DRUG CONCENTRATIONS IN

TISSUES

PET

Nuclear imaging techniques, such as PET and SPECT, involve administration of a
radiolabeled drug of interest and non-invasively measuring tissue drug concentrations in 3-
dimensions (54). PET imaging utilizes drugs labeled with positron-emitting isotopes such as
11C or 18F that have short half-lives (~20 and 110 min, respectively). Since these isotopes
can be incorporated into the structure of the drug, the tissue distribution of the drug itself,
rather than its derivative/analog, can be studied. When determining tissue drug
concentrations, PET provides greater spatial localization and resolution (within ~4-5 mm)
than -yS/SPECT (~10 mm) because the latter uses radioisotopes that emit gamma photons in
only one direction. The resolution of PET imaging is sufficient to discern /n vivo regional
distribution of drugs within an organ (e.g., different parts of the brain, Table 2), but like all
other imaging methods currently available, it is not sufficient to discern drug distribution at
the cellular/subcellular level. The advantage of the short half-life of PET isotopes is that
radiation exposure to the subject is limited and studies can be conducted in the same subject
with and without transport inhibitor(s) on the same day. Due to sensitivity of PET, the
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labeled drug can be administered in micro or tracer doses (picomolar to nanomolar for PET
vs. nanomolar to micromolar for SPECT) and, therefore, pharmacological effects are
avoided. If nonlinearity in tissue distribution is a concern, the PET tracer could be co-
administered with pharmacological doses of the unlabeled drug (examples in Table 2). The
disadvantages of PET imaging are that the synthesis of the labeled drug has to be conducted
in-house immediately prior to drug administration, and PET requires a multidisciplinary
team and costly equipment.

Imaging methods have the further disadvantage that they cannot distinguish between the
parent drug and metabolite(s) if the metabolite(s) retain(s) the label; therefore, metabolically
stable PET tracers are preferred (6, 54, 55). For drugs that are extensively metabolized and
administered as tracers, tissue drug distribution must be conducted over a period of time
when the metabolism of the drug is minimal. This can be determined /n vitro (e.g.,
hepatocytes (55)) or in vivo in real-time (necessary due to short half-life of the isotopes),
using the metabolite-to-parent drug concentration ratio in the blood/plasma as a surrogate
for the degree of metabolism in the tissue (6). In addition, both PET and yS/SPECT cannot
distinguish between the total and unbound drug. However, this disadvantage can be
mitigated by correcting the measured tissue drug concentration for binding using the
methods described above. For the purposes of verifying the prediction of total tissue drug
concentrations from /n vitro data in conjunction with proteomics and PBPK modeling, this
disadvantage is not an issue provided the intracellular binding of the drug in the /n vitro
system is representative of that /n vivo.

Numerous PET imaging studies have been conducted to quantify tissue distribution and to
elucidate the impact of transporter DDIs/polymorphisms on drug tissue exposure.
Representative examples summarized in Table 2 focus primarily on the efflux transporters in
the blood-brain barrier (BBB), hepatobiliary transporters and quantification of changes in
renal exposure relative to systemic.

v Scintigraphy/SPECT

The imaging agent %°MTc-mebrofenin (MEB) has been used as a transporter probe to assess
liver exposure and DDIs or disease-mediated alterations in hepatic transporter function in
humans (56, 57). OATP1B1 and OATP1B3 are responsible for the MEB hepatic uptake,
which is rapidly excreted into bile by the canalicular transporter MRP2. MEB is highly
extracted by the liver with minimal urinary excretion (~1-2%), moderate protein binding
(~90%) and negligible metabolism (See supplemental reading list for more information).
MEB liver concentrations were significantly increased in patients with non-alcoholic
steatohepatitis (NASH) due to impaired MRP2 function (57). The transporter inhibitor
ritonavir at clinically relevant concentrations significantly increased MEB systemic exposure
in healthy subjects without affecting overall hepatic exposure or biliary recovery of MEB. /n
vitro studies in human SCH confirmed predictions from the semi-PBPK model that ritonavir
inhibited MEB hepatic uptake, but not biliary excretion (56). Advantages of the 99MT¢
radiotracer include a suitable half-life (6h), labeling does not require a cyclotron, and
gamma cameras are routinely available in health care facilities. However, localization of the
99mTc |abel on the substrate may influence the affinity for transporters. For example, OATPs
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and MRP2 were primarily responsible for the uptake and efflux, respectively, of 9¥MTc-
labeled chenodeoxycholic acid and 9°MTc-cholic acid rather than NTCP and BSEP,
respectively, due to localization of [%*MTc]-DTPA- on the acidic side chain of the bile acids.
Quantitative scintigraphy provides a rich dataset that is ideal for pharmacokinetic modeling
but this approach has been underutilized to assess organ/tissue exposure and hepatic
transporter DDIs in humans, possibly due to lack of methodological expertise and the
limitations cited above.

Contrast-Enhanced Magnetic Resonance Imaging (MRI)

Dynamic gadoxetate-enhanced liver MRI has been used to quantify hepatic transporter
function in rodents (58) and humans (59). Gadoxetate is an OATP1B1, OATP1B3 and MRP2
substrate. Gadoxetate is metabolically stable with minimal protein binding (~10%); ~50% of
an injected dose is recovered in human urine (See supplemental reading list for more
information). Gadoxetate is used routinely in the clinic as a MRI contrast agent, which
makes it particularly attractive as a probe to assess hepatic transporter function and DDIs.
Physiologically-based (60) and compartmental (61) models have been proposed to describe
gadoxetate disposition, but further work is needed to establish an approach to assess hepatic
exposure and transporter function in routine clinical workflows.

These imaging studies can provide rich relevant data to verify other methods (e.g., PBPK
modeling of transporter disposition) used to predict total tissue drug concentrations. In a
recent study (44), /n vivo rat hepatic concentrations of rosuvastatin (Oatp but not Ntcp
substrate in rat, although it is a substrate of human NTCP), determined by PET imaging,
were predicted well by combining a proteomics informed bottom-up approach with /n vitro
kinetic data from rat SCH. The proteomic data in tandem with transfected cells expressing
each Oatp were used to predict rosuvastatin hepatic uptake clearance, while the rat SCH data
were used to predict biliary clearance.

APPLICATION OF PBPK MODELING FOR PREDICTION OF TRANSPORTER-
MEDIATED DISPOSITION AND POTENTIAL DISCONNECT BETWEEN
SYSTEMIC AND TISSUE DRUG CONCENTRATIONS

Although PBPK models allow simulation of tissue profiles, direct verification of these
predictions is typically not possible (Table 3) due to a lack of quantitative tissue drug
concentration data (except through imaging, see above). In the case of statins, clinical data
on reduction of cholesterol and on muscle toxicity in certain clinical settings have provided
indirect verification of the models (3, 62). The time course of statin cholesterol response
(>few weeks) is a practical challenge for wider use of this PD endpoint to describe changes
in liver exposure as a result of transporter modulation. PBPK modeling explains successfully
the observed lack of a significant effect of the SLCO1B1 ¢.521T>C polymorphism on the
efficacy of both simvastatin acid and rosuvastatin. Opposite trends, i.e., increased efficacy,
are seen when either hepatic metabolism (CYP3A4) or biliary excretion (BCRP) are
inhibited, consistent with an understanding of the rate-determining processes that affect
hepatic AUC of these drugs (2, 3, 63). Recent PET data (Table 2) illustrate the effect of
reduced OCT1 activity on metformin hepatic distribution; in this case, the consequences of
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reduced hepatic uptake are different from statins, reflecting the importance of predominant
non-hepatic (renal) elimination in the case of metformin (Kp, y, simulations of such scenarios
are shown in Figure S1). In addition, combined PBPK-PD modeling has demonstrated the
importance of using simulated liver concentrations to drive the response for rosuvastatin
(62). However, confidence in model-simulated tissue concentrations is still low based on
limited means to qualify those aspects of the models, and therefore, plasma data are often
relied on as a surrogate, with the caveat that variability in plasma PK may not necessarily
reflect variability at the site of action.

Extension of PBPK models to predict transporter-mediated PK in specific populations

A number of recently published studies and regulatory submissions have implemented
mechanistic liver and kidney models to simulate transporter-mediated disposition/DDIs in
organ impairment and/or to extrapolate across ethnic groups/diseased populations (Table 3,
Table S3). All these examples highlight limited knowledge or gaps in some physiological/
system data such as enzyme or transporter expression/activity and proximal tubule
cellularity in diseased kidneys. In order to capture reduced active secretion clearance in renal
impairment, models have employed a range of potential mechanisms: reduced proximal
tubule cellularity, reduced transporter expression and/or inhibition of renal transporters by
uremic solutes (64-66). In some instances reduction of transporter expression proportional
to glomerular filtration rate (GFR) was sufficient (e.g., OATP4C1/digoxin), whereas in the
case of the OAT1 transporter, more pronounced reduction in activity associated with the
inhibitory effect of uremic solutes was required for severe chronic kidney disease (CKD). In
all the cases shown, a step-wise model verification against independent clinical data (renal
clearance, urinary excretion and/or renal DDI data) was performed. Limited examples of
simulated proximal tubule concentrations highlighted that different plausible CKD
mechanisms considered in these PBPK models may result in comparable net predicted
systemic exposure/renal clearance; however, predicted proximal tubule concentrations may
differ depending on the assumptions made (66). The latter may have significant
consequences if the model is used subsequently for prospective evaluation of transporter-
mediated DDIs/nephrotoxicity risk in patients with severe organ impairment. In addition to
physiological changes at the level of the proximal renal tubule, increasing severity of CKD
has been reported to have a differential effect on the activity of hepatic enzymes/transporters
(e.g9., reduced activity of CYP2D6 and OATP1B1, in contrast to variable and marginal effect
on CYP3A (67, 68)). These changes need to be considered when model-informed
approaches are applied to guide dosing recommendations of nonrenally eliminated drugs in
severe CKD patients.

A number of literature and regulatory examples in Table 3 illustrate the use of late stage
clinical data to calibrate the missing system or drug-dependent parameters (e.g., transporter-
mediated clearance or RAF/REF to account for activity/expression differences between in
vitro and in vivo). Methodological challenges associated with the use of plasma data to
inform some of the parameters of the model, structural identifiability concerns and
uncertainty associated with parameter estimates have been discussed previously (See
supplemental reading list for more information). A general concern is that multiple solutions
of the ‘optimized’ parameter may all recapitulate systemic PK exposure reasonably well and
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can therefore not be differentiated on the systemic level, yet they will result in differing
levels of drug exposure in the tissues. One possible approach to mitigate potential bias is the
application of the integrated population PBPK approach, which overcomes reliance on fixed
parameters by using a Bayesian framework. This method generates a statistical distribution
of the output parameters, rather than just a single estimate. However, rich clinical data are
required to update the priors in this ‘reverse translation’ exercise and hence would not be
applicable for early stages of model development. Further, while this addresses the data
limitations in the most robust fashion, it still may not result in improved precision in
predicting changes in tissue concentrations.

Key points from transporter PBPK regulatory cases

Regulatory submissions of PBPK modeling have included simulations of transporter-
mediated DDIs as well as simulations of tissue concentrations (e.g., liver) in the context of
evaluating the need for dosage adjustment due to patient factors, as exemplified by
simeprevir and obeticholic acid (OCA).

The simeprevir PBPK model incorporated saturable CYP3A4 and OATP1B Kkinetics, and
was used to investigate DDI risk for a number of untested clinical interactions ((69), Table
3). Higher simeprevir plasma exposure was predicted when moderate/strong CYP3A
inhibitors were co-administered with multiple-doses of simeprevir compared with a single-
dose due to the saturation of CYP3A4/OATP1B. Concomitant administration of moderate/
strong CYP3A inhibitors are not recommended per simeprevir US labeling. Simeprevir
PBPK modeling was also used to evaluate changes in liver concentrations (70) as the target
organ (PBPK-PD details shown in Case Study 3). Simulations of 100 mg daily
administration in Chinese and Japanese patients and 150 mg daily in Caucasian patients
resulted in comparable predicted liver exposure in the Chinese and Japanese population.
Although no dose adjustment was initially recommended based on ethnicity, 150 mg QD is
the approved regimen in the FDA label and 100 mg QD is the recommended dose in the
Pharmaceuticals and Medical Devices Agency (PMDA) label. The FDA also issued a post-
marketing requirement for simeprevir to evaluate safety signals in patients with East Asian
ancestry.

In the case of OCA, PBPK modelling was used to predict steady-state plasma and liver
exposures in subjects with different degrees of hepatic impairment. Considering significantly
higher predicted OCA plasma exposure and liver-related adverse reactions, a less frequent
starting dosage regimen was recommended in patients with moderate or severe hepatic
impairment (from 5 mg daily to 5 mg weekly). Unfortunately, since approval, severe liver
injury and deaths have been reported in patients with moderate/severe hepatic impairment
when OCA was dosed more frequently than recommended. Consequently, a ‘Dear
Healthcare Provider’ letter by the applicant and a Drug Safety Communication by the FDA
were issued to warn about OCA liver toxicity and emphasize adherence to recommended
dosing regimens in patients with moderate or severe hepatic impairment.

In the cases highlighted above, PBPK modelling enabled assessment of transporter-
metabolism interplay and the impact of physiological differences associated with organ
disease or ethnicity on plasma/tissue exposure. This integrative platform was used to bridge
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the differences between changes in systemic and tissue concentrations (where relevant) to
support important regulatory decisions for the ultimate goal of optimizing patient benefit. As
illustrated in case examples below, the structure and complexity of the selected model/
modeling approach depend both on the key questions and the availability of the
physiological, /in vitro, in vivo (plasma or tissue) and/or PD data necessary to describe and
verify multiple processes/parameters in the model.

Case Study 1—Consideration of intracellular drug concentrations is critical when
estimating a starting dose for the first clinical study with a novel therapeutic that is actively
transported to an intracellular site of action, as illustrated in this example for a novel
Hepatitis B Virus (HBV) inhibitor. The molecule exhibited low passive membrane
permeability /n vitro and was a substrate of OATP1B1 and OATP1B3 (transfected CHO
cells) and BCRP (transfected MDCKII cells), but was not a P-gp substrate (71) (Table S4).
In vitro inhibition of viral DNA production was measured in hepatoma cell lines
HepG2.2.15 and HepaRG, but translation of /n vitro potency to /n vivo was challenging as
these systems are deficient in baseline drug transport/metabolic activities, so the K, , is not
expected to mimic the situation in human hepatocytes. Additionally, PKPD studies in mice
were performed to characterize HBV DNA inhibition /n vivo. Translation of efficacy from
these animal data faces the challenge that the specific transporters involved in hepatic
disposition in rodents were not known. However, primary plated rat and human hepatocytes
both showed active contributions amounting to ~70% of the total uptake, supportive of a
similar relationship between hepatic intracellular and plasma concentrations in rodents and
humans. PKPD modeling with mouse data estimated a trough concentration above which
plasma concentrations should lie throughout the dosing interval and this was used as the
target for estimation of an efficacious dose in humans.

For the prediction of human pharmacokinetics, a published strategy was followed (72)
whereby PBPK simulations were first verified in mouse, rat, dog and monkey before
prediction of human PK. Simulations in preclinical species were compared to measured
plasma and tissue concentrations obtained after intravenous and oral administration. The
volume of distribution (Vss) predicted from physicochemical and drug binding properties,
and assuming passive diffusion across membranes (73), underestimated the measured
volume in all the preclinical species. After adjusting for the measured liver K, in mice and
rats that were ~100-fold higher than predicted, the predicted and observed Vss were in better
agreement in these species. Therefore, the measured human hepatocyte K, of ~80 was
incorporated in the liver compartment of the human PBPK model. This approach predicted a
human Vss of 1 L/kg.

In vitro measurements in liver microsomes showed low intrinsic clearance (CLnt) across
species, which could not be reconciled with the moderate to high /n vivo clearance in the
animal species. Although higher CL; values were measured in hepatocyte suspensions, the
CLint was below a reliable quantitative level for this assay (<3uL/min/million cells).
Therefore, to obtain a more precise estimate, measurements were repeated in a long-term
human hepatocyte co-culture system that may provide an improved representation of
combined contributions of uptake, metabolism and biliary excretion to total hepatic
clearance (71). CL;n obtained was scaled using the physiologically-based approach resulting
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in a human plasma clearance of 7.4 mL/min/kg which was higher than the value predicted
with the suspension data. A good agreement between simulations and clinical PK data at low
doses was observed (Figure 2). However, for doses of 300 mg and above, the observed
plasma concentrations increased greater than proportionally with the dose, leading to
average fold-errors of 4.4 for Cox and 2.2 for AUC. An error of >2-fold in the PBPK
predicted PK parameters is beyond typical values for permeable molecules with clearance
mainly determined by metabolism, which exemplifies the current lack of confidence in
PBPK predictions for transported drugs (74). Unfortunately, intravenous PK data were not
available, which limited definitive conclusions on the reasons for the poorly predicted PK of
this molecule at higher doses. The over-proportional increases in oral exposure are likely due
to saturation of clearance processes. However, such saturation was not anticipated based on
the available /n vitro data. Once clinical data were available, top-down fitting of plasma
concentrations across the full dose range estimated that an uptake transporter K, of ~0.2 uM
would recover the observed nonlinearity.

This case study illustrates an example where infection of the co-culture model with patient-
derived HBV has been demonstrated (71). This opens the possibility to use this cellular
system to develop more relevant PKPD models that account for the relationship between
human plasma and intracellular concentrations. In addition, the case study highlights the
potential translational application of more holistic /n vitro co-culture systems for evaluation
of complex transporter-metabolism interplay. However, there are still gaps in understanding,
as shown in the disconnect between in vitroand in vivo nonlinearity reported here, and more
detailed characterization of these models is necessary to appreciate their full potential.

Case Study 2—This example illustrates the use of PBPK modeling to characterize
unanticipated nonlinear human PK that may arise through saturation of transporter-mediated
hepatic uptake, and to explain differences in PK in different populations for letermovir.
Letermovir is a novel drug inhibiting the human cytomegalovirus virus (CMV) terminase
complex recently approved for prophylaxis of clinically significant CMV infection
(properties in Table S4). Letermovir is a substrate of OATP1B1, and -1B3 (transfected CHO
cells) and is metabolized by CYP3A4, UGT1A1 and UGT1A3 (data from recombinant
enzymes). As summarized in the disposition characteristics of letermovir (Figure 3A), the
model assumed that OATP1BL1 is responsible for its saturable active uptake into the liver; the
CLint via glucuronidation was assigned to UGT1AL. Recovery of intact parent in feces is
primarily due to biliary excretion of absorbed drug (estimated bioavailability of ~90%).

The workflow of letermovir PBPK model development and the model qualification plan is
summarized in Figure 3B. The PBPK model was able to capture the nonlinear PK of
letermovir in Caucasian healthy subjects after receiving single doses of letermovir across the
dose range of 120 to 720 mg IV and 120 to 480 mg PO (Figure 3C and 3D). The mechanism
of nonlinear PK of letermovir was best described by saturation of OATP1B-mediated hepatic
uptake. The exposure of letermovir in Japanese healthy subjects is ~2-fold higher than in
Caucasians. A population PK analysis identified weight as the primary contributor to this
higher exposure (unpublished results). Accounting for known demographic and
physiological differences (body weight and liver mass) in the PBPK model explained some
of the differences in PK exposure (Table S5). It was hypothesized that reported differences
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in abundance and/or activities of hepatic OATP1B contribute to the higher systemic
exposure observed in Japanese due to reduced hepatic uptake (75). To explore this
hypothesis by simulation, the abundance of OATP1B in Japanese subjects was assigned a
value of 0.58 (75). Simulations were in good agreement with the observed data, and support
the hypothesis that the higher exposure in Japanese as compared to Caucasian healthy
subjects may be rationalized by contributions both from known physiological differences
between these two populations and differences in hepatic uptake due to transporter OATP1B
abundance and/or activities.

In addition, the PBPK model was used to evaluate the hypothesis that reduced absorption,
likely caused by mucositis, could be the cause for decreased exposure observed in
hematopoietic stem cell transplant (HSCT) recipients after oral administration of 480 mg
letermovir. To evaluate this by simulation, the Caucasian healthy subject PBPK model was
modified to account for reduced ka and fraction absorbed using a sensitivity analysis
approach. The simulations showed that the PK in HSCT recipients after oral administration
of 480 mg letermovir was best described by a reduction in the fraction absorbed, consistent
with previous reports of reduced exposure for orally administered drugs in HSCT recipients
(76). This case study illustrates challenges encountered in PBPK modeling and simulation of
transporter-mediated disposition and approaches used to rationalize the nonlinear PK and
observed differences in PK between populations to guide the product development team and
subsequent regulatory submission.

Case Study 3—Simeprevir is a hepatitis C virus (HCV) NS3/4A protease inhibitor (PI),
indicated for the treatment of HCV genotype 1 and genotype 4 infections (69). Simeprevir is
characterized by low solubility and low permeability (properties detailed in (69)).
Simeprevir is actively taken up into hepatocytes by OATP1B1/OATP1B3, followed by
metabolism via CYP3A4, and biliary elimination of parent drug and metabolites. PBPK
modeling was conducted to simulate simeprevir exposure in the liver in different patient
populations and in DDI studies (Table 3). To evaluate whether the PBPK simulated liver
exposures could be linked to simeprevir PD, an effort was initiated to compare the simulated
liver exposures with the estimated liver exposures based on the observed PD effect of
simeprevir on HCV RNA. Adapting the modeling approaches developed by Ke et al. (77),
simeprevir PK, PD and viral dynamics (viral load (VL) data) were used to estimate the ratio
between simeprevir plasma (Cplasma) and liver (Cliver) concentrations /n vivo (Table S6).
VL data from clinical studies with simeprevir monotherapy (5 or 7 days) in treatment-
experienced or treatment-naive patients were used after 3 days of treatment to ensure that
VL had reached quasi-equilibrium, i.e., the reduction in VL was set by the clearance rate of
infected cells. The baseline PD serum shifted ECsg values for every subject in the clinical
simeprevir monotherapy studies were derived 7 vitro in chimeric replicon cells using the
HCV virus from every individual subject, which enabled generation of subject-specific ECgg
values for simeprevir. The outcome of this exercise shows that the PBPK simulated liver-to-
plasma ratios of simeprevir are in very good agreement with the values based on the top-
down viral kinetic, PK and PD mathematical modeling. One of the drivers of the nonlinear
simeprevir plasma PK in the PBPK simulations was the saturation of active hepatic uptake at
simeprevir doses above 100 mg daily, which was reflected in lower simeprevir liver K,
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values at doses above 100 mg daily relative to lower doses. Intriguingly, the top-down
approach also showed a trend towards a 2-fold lower liver K, at the 200 mg daily dose
versus the 25 and 75 mg doses. This case study illustrates the indirect evaluation of the
PBPK-simulated tissue exposure using the PD data and highlights the importance of using
local tissue concentrations to drive the PD effect.

FUTURE DIRECTIONS

This white paper provides current best practices for the estimation of tissue and intra/
subcellular drug concentrations and their advantages/limitations in clinical translation. These
approaches have been integrated into a quantitative framework in the context of drug
development (Figure 4) to illustrate how /7 vitro, preclinical, imaging, early and late clinical
data can be utilized to examine plasma and tissue exposure in case of transporter-mediated
issues. The choice of methods and data considered depend on compound properties and
stages of drug development; each institution may need to establish consistent internal
approaches for selection of /n vitroand preclinical systems and parameter estimates.

Advances in the following areas may facilitate progress in predicting and verifying unbound
tissue drug concentrations. First, optimization of /7 vitro incubation conditions and increased
availability of preclinical /n vivo K, , data (obtained under steady-state conditions and
modeled appropriately) are required to improve IVIVC of /in vitro Kp, , data and inform
subsequent human predictions (Figure 4). Second, integrated approaches illustrated here
(e.g., combination of proteomics informed bottom-up PBPK modeling and imaging data) are
needed. In this regard, additional imaging studies with model transporter substrates will
facilitate this process. Further studies to determine whether all hepatic clearance pathways
(and therefore hepatic drug concentrations) can be simultaneously predicted from certain
cell systems (e.g., human SCH) or integrated from a range of systems (e.g., knockout/
transfected cell lines combined with data from human liver microsomal/S9) are required.
Such studies have been reported for the liver (44), brain (e.g. (78)) and kidneys (50) and
need to be extended to the intestine. With regard to estimation of subcellular concentrations,
methods are needed to directly measure drug concentrations in lysosomes and mitochondria
to allow verification of current in silico predictions. Improved understanding of uncertainty
associated with some of the cellular parameters such as acidic phospholipid content,
composition of organelle membranes relative to the plasma membrane, and the impact of
pathophysiological conditions on these parameters, is envisaged to improve performance of
in silico cellular models. Fatty acid binding proteins have recently emerged as important
cytosolic binding proteins that chaperone very lipophilic molecules, such as
endocannabinoids and cannabinoids, to intracellular targets for metabolism in the brain and
liver (79). Continued research is needed to elucidate the impact of alterations in levels and/or
binding affinity of chaperone fatty-acid binding proteins on unbound intracellular drug
concentrations and subsequently, efficacy and toxicity. Finally, utility of microphysiological
systems (80) for quantitative translation of transporter data, understanding of tissue
concentrations/complex transporter-mediated DDIs and/or their potential for PKPD
characterization remains to be established.
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Modeling examples summarized from the literature, regulatory submissions or drug
development case studies highlight the importance of informative clinical data for model
verification and/or parameter optimization. For example, urinary excretion data is necessary
for the optimization of REF/kinetic parameters for transporters expressed on the apical
membrane of renal proximal tubule cells (e.g., MATES) (51), whereas plasma data are
sufficient for optimization of basolateral transporters (e.g., OAT3, (48)). Some examples in
this white paper illustrate scenarios where efficacy and safety of a drug were linked to
model-predicted tissue concentrations rather than surrogate plasma concentrations. It is
envisaged that increased availability of quantitative PET/MRI tissue data will refine/’re-
qualify’ existing PBPK models for clinical transporter probes to improve translation of
transporter-mediated tissue distribution and increase confidence in the design of prospective
DDl studies (in combination with corresponding perpetrator PBPK model(s) and monitoring
of endogenous transporter biomarkers, Figure 4). There is an increasing interest in using
PBPK modeling to support dose optimization in organ impairment and understand the
impact of disease on tissue exposure and transporter-mediated DDIs (often in conjunction
with metabolic enzymes). Although existing mechanistic kidney models account for regional
differences in blood and tubular fluid flows, implementation of heterogeneity in transporter
and enzyme expression and regional scalars is still evolving as the data become available.
Current mechanistic kidney and liver models have not yet implemented the impact of pH on
transporter activity, or accounted for potential transporter trafficking. Transporter
bidirectionality, electrochemical gradient driven transport (as proposed for OCT2, (51)), and
basolateral efflux may all affect our understanding of major transporters driving hepatic/
renal clearance and corresponding DDIs. Further work and increased confidence is required
for the application of pediatric PBPK models for drugs with transporter-mediated
disposition, especially considering increased interest in model-informed dose
recommendations for this patient population (81, 82). Refinement or bridging the knowledge
gaps in systems parameters is required in the areas of transporter expression and ontogeny
(53, 83, 84). Similarly, a number of studies suggest that differences in exposure to drugs that
are OATP1B1 substrates between Japanese and Caucasians may not be solely attributed to
differences in transporter activity/expression or genotype (75, 85, 86), highlighting
challenges in extrapolating transporter-mediated PK across ethnic groups. All of the above,
in conjunction with the potential interplay of transporters with metabolites (especially
conjugates), both in the liver (enterohepatic circulation) and the kidney (87, 88), highlight
areas for further work of relevance for predicting tissue/subcellular drug concentrations,
clearance of drugs and complex DDIs.
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mass spectrometry imaging
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RAF
relative activity factor
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SCH
sandwich-cultured hepatocytes
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Figure 1.
The extended clearance model for hepatic disposition of a drug described by sinusoidal

active influx (CL3j, 5ct) and efflux clearances (CLSs act), passive diffusion (CLgjf),
canalicular efflux (biliary) clearance (CLy;ic), metabolic clearance (CLet), hepatic blood
flow, Qp, and fraction unbound of the drug in the blood (fuy). Total CLS;, and CLS¢t shown
in governing equations include both active and passive processes (e.g., CL%j, = CLSjy act +
CLgif). For all graphs, the red and blue lines represent the systemic and hepatic drug
concentration-time profile, respectively. The blue and red shaded areas represent the relative
systemic and hepatic drug AUC, respectively. A-C) CLS;, is the rate determining step in the
hepatic CL of a drug (CLSst < (CLmet + CLpjje)) thus creating a sink condition in the liver
(e.g., rosuvastatin). When the aforementioned condition is met, the systemic AUC of the
drug will increase when CLS;p 4t is inhibited (A vs. B, top/red panels) but not when CL et +
CLyje is inhibited (A vs. C, top/red panels), even if there is significant elimination of the
drug via metabolism or biliary efflux. In contrast, the hepatic AUC of the drug will not
change when CLSj, 5t is inhibited (A vs. B, bottom/blue panels) provided that the liver is the
predominant or sole elimination organ but the hepatic drug concentration-time profile (e.g.,
Crmax and Tmax) Will be altered. The hepatic AUC of the drug will increase when CL et (Or

CLbile l ICLmet CLhile l lCLmE!
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CLypjle) is inhibited (A vs. C, bottom/blue panels). D-E) CL et and/or CLyje become the
rate determining step in the hepatic CL of a drug when a drug can easily traverse the
sinusoidal membrane (CLSj,, =CLS.¢ and much greater than CLet + CLpjje, perfusion limited
model). When this condition is met, the systemic and hepatic AUC of the drug will increase
if either CLnet OF CLyjje is inhibited (D vs. E). F-I) All hepatobiliary clearances affect
hepatic CL of the drug when the drug is substrate of both enzymes and transporters but
neither of the previous extreme conditions apply (e.g., repaglinide). Under this condition,
inhibition of any of the hepatobiliary clearance will result in changes in the systemic AUC of
the drug: increase due to CLSj, act, decrease due to CLSf a¢t, and increase due to CL et Or
CLypjle (F vs. G, H, | top/red panels, respectively). However, as long as the liver is the
predominant elimination organ, the hepatic AUC of the drug will not change if CLSjp 5ct OF
CLSt act are inhibited (F vs. G and H, bottom/blue panels, respectively). Hepatic AUC of the
drug will increase when CL et Or CLyjje is inhibited (F vs. I, bottom/blue panels). The
following values were used for simulation A-C: CLgj= 0.1 L/min, CLS, ¢t = 10 L/min,
CL%¢ act = 0 L/min, CLet + Clypjje = 1.2 L/min, 95% inhibition of CLSj, act OF CLyet +
CLyjje was simulated. D-E: CLgj= 10 L/min, CLSj, act = CLf act = 0.1 L/min (CLSj, =
CLSf), CLmet + CLypjle = 1.2 L/min, 95% inhibition of CLet + CLyjje Was simulated. F-I:
CLgif= 0.1 L/min, CLSjp act = 1 L/min, CLS¢ a¢t = 0.5 L/min, CLppet + CLpjie = 1.2 L/min,
95% inhibition of individual parameters was simulated. In all scenarios, liver is the main
eliminating organ, Qp was set arbitrarily at 1 L/min, and fup = f, jiver =1. Steady-state Kpy,
values calculated from individual parameters are shown. Figure is adapted and revised from
Patilea-Vrana and Unadkat (Patilea-Vrana, G. & Unadkat, J.D. Transport vs. Metabolism:
What Determines the Pharmacokinetics and Pharmacodynamics of Drugs? Insights From the
Extended Clearance Model. Clin Pharmacol Ther 100, 413-8 [2016].).
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Figure 2.

(Upper) Simulated and individual observed plasma concentrations for an oral dose of 100
mg. (Lower) Predicted and Observed Cyy,x and AUC at doses of 30 mg to 2000 mg.
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Figure 3.

A) A summary of the disposition characteristics of letermovir. B) The workflow of
letermovir PBPK model development and the model qualification plan. An initial PBPK
model was built in Simcyp® using a combination of physicochemical properties, preclinical
data (/n vitroand in vivo), and human ADME information of letermovir. In the next stage,
the letermovir PBPK model was refined after the model parameters were optimized by
plasma concentration-time profiles and PK data from Caucasian healthy volunteers (HV)
receiving single IV and oral doses of letermovir at various dose levels in Phase 1 studies.
Selected parameters, including the intrinsic clearance via oxidative metabolism and biliary
excretion, Vmax and K, parameters characterizing OATP1B-mediated transport into the
liver, the unbound fraction in intracellular water, K scalar and first order oral absorption
rates (ka) were optimized by the observed 1V and oral healthy volunteer PK data. The final
PBPK model was qualified based on PK and concentration-time profiles after multiple IV
and oral doses of letermovir administered to Caucasian HV. Subsequently, the qualified
letermovir PBPK model was applied to address the following questions for the development
program: 1) explain mechanistically the difference in letermovir exposure observed in
Caucasian and Japanese healthy subjects; 2) generate hypotheses that describe the exposure
difference observed in Caucasian HV and hematopoietic stem cell transplant (HSCT)
recipients after oral dosing. C - D) Observed and simulated systemic PK of letermovir in
Caucasian healthy volunteers after single doses across the dose range of 120 to 720 mg IV
(C) and 120 to 480 mg PO (D).
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modeling considerations to identify, characterize and predict human pharmacokinetics in
plasma and tissues for molecules where transport plays an important role.

aCase study 1, °Case study 3, °Table 1, 9Case study 2
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	Abstract
	IN VITRO METHODS FOR ESTIMATION OF INTRACELLULAR/SUBCELLULAR DRUG CONCENTRATIONS
	Binding Method—Total cell to medium concentration ratio (Kp), fu,cell or fraction unbound in tissue (e.g., fu,liver) and fraction unbound in medium (fu,medium) are individually measured and combined to derive the Kp,uu value (Table 1). Binding may be determined using equilibrium dialysis of cell or tissue homogenate. By accounting for the dilution of homogenate in the assay, fu,cell or fu,liver can be calculated. The method thus represents a comparatively direct measurement of cellular drug binding with a central assumption that binding is not altered by the homogenization procedure. Non-saturation of binding for a chemically diverse set of compounds, along with the nature of the molecular properties most strongly associated with binding (high lipophilicity, small cross-sectional area, and a preference for positive molecular charge) suggests that partitioning to phospholipid membranes is a major contributor to cell binding (12). However, binding equilibrium between cellular compartments may shift in homogenized vs. live cells, different dilution factors which impact cell density may be used for homogenized cells/tissues (19), incubation media may differ regarding albumin content (20), and depending on the homogenization procedures (2), intracellular organelle membranes may or may not be disrupted. These factors may have contributed to some contradictory findings in fu,cell values between laboratories discussed below.Temperature Method—Instead of combining two distinct assays for fu,cell and Kp as in the Binding Method, Kp,uu is determined by measuring steady-state medium and cell concentration with the same method, but at two different temperatures: 37°C and 4°C (16) (Table 1). The estimation of fu,cell is based on the steady-state uptake at 4°C. Important assumptions underlying this method are that tissue binding does not involve temperature- or energy-dependent processes (e.g., transporter-mediated flux, metabolism, and ion gradients that might shift cellular equilibria when non-functional at 4°C). However, the impact of temperature on tissue binding, membrane potential and fluidity are not well established. In addition, disadvantages associated with disruption and release of organelle proteins remain. Initial studies have indicated certain temperature dependence of binding and tissue permeability (15, 17, 21), but this needs to be confirmed with large, chemically diverse datasets.Structure-based Prediction Method—Initial studies in suspended rat hepatocytes showed a correlation between Logfu,cell and LogD7.4 for 13 anionic transporter substrates (18). The correlation of anionic drugs was later extended to plated (22) and suspended human hepatocytes (15). LogD7.4 was also an important predictor of fu,cell, along with additional molecular properties (charge and steric descriptors putatively describing interactions with cellular membranes) for a larger set of anionic, cationic and neutral drugs (12). The fu,cell estimated based on physicochemical properties has been further utilized to calculate Kp,uu (Table 1). Since either Binding or Temperature Methods were used to derive initial experimental data, the associated limitations have been carried over (Table 1).Kinetic Modeling Method—This method uses mathematical modeling to derive Kp,uu estimates from cellular drug accumulation experiments. For example, the initial drug uptake rate was measured in suspended hepatocytes in the presence of a nonspecific cytochrome P450 inhibitor (18). Kinetic parameters including active uptake Vmax, Km, and passive diffusion were obtained simultaneously to calculate Kp,uu (Table 1), using a reduced form of the extended clearance equation. The method assumes knowledge of the mechanisms involved in cellular drug disposition, and may lead to overestimation of the true Kp,uu for the following reasons: 1) the system does not consider the influence of efflux transporters, biliary excretion or unaccounted non-CYP mediated metabolism), 2) active influx clearance is calculated based on the initial uptake rate, which may include drug transport mediated by both facilitated diffusion transporters and active transporters, and 3) the passive influx diffusion permeation is assumed to be equal to the passive efflux diffusion permeation; this may not always be true, for example in the case of anions (17).Extended Clearance Model (ECM) Method—Steady-state Kp,uu can be described using the extended clearance equation incorporating the individual processes involved in in vitro hepatic clearances (15, 17). The fundamental difference from the above-mentioned Kinetic Modeling method is that the impact of compound disappearance via sinusoidal efflux, biliary excretion, and metabolism is explicitly considered. One limitation is that in vitro-in vivo correlation (IVIVC) for the parameters used to calculate Kp,uu has not been fully validated. As in the Kinetic Modeling method, accurate predictions rely on knowledge of relevant drug disposition mechanisms and their adequate parameterization. In both the Kinetic Modeling method and ECM method, binding is not addressed explicitly, and can be calculated from the model-based Kp,uu if combined with a Kp measurement in the same system. However, errors in estimating parameters contributing to Kp,uu would propagate to calculation of fu,cell.Overall, the Kinetic Modeling method and ECM method rely on assumptions that the relevant cellular processes are known and respective parameters can be accurately determined. These methods require rich datasets generated by laborious experimental processes in order to minimize uncertainty in parameter estimates. In contrast, the Structure-based Prediction Method may provide an initial fu,cell estimate in the absence of in vitro data if the compound properties are within the physicochemical space of compounds in the training set used to define the relationship with fu,cell. The Binding and Temperature methods are more agnostic regarding the processes involved compared to the Kinetic Modeling method and ECM method, while at the same time less mechanistically informative.Estimation of Subcellular Drug Concentrations—To fully understand the factors determining drug cellular concentrations it is important to consider subcellular drug distribution. Drug molecules may distribute preferentially to various subcellular organelles even without transporter effects, due to the electrochemical and pH gradients across membranes and interactions driven by compound lipophilicity, charge, and ionization potential. The subcellular accumulation of lipophilic bases may impact Kp,uu (15, 23). Indirect experimental methodologies used for estimation of subcellular drug concentrations have been discussed previously (2, 23, 24). Recent examples in combining experimental approaches with mechanistic modeling to predict subcellular drug concentrations are highlighted here.Lysosomal sequestration may be an important contributor to the accumulation of drugs that are lipophilic (LogP>1) and amphiphilic with ionizable amines (pKa>6) in lysosome-rich cells such as Kupffer cells, and alveolar macrophages. The extent of lysosomal sequestration can be determined by measuring drug concentrations in cultured cells using indirect methods that abolish the lysosome-cytosol pH gradient, e.g., ammonium chloride (NH4Cl) (23) or chloroquine (12). Of note, modulating the pH gradient affects both total cell-to-unbound medium concentration ratio (Kp,u) and Kp,uu. Alternatively, cellular accumulation can be measured at low and high drug concentrations, assuming that saturable cellular uptake at a low drug concentration is driven by lysosomal sequestration rather than a transporter-mediated process. Lysosomal sequestration may change accumulation kinetics, as observed with the altered uptake rate of clarithromycin in the presence of NH4Cl in the macrophage cell line NR8383 (23). Indirect experimental methods do not account for the impact on drug binding to membranes due to changes in ionic strength and membrane surface potential at higher drug concentrations. Lysosomal drug concentrations can be directly measured by isolating lysosomes with novel techniques using magnetic nanoparticles (25); evaluation of this method is in progress.Previously, generic in silico cell models were proposed to describe the dynamics of drug accumulation in lysosomes (26). Recently, these models were refined and adapted to specific cell types (e.g., macrophages) accounting for pH gradients and electrochemical potentials across cell and organelle membranes to simulate drug concentrations in cytosol, lysosomes and mitochondria. Membrane partitioning either predicted from phospholipid membrane composition data or measured by indirect methods was incorporated into models to predict lysosomotropic properties of respiratory drugs (27). The application of this mechanistic cellular model to predict lysosomal drug concentrations needs further evaluation with larger basic drug datasets and extension of the model to other cell types (e.g., hepatocytes) where lysosomotropic drugs may accumulate and induce phospholipidosis. Recently, an extended mechanistic tissue-composition based model accounting for lysosomal sequestration was proposed and evaluated using a dataset of 28 basic drugs. Differences in cytosolic and lysosomal pH and in lysosomal volume fractions of the individual cell types/tissues were implemented in the model. Consideration of lysosomal sequestration moderately improved the accuracy of Kp,u predictions (up to 3-fold change) for lysosome-rich tissues. This result is not entirely surprising as the fraction of lysosome-rich cells (e.g., Kupffer cells) is generally low (<5%) in tissues (28).Positively charged drug molecules may be trapped in mitochondria as a result of the negative transmembrane electrical potential relative to the cytosol. A mechanistic model accounting for pH and electrochemical potentials across plasma and organelle membranes (including mitochondria) and permeability of both ionized and neutral species explained reasonably the observed Kp,uu for multiple tissues in rats treated with investigational drugs (e.g., hepatoselective glucokinase activators) (29). Utilizing a similar approach and additional incorporation of a bi-directional, saturable effect on the ionized permeability to characterize transporter uptake kinetics, metformin subcellular concentrations, including mitochondria, were predicted in stably transfected human embryonic kidney 293 (HEK293) cells (30).
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