Skip to main content
. 2018 Oct 16;8:438. doi: 10.3389/fonc.2018.00438

Table 3.

Univariable and multivariable binary logistic regression analysis testing the value of clinical variables in predicting clinically significant Prostate Cancer (ISUP>1).

Variables Univariable analysis Multivariable analysis
Odds ratio (95% C.I.) Std. Err. P > |z| Odds ratio (95% C.I.) Std. Err. P > |z|
Age (years) 1.077 (1.063–1.091) 0.007 <0.001 1.092 (1.072–1.113) 0.011 <0.001
Suspicious DRE 3.143 (2.467–4.005) 0.388 <0.001 2.701 (2.069–3.527) 0.368 <0.001
PSA (ng/mL) 1.120 (1.093–1.147) 0.014 <0.001 1.155 (1.112–1.201) 0.023 <0.001
PVol (mL) 0.969 (0.964–0.974) 0.002 <0.001 0.970 (0.964–0.977) 0.003 <0.001
PVR (mL) 0.992 (0.990–0.995) 0.001 <0.001 0.994 (0.990–0.998) 0.002 0.006
PFR (mL/s) 1.021 (1.007–1.035) 0.007 0.002 1.003 (0.983–1.024) 0.010 0.752

DRE, digital rectal examination; ISUP, International Society of Urological Pathology; PCa, prostate cancer; PFR, peak flow rate; PSA, prostate-specific antigen; PVol, prostate volume; PVR, post-void residual urinary volume. The bold values are the statistically significant differences.