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Abstract

Adequate maternal vascular adaptations and blood supply to the uterus and placenta are crucial for optimal oxygen and nutrient
transport to growing fetuses of eutherian mammals, including humans. Multiple factors contribute to hemodynamics and structuring
of placental vasculature essential for term pregnancy with minimal complications. In women, failure to achieve or sustain favorable
pregnancy progression is, not surprisingly, associated with high incidence of antenatal complications, including preeclampsia, a
hypertensive disorder of pregnancy. While the pathogenesis of preeclampsia in women remains unknown, a role for androgens is
emerging. The relationship between androgens and maternal cardiovascular and placental function deserves particular consideration
because testosterone levels in the circulation of preeclamptic women are elevated approximately two- to three-fold and are positively
correlated with vascular dysfunction. Preeclampsia is also associated with elevated placental androgen receptor (AR) gene
expression. Studies in animal models mimicking the pattern and level of increase of adult female testosterone levels to those found in
preeclamptic pregnancies, replicate key features of preeclampsia, including gestational hypertension, endothelial dysfunction,
exaggerated vasoconstriction to angiotensin I, reduced spiral artery remodeling, placental hypoxia, decreased nutrient transport and
fetal growth restriction. Taken together, these data strongly implicate AR-mediated testosterone action as an important pathway
contributing to clinical manifestation of preeclampsia. This review critically addresses this hypothesis, taking into consideration both

clinical and preclinical data.
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Introduction

Pregnancy is characterized by major cardiovascular
adaptations, including marked decreases in systemic
vascular resistance and mean arterial pressure, along
with increases in maternal cardiac output and total
blood volume (Magness 1998, Thornburg et al.
2000, Chinnathambi et al. 2013a). Studies suggest
that pregnancy-enhanced vasodilatory actions allow
peripheral vessels to accommodate increases in blood
flow and volume (Conrad et al. 1993). Consistently,
maternal vascular adaptations are accompanied by
blunted vascular contractility (Naden & Rosenfeld 1981,
Magness & Rosenfeld 1986) and enhanced release of
endothelium-derived vasodilatory factors (Kawano &
Mori 1983, Magness et al. 1990, 1996, 2000, Conrad
et al. 1993, Sladek et al. 1997, Williams et al. 1997,
Gillham et al. 2003, Gokina et al. 2010). Failure of these
vascular adaptations during pregnancy are directly
related to several maternal/fetal pathologies, such as
increased systemic vascular resistance, hypertension,
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proteinuria, poor placental growth, decreased nutrient
transport and low birth weight, all characteristics
associated with a diagnosis of preeclampsia (Powe
etal. 2011) outlined in Table 1. Despite being a leading
contributor of maternal and perinatal morbidity and
death worldwide, the etiology and pathogenesis of
preeclampsia remain unclear (Roberts et al. 1991, Palei
et al. 2013, Salam et al. 2015).

Treatment options for preeclampsia are limited
to management of high blood pressure using
antihypertensives, such as methyldopa, hydralazine,
labetalol and nifedipine (ACOG 2013), as well as
magnesium sulfate for prevention of eclamptic seizures
(Al Khaja et al. 2014); however, these treatments have
limited efficacy, and the only cure is the delivery of
the placenta with baby, a totally undesired outcome
before late preterm (>34 weeks gestation). While the
exact causes of preeclampsia remain unknown, a large
body of evidence, supported by preclinical models of
preeclampsia, indicates thatabnormal placentation early
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Table 1

Diagnostic criteria for preeclampsia in women (ACOG Guidelines 2013).

Parameter

Diagnostic criteria

Blood pressure

Greater than or equal to 140 mmHg systolic or greater than or equal to 90 mmHg

diastolic on two occasions at least 4 h apart after 20 weeks of gestation in a woman
with a previously normal blood pressure

OR

Greater than or equal to 160 mmHg systolic or greater than or equal to 110 mmHg
diastolic, hypertension can be confirmed within a short interval (minutes) to facilitate
timely antihypertensive therapy

Proteinuria

Greater than or equal to 300mg per 24 h urine collection (or this amount extrapolated

from a timed collection)

OR

Protein/creatinine ratio greater than or equal to 0.3*
Dipstick reading of 1+ (used only if other quantitative methods not available)
OR in the absence of proteinuria, new-onset hypertension plus new onset of any of the following:

Thrombocytopenia
Renal insufficiency

Platelet count less than 100,000/microliter
Serum creatinine concentrations greater than 1.1 mg/dL or a doubling of the serum

creatinine concentration in the absence of other renal disease

Impaired liver function
Pulmonary edema
Cerebral or visual symptoms

Elevated blood concentrations of liver transaminases to twice normal concentration

*Each measured as mg/mL.

in pregnancy is an important initial event in the onset of
preeclampsia (Roberts & Redman 1993, Myatt 2002).
Such preeclamptic abnormal placentation stimulates
the production of anti-angiogenic factors and cytokines,
resulting in generalized vascular dysfunction and the
clinical manifestation of preeclampsia. In the past several
years, dysregulation of steroid hormones, specifically
increases in maternal testosterone levels, has emerged
as an important endocrinopathy repeatedly associated
with clinical manifestations of preeclampsia. In order
to develop more effective therapeutic interventions for
preeclampsia, it is important to fully understand the
role of testosterone in maternal vascular and placental
function, as well as blood pressure control, during
normal pregnancy and in preeclampsia. This review
critically addresses the hypothesis of testosterone-
mediated pathogenesis of preeclampsia, taking into
consideration data from both clinical (human) and
preclinical (animal) studies.

Testosterone levels in clinical preeclampsia

Most studies have investigated the beneficial role of sex
steroid hormones, especially estradiol and progesterone,
on cardiovascular function during pregnancy in women
(Magness 1998). The relationship between testosterone
and maternal cardiovascular function, however, is
relatively understudied. PubMed search with keywords,
‘testosterone, preeclampsia and women’, generated 40
publications that were manually screened to identify 14
full-length papers reporting testosterone levels in both
preeclampsia and control groups. Twelve of these 14
studies reported elevated plasma levels of testosterone
during preeclamptic compared to normotensive (control)
pregnancies (Table 2) (Acromite et al. 1999, Serin et al.
2001, Steier et al. 2002, Ficicioglu & Kutlu 2003,
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Miller et al. 2003, Troisi et al. 2003, Atamer et al. 2004,
Baksu et al. 2004, Carlsen et al. 2005, Gerulewicz-
Vannini et al. 2006, Salamalekis et al. 2006, Ghorashi
& Sheikhvatan 2008, Hsu et al. 2009, Sharifzadeh et al.
2012). These studies report that during late pregnancy,
plasma testosterone concentrations range between 100
and 150ng/dL and these are 1.5- to 2.4-fold higher
in preeclamptic compared to normotensive pregnant
women (Fig. 1A). The reported mean unbound or
‘free’ testosterone level circulating in preeclamptic
women is also 1.4- to 3.4-fold higher compared to
normotensive pregnancies (Fig. 1B). Some studies also
indicate that circulating testosterone levels correlate
with the severity of preeclampsia, although this is not
a universal finding (Ficicioglu & Kutlu 2003, Atamer
et al. 2004). While there are many androgens, including
the relatively bio-ineffective testosterone precursors of
dehydroepiandrosterone (DHEA) and androstenedione
(A,), only circulating levels of testosterone are
increased during preeclampsia (Table 2). Preeclamptic
hyperandrogenic measures include elevated total
testosterone, free testosterone, free androgen index (FAI,
total testosterone x 100/sex hormone binding globulin)
and the testosterone-to-estradiol ratio. Hyperandrogenic
pregnant women with polycystic ovary syndrome
(PCOS) are at increased risk for preeclampsia (de Vries
et al. 1998, Kjerulff et al. 2011, Kamalanathan et al.
2013), and it has been proposed that overproduction of
testosterone by the polycystic ovary is the causal factor
engaging preeclampsia in PCOS women (Diamant et al.
1982, Sir-Petermann et al. 2002, Codner & Escobar-
Morreale 2007). Obesity, and accompanying insulin
resistance-induced compensatory hyperinsulinemia,
is predictive of preeclampsia (Seely & Solomon
2003). Insulin stimulates androgen release, including
testosterone, from theca cells of normal ovaries
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Table 2 Plasma androgen levels in healthy and preeclamptic pregnant women.
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% Increase in

Gestational age

Reference/Androgen Normal vs preeclampsia P preeclampsia® (weeks)
Acromite et al. (1999) 36-38
Total TS 154.5 vs 213.6ng/dL <0.01 38
Free TS 0.3 vs 0.5 ng/dL <0.05 67
DHEA-S 175.5 vs 171.0 pg/dL NS
Estradiol 33.8 vs 36.4g/mL NS
Salamalekis et al. (2006) 30-31
Total TS 106.3 vs 154.4ng/dL <0.05 45
Free TS 0.21 vs 0.34ng/dL <0.05 62
DHEA-S 76.15 vs 57.62 pg/dL >0.05
Androstenedione 110.5 vs 107.1 ng/dL >0.05
Ghorashi and Sheikhvatan (2008) 28-39
Free TS 0.58 vs 1.97 ng/dL 0.001 240
Serin et al. (2001) 34-39
Total TS 24.3 vs 44.1 ng/dL <0.05 81
Free TS 0.22 vs 0.44 ng/dL <0.05 100
DHEA-S 90.5 vs 162.5 pg/dL NS
Androstenedione 210 vs 220 ng/dL NS
Estradiol 92.2 vs 73.5 pg/mL NS
Carlsen et al. (2005) 33
Total TS 63.4 vs 86.5 ng/dL 0.001 36
Free TS index 0.61 vs 0.83 0.012 36
DHEA-S 102.3 vs 121.5 pg/dL NS
Androstenedione 280 vs 337 ng/dL NS
Baksu et al. (2004) 34
Total TS 136 vs 257 ng/dL 0.001 89
Free TS index 0.31 vs 0.37 0.01 19
DHEA-S 109.1 vs 104.3 pg/dL NS
Estradiol 5830.1 vs 6164.2 pg/mL NS
Steier et al. (2002) 30-38
Total TS 82.1 vs 172.4ng/dL <0.01 110
Hsu et al. (2009) 37
Total TS 34 vs 52 ng/dL <0.01 53
Gerulewicz-Vannini et al. (2006) 37
Total TS 103.7 vs 152.2 ng/dL 0.02 47
Free TS 0.144 vs 0.594 ng/dL 0.002 312
DHEA-S 70.0 vs 51.1 pg/dL NS
Atamer et al. (2004) 34-35
Total TS 29 vs 67 ng/dL <0.001 131
DHEA-S 108 vs 112 pg/dL NS
Androstenedione 189 vs 158 ng/dL NS
Estradiol 2927 vs 3572 pg/mL NS
Troisi et al. (2003) 37
Total TS 141.9 vs 214.5 ng/dL 0.0007 51
Androstenedione 316.0 vs 506.3 ng/dL 0.004 60
Sharifzadeh et al. (2012) 32-33
Total TS 206 vs 370 ng/dL <0.01 80
Free TS 0.074 vs 0.128 <0.01 73
DHEA-S 51 vs 75 pg/dL NS
Miller et al. (2003) 35
Total TS 206 vs 147 ng/dL NS
Free TS index 2.03 vs 1.50 NS
DHEA-S 75 vs 75 pg/dL NS
Estradiol 18,536 vs 9619 pg/mL NS
Ficicioglu and Kutlu (2003) 34-35
Total TS 218 vs 209 ng/dL NS
Free TS index 4.16 vs 5.24 NS
DHEA-S 104 vs 77 pg/dL <0.05
Estradiol 21,880 vs 21,370 pg/mL NS

All these studies used immunoassays (ELISA and RIA) to measure TS levels. This raises concern regarding assay sensitivity and the specificity because of risk of
cross-reactivity between steroids and their multiple placental metabolites. Recently, liquid chromatography tandem mass spectrometry (LC-MS/MS) has been
suggested as the new ‘gold standard” method for measurement of TS levels. This recommendation is more geared towards situations in which measurements of TS are
below detectable levels (such as in hypogonadal men, women, children etc.) or in species for which no specific antibodies are available (such as sheep). Recent
studies that compared the predictive values of TS levels measured by LC-MS/MS and immunoassay showed no significant difference between the two analytical
methods (Czeloth et al. 2017, Mitchell 2012). The TS levels reported in the studies cited here may be appropriate for two reasons. First, the TS levels in pregnant
women are within detectable range, and second, the objective is to detect relative change in preeclamptic group compared to controls.
# % increase is calculated as 100 x (preeclampsia - normal)/normal.

TS, testosterone; NS, not significant.
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Figure 1 Mean higher total (A) and free testosterone (B) levels
reported in preeclamptic patients compared normotensive controls in
published studies cited in Table 1. Each point represents a single
published study.

(Franks et al. 1999), and thus, the exaggerated
hyperinsulinemia of obesity during preeclamptic
gestation (Kaaja et al. 1995, Lorentzen et al. 1998) likely
contributes to increased maternal testosterone levels
(Andersen et al. 1995, Pasquali et al. 2000, Sutton-
Tyrrell et al. 2010). Since both obesity, hyperinsulinemia
and preeclampsia are more prevalent among
hyperandrogenic pregnant women with PCOS than in
pregnant women without PCOS (Lonnebotn et al. 2018),
obesity-enhanced maternal testosterone levels may
contribute to PCOS-associated preeclampsia.

Ethnicity has also been implicated in contributing
hyperandrogenism-related  preeclampsia. ~ Pregnant
African-American  women exhibit high maternal
testosterone levels (120-130%), including elevated fetal
cord blood testosterone levels at term (Henderson et al.
1988, Potischman et al. 2005, Rohrmann et al. 2009,
Agurs-Collins et al. 2012) and are at increased risk for
developing preeclampsia (Samadi et al. 2001, lavazzo
& Vitoratos 2010). In addition, plasma testosterone

Preeclampsia
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Ovary
Congenital
Adrenal
Hyperplasia
Obesity Testosterone
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Stress Associations
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African
Americans

Hypoxia

Figure 2 Possible associations for testosterone increase in females
and pregnancy.

Reproduction (2018) 156 R155-R167

levels are increased during pregnancy in a variety of
situations (Fig. 2), including classical congenital adrenal
hyperplasia (Warmann et al. 2000, Mains et al. 2007),
high caffeine intake (Ferrini & Barrett-Connor 1998,
Svartberg et al. 2003) and stress (Sarkar et al. 2007, 2008),
all of which are known risk factors for preeclampsia.
Furthermore, pregnant women are inadvertently exposed
to elevated testosterone levels via environmental
pollutants and anabolic steroids (endocrine disruptors).
High androgenic activity is reported in water from craft
pulp and paper mills, as well as concentrated animal
feed operations in the United States and Europe (Parks
et al. 2001, Orlando et al. 2004). Reports have shown
that an androgenic growth promoter used in beef cattle,
trenbolone, has a half-life of greater than 260 days in
animal by-products (Schiffer et al. 2001, Hotchkiss &
Nelson 2007).

The degree of hyperandrogenism in preeclamptic
women varies depending on the sex of their fetus.
Preeclamptic women bearing sons exhibit higher
testosterone levels than preeclamptic women bearing
daughters (Steier et al. 2002), contributing to the
notion that a male fetus and its placenta contribute
additional amounts of testosterone to the maternal
circulation (Sathishkumar et al. 2012). Such pregnant
women bearing male fetuses are at increased risk for
developing preeclampsia and placental dysfunction
(Stark et al. 2006, Murji et al. 2012, Sykes et al. 2014,
Li et al. 2018). Furthermore, daughters experiencing a
preeclamptic gestation demonstrate higher circulating
testosterone levels when they reach puberty (Alsnes
et al. 2016). Such female offspring are at increased risk
of developing hypertension and cardiovascular disease
as adults (King et al. 2007, Sathishkumar et al. 2011c,
Chinnathambi et al. 2012, 2013b, Vyas et al. 2016),
and possibly preeclampsia and other pregnancy-related
complications. High testosterone levels persist for at
least 17 years in women with a documented history
of preeclampsia (Laivuori et al. 1998). These studies
thus provide consistent circumstantial evidence linking
increased testosterone levels with preeclampsia.

The origin of the increased testosterone levels during
preeclampsia remain uncertain. Studies suggest a
placental contribution (Steier et al. 2002, Dokras et al.
2003). The human placenta, however, lacks the key
androgen biosynthetic enzymes, 17p-hydroxylase and
17,20-desmolase (Christensen 1974). It nevertheless
expresses 3p-hydroxysteroid dehydrogenase type 1
(HSD3B1) (Masonetal. 1993), endowingaready ability to
convert DHEA into A,, as well as the estrogen-preferring
17p-hydroxysteroid dehydrogenase type 1 (HSD17B1)
(Takeyama et al. 1998), endowing a weak ability to
synthesize testosterone from A,. After mid-gestation,
both maternal and fetal adrenals equally contribute as
the major sources of C19 steroids for placental androgen
biosynthesis (Turnipseed et al. 1976, Kowalczyk et al.
1998). The human fetal adrenal cortex includes a fetal
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Figure 3 Pathway of biosynthesis and metabolism of testosterone, primary estrogens and progesterone during pregnancy. StARD1, steroidogenic
acute regulatory protein; CYP11AT1, cholesterol side-chain cleavage enzyme; HSD3B1, 3beta-hydroxysteroid dehydrogenase; CYP17A1,
17a-hydroxylase/17,20-lyase; CYB5A, cytochrome b5; SULT2A1, sulfotransferase; STS, steroid sulfatase; AKR1C3, aldo-keto reductase type 1C3;
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zone, expressing StARD1, CYP11A1, CYP17A1 and
SULT2AT, essential for production of DHEA and DHEAS
sulfate (DHEA-S), analogous to the maternal zona
reticularis, the innermost zone of the maternal adrenal
cortex (Fig. 3). After membrane uptake carrier transport
into placental syncytiotrophoblast cells, sulfonated
testosterone precursors (i.e. DHEA-S) are desulfonated
by the enzyme sulfatase (STS) to yield DHEA. Placental
steroidogenic enzymes (Fig. 3) then convert DHEA
to A, (HSD3B1), and A, to testosterone (ARK1C3).
Accompanying high levels of placental aromatase
expression (Mason et al. 1993) ensure ready conversion
of placental androgens, including testosterone, into
non-androgenic, estrogenic metabolites (Gant et al.
1971, Buster et al. 1979, Dokras et al. 2003), including
estrone, estradiol and their catechol and methoxy
metabolites, some of which display placental bioactivity
rivaling that of E, (Jobe et al. 2011, Landeros et al. 2018).

The finding that there are no statistically significant
differences regarding circulating maternal levels of
DHEA-S and A, between control and preeclamptic
pregnancies implies that there is no contribution
of adrenal steroids to the hyperandrogenism of
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preeclampsia. Placental aromatase mRNA and protein
expression, however, is decreased in the preeclamptic
placenta, diminishing metabolism of A, and testosterone
into estrogenic metabolites, and tipping the equilibrium
between estrogens and androgens in favor of androgens
(Sathishkumar et al. 2012, Perez-Sepulveda et al.
2015). Hepatic conjugation, and thus inactivation, of
estrogens also appears diminished during preeclamptic
gestations. Maternal circulating levels of unconjugated
estrogens, however, remain unchanged from those in
normotensive pregnant women (Rosing & Carlstrom
1984). Studies show that testosterone, alone, diminishes
aromatase mRNA expression in human trophoblast
cells through a miR-22-mediated mechanism (Shao
et al. 2017). Other factors, tumor necrosis factor alpha
(Lau et al. 2013) and lipid radicals (Mori et al. 2014),
which are increased during preeclampsia downregulate
aromatase (Milczarek et al. 2008, Diaz et al. 2009). In
addition, hypoxia (which mirrors the actual conditions
of the placenta in the context of preeclampsia) also
downregulates placental aromatase (Jiang et al. 2000,
Perez-Sepulveda et al. 2015, Yu et al. 2015). It would be
interesting to assess whether compromised expression
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of aromatase also exists in tissues and organs other
than placenta during preeclamptic gestation. A recent
study also indicated that overexpression of CYP11AT1
mRNA (commonly referred as cholesterol side-chain
cleavage enzyme that catalyzes the first steps of
steroidogenesis) in human trophoblast cells induces
increased testosterone production and preeclampsia-
like placental dysfunction that could be reversed with
flutamide, an androgen receptor antagonist (Pan et al.
2017). Taken together, these findings support the
notion that increased testosterone during preeclamptic
pregnancies may be of placental origin, although other
sources cannot be excluded.

Testosterone and maternal blood pressure and
uterine artery blood flow

In healthy women experiencing no complications
during pregnancy, arterial pressure is stable during the
early part of first trimester and then gradually decreases,
reaching a nadir during the second trimester (Magness
1998, Bosio et al. 1999). Lack of this pregnancy-related
decrease in blood pressure indicates a failure in normal
cardiovascular adaptation and is considered to be a
cardinal feature of preeclampsia (Ishikuro et al. 2012).
Several independent investigators have demonstrated,
through human and animal studies, the association of
androgens, especially testosterone, with hypertension
(Nakao et al. 1981, Reckelhoff et al. 1998, Gonzales
etal. 2004, 2005, Park etal. 2004, Chen et al. 2007, Yanes
et al. 2009, Makinen et al. 2011). Testosterone levels
correlate positively with systolic blood pressure and
diastolic blood pressure during and after preeclampsia
(Laivuori et al. 1998, Serin et al. 2001, Carlsen &
Heimstad 2012). Experimentally induced increases in
maternal testosterone levels during pregnancy in rats,
at concentrations that mimic testosterone levels found
in human preeclamptic pregnancies, induce increases
in systemic arterial pressure (Chinnathambi et al.
2013a, 2014b, Fornes et al. 2016), implying a causal
role for testosterone in raising blood pressure during
gestation. The exact mechanism by which testosterone
mediates an increase in maternal blood pressure during
pregnancy is not clear, but accumulating evidence
indicates that testosterone increases vascular reactivity,
activating the renin-angiotensin system and altering
eicosanoid metabolism, thus favoring an increase in
the thromboxane A2 to prostacyclin (PGI2) ratio and
causing platelet aggregation in ways that are strikingly
similar to those reported in preeclampsia (Acromite
et al. 1999). Our unpublished observations also show
that elevating rat maternal testosterone levels during
pregnancy induce renal hypertrophy and proteinuria,
a hallmark feature of preeclampsia (Sathishkumar
et al. 2011a). Treatment with a selective angiotensin
type 1 receptor (AT,R) antagonist, losartan, markedly
attenuated the hypertension induced by testosterone
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in the pregnant rats (Chinnathambi et al. 2014b).
These findings suggest that AT,R activation contributes,
at least in part, to the testosterone-induced increase in
blood pressure in rat pregnancies.

In addition to adjustments in systemic vasculature, the
uteroplacental circulation normally adapts to maintain a
low vascular tone to accommodate a more than 20-fold
increase in uterine blood flow near-term (Rosenfeld et al.
1974, Magness 1998, Osol & Mandala 2009). Studies in
hyperandrogenic women with PCOS have shown that
their high maternal testosterone levels are associated with
increased uterine artery resistance index and reduced
blood flow (Palomba et al. 2010, 2012). Experimentally
induced increase in maternal testosterone levels in
pregnant rats show significantly reduced uterine arterial
blood flow by 40% (measured using transcutaneous
micro ultrasound) (Gopalakrishnan et al. 2016). In
addition, elevated testosterone decreases uterine arterial
diameter and increases resistance and pulsatile index
(Gopalakrishnan et al. 2016). These findings suggest that
the mechanisms controlling blood pressure and uterine
artery hemodynamics during pregnancy are perturbed
by elevated maternal testosterone levels. Primary
estrogens, estrone, estradiol-17p and estriol play an
important role in maintaining uterine blood flow and
blunting vascular responses during pregnancy (Albrecht
& Pepe 1990, Magness 1998). Jobe et al. (2013) elegantly
demonstrated that these primary estrogens, and the
majority of their catechol and methoxy metabolites,
including those with demonstrable placental bioactivity
(Jobe et al. 2011, Landeros et al. 2018), are reduced
in preeclampsia (Jobe et al. 2013). The lower levels of
primary estrogens, together with the reduced expression
of placental aromatase could induce precursor
steroid hormone accumulation, causing C19 steroids,
especially testosterone, to be elevated. It is unclear
if elevated testosterone acts independently or if it
synergies with reduced downstream C18 estrogens to
cause preeclampsia progression. Progesterone levels,
however, are reported to be normal (Rosing & Carlstrom
1984, Bussen et al. 1998, Hertig et al. 2010), decreased
(Acikgoz et al. 2013, Wan et al. 2018) or increased
(Tamimi et al. 2003, Metz et al. 2014) in preeclampsia.
Further studies will be needed to clarify whether
there is hitherto unrecognized relationship between
progesterone and testosterone, and if they work in
concert in preeclampsia pathogenesis.

Testosterone-induced mechanisms of vascular
dysfunction during pregnancy

Effects on endothelium-dependent relaxation

In humans, normal maternal vascular adaptations
are accompanied by enhanced release of three major
endothelium-derived vasodilatory factors including
nitric oxide (NO) (Conrad et al. 1993, Sladek et al. 1997,
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Williams et al. 1997), PGI2 (Kawano & Mori 1983,
Magness et al. 1990, 1996, 2000) and endothelium-
derived hyperpolarizing factor (EDHF) (Gillham et al.
2003, Gokina et al. 2010). This is accompanied with
concomitant pregnancy-induced increases in mRNA
and protein expression of endothelial NO synthase
(eNOS) (Sladek et al. 1997, Williams et al. 1997,
Nelson et al. 2000, Magness et al. 2001), endothelial
prostaglandin-l1 synthase (PGIS) (Bird et al. 2000,
Magness et al. 2000) and EDHF activity (Gokina
et al. 2010). In the systemic circulation, the principal
endothelium-dependent vasodilators are NO and EDHF
(Chinnathambi et al. 2013a). In the uterine arteries, in
addition to NO and EDHF, PGI2 also plays a role in
mediating vascular relaxation (Cooke & Davidge 2003).
Elevated testosterone is shown to inhibit acetylcholine-
induced relaxation of rat mesenteric and uterine
arteries suggesting that elevated testosterone impairs
endothelium-dependent relaxation. Specifically, the
NO-mediated vasodilation was significantly decreased
in mesenteric and uterine arteries in a pregnant rat model
of elevated maternal testosterone (Chinnathambi et al.
2013a, 2014a). This testosterone-induced decrease in
NO-mediated arterial relaxation was found not related
to decreased vascular smooth muscle sensitivity to NO,
as relaxation of arterial rings to sodium nitroprusside, an
exogenous NO donor, was not affected (Chinnathambi
et al. 2013a, 20714a). These findings indicate that
testosterone likely alters synthesis/release of NO.
Consistently, studies in rats have shown that testosterone
decreases plasma levels of NO, (marker of NO
production) with decreases in eNOS protein expression
in uterine arteries (Chinnathambi et al. 2014a) and
eNOS activity (decreased phosphorylation at excitatory
Ser'"”7 site and increased phosphorylation at inhibitory
Thr*> site) in mesenteric arteries (Chinnathambi et al.
2013a). The effect of testosterone in rat uterine arteries
appears to be more profound than that in mesenteric
arteries as in addition to decreasing NO pathway, it also
compromises the EDHF- and PGl,-mediated relaxation
by decreasing expression of small conductance calcium-
activated channel-3 and PGI2 receptor, respectively
(Chinnathambi et al. 2014a). Taken together, these results
suggest that elevated testosterone during pregnancy
may specifically impair the NO-mediated relaxation
in systemic (mesenteric) vessels, while it compromises
all three major vasodilatory pathways in reproductive
(uterine) vessels.

Effects on vascular smooth muscle contractile response

Systemic and uterine vasculature are refractory to
vasoconstrictions  during  pregnancy. In  contrast,
enhanced contractile responses to vasoconstrictors is a
characteristic feature of preeclampsia (Naden & Rosenfeld
1981, Magness & Rosenfeld 1986, Benoit et al. 2007,
Stanhewicz et al. 2017). Elevated testosterone during
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pregnancy is shown to enhance contractile responses
to many vasoconstrictors in endothelium-intact vessels,
but in endothelium-denuded vessels, there is enhanced
contractile response specific to angiotensin Il in rat
mesenteric (Chinnathambi et al. 2014b) and uterine
arteries (Chinnathambi et al. 2014a). These enhanced
responses observed in rat endothelium-denuded vessels
indicate that enhanced arterial sensitivity is primarily
because of increased angiotensin ll-induced contractions,
per se, rather than the loss of the endothelium-
mediated relaxation component (Chinnathambi et al.
2014a). Since elevated testosterone does not alter the
vasomotor response to other potent constrictors, such
as K* depolarization, thromboxane agonist U46619
and phenylephrine in endothelium-denuded vessels
(Chinnathambi et al. 2014a,b), it appears that testosterone
has a selective effectin enhancing vascular smooth muscle
response to angiotensin Il. It is possible that testosterone-
mediated vascular smooth muscle dysfunction occurs at
the agonist-specific receptor level rather than at common
intracellular signaling pathways. Consistently, studies
show that gestational elevation in testosterone levels
causes selective upregulation of vasocontractile AT,
receptor and downregulation of vasodilatory AT, receptor
in mesenteric and uterine arteries implying that increased
AT,/AT, receptor ratio may play an underlying role in
testosterone-induced exaggerated vasoconstriction to
angiotensin Il (Chinnathambi et al. 2014a,b).

Testosterone on placental development
and function

The progenitor cytotrophoblast cell is the stem cell
of the placenta. These cells proliferate throughout
gestation, differentiating along two pathways to form
either villous cytotrophoblast, which ultimately can
become syncytiotrophoblasts (outer cellular layer) or
extravillous cytotrophoblasts (inner cellular layer).
Syncytiotrophoblast is a specialized epithelium that
has several functions, including transport of gases,
nutrients and waste products and synthesis of peptide
and steroid hormones that regulate placental, fetal
and maternal systems. Extravillous trophoblasts have a
proliferative component and an invasive component.
There is also a migratory extravillous trophoblast, which
is neither invasive nor proliferative. AR is present in
syncytiotrophoblasts and in the decidua during the first
trimester of human gestation (Horie et al. 1992). The
expression of AR in human preeclamptic placentae
is considerably higher than its expression in healthy
placentae from uncomplicated pregnancies (Hsu
et al. 2009, Sathishkumar et al. 2012). Also, genetic
polymorphisms in the AR gene are associated with
increasedriskofpreeclampsia(Limetal.2011).Ratmodels
show that experimentally elevated maternal testosterone
levels during pregnancy induce a reduction in placental
size and weight (Sathishkumar et al. 2011b, Sun et al.
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2012). The reason for smaller placenta in testosterone-
exposed dams is not known, but may involve increased
apoptosis or decreased proliferation (Ling et al. 2002).
Pan et al. (2017) revealed a critical role for testosterone
in human trophoblast invasion and demonstrated that
flutamide, an AR antagonist, could rescue testosterone-
induced reduction in invasion (Pan et al. 2017). It is
possible that testosterone-induced autophagy (human)
(Pan et al. 2017), reduced invasion (human) (Pan et al.
2017) or advanced placental differentiation (sheep)
(Veiga-Lopez et al. 2011), may all contribute to such
alterations in placental weight/morphology.
Vasculogenesis and angiogenesis are critical processes
that lead to the formation of the placental vascular
network necessary for optimal uteroplacental circulation
(Huppertz & Peeters 2005, Arroyo & Winn 2008).
Testosterone, however, downregulates the expression of
genes related to vascular development and angiogenesis
(Ccr3, Strab, Dhcr7, Arid1a, Ptprj, Col1a2, Lefl, Collal
and Mmp2) in the rat placenta (Gopalakrishnan et al.
2016). Along with this antivasculogenic gene expression
profile, testosterone also decreases the radial and spiral
artery diameters and inhibits branching angiogenesis
(Gopalakrishnan et al. 2016). One of the important
functions of the placenta is to promote nutrient
transport to the fetus. Elevated testosterone is shown to
decrease placental amino acid transport to rat fetuses
(Sathishkumar et al. 2011b). This reduction in amino
acid transport is related to reduced expression of the
system A amino acid transporters (slc38a2/Snat 2) in the
rat placenta (Sathishkumar et al. 2011b). Testosterone
also decreases placental oxygenation with associated
increase in hypoxia-inducible factor 1Ta and hypoxia
responsive genes, presumable due to compromised
placental vascularization (Gopalakrishnan et al. 2016).
In addition to placental compromise, the fetuses of
testosterone -exposed pregnant rats also receive less
oxygen and are hypoxic (Gopalakrishnan et al. 2016).
Elevated testosterone, however, does not alter glucose
transport across the rat placenta (Sathishkumar et al.

['P Testosterone Levels During Pregnancy ]

2011b). Thus, testosterone increases during pregnancy
alter placental structure and function leading to
decreases in amino acid and oxygen availability to
the fetus.

Testosterone effects on fetal growth

Studies have shown that elevated maternal testosterone
levels are associated with reduced birth weights in
certain human populations (Sir-Petermann et al. 2005,
Carlsen et al. 2006, Mehrabian & Kelishadi 2012), rats
(Sun et al. 2012, Fornes et al. 2016), sheep (Manikkam
et al. 2004, Steckler et al. 2005, Recabarren et al. 2008,
Beckett et al. 2014) and marmoset monkeys (Smith et al.
2010), but not in rhesus monkeys (Abbott et al. 2010)
and not in human populations of non-Spanish descent
(Abbott et al. 2016). In rhesus monkeys, testosterone was
experimentally increased during early-to-mid-gestation,
2 months prior to parturition, hence, it is possible that
initial fetal growth restriction is masked by subsequent in
utero catchup growth. Female infant monkeys, rats and
sheep exposed to such gestational testosterone excess,
however, exhibit accelerated body weight gain 2 months
following parturition (Manikkam et al. 2004, Abbott
et al. 2010, Sathishkumar et al. 2011¢) and demonstrate
increased abdominal adiposity and onset of type 2
diabetes and hypertension in adulthood (Chinnathambi
et al. 2012, 2013b, Abbott et al. 2016). Testosterone
is a lipophilic hormone and can diffuse across tissues,
including placenta (Dell’Acqua et al. 1966, Meulenberg
& Hofman 1991, Wang et al. 2005); however, whether
fetal growth restriction induced by testosterone is the
result of a direct effect on the fetus, or is secondary to
decreased uterine blood flow or compromised placental
function, remains to be resolved.

Conclusions

Several studies show that circulating levels of testosterone
are two- to three-fold higher in preeclamptic pregnancies

[ Mesenteric Artery ] [ Uterine Artery ] |

Placenta ]

- Endothelial dysfunction
J eNOS activity, PGI2
and EDHF
- Exaggerated vasoconstriction - Exaggerated vasoconstriction
to contractile agonists to contractile agonists

- Endothelial dysfunction
J eNOS activity

- Hypoxia
/ Systemic Vascular J Uterine Blood Flow l
Resistance 1 Resistance Index

L

- Advanced differentiation

J End Diastolic Flow,

- J Vascularization
- Spiral artery remodeling

- 4 Angiogenesis (downregulated cer3, stras,
Dher7, Arid1a, Ptprj, Col1a2, Lef1, Collal, and Mmp2)

- 4 Amino acid transport

Figure 4 Unifying model depicting the central
role of testosterone in preeclampsia. Increased
testosterone level causes systemic, uterine and
placental vascular dysfunction leading to

¥

[ Preeclampsia and Fetal Growth Restriction ]

Reproduction (2018) 156 R155-R167

J increased blood pressure, decreased uterine
artery blood flow and placental insufficiency,
which may contribute to fetal growth
restriction.
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compared to those of healthy women experiencing
uncomplicated pregnancies. Elevated testosterone in
pregnant rats results in significantly increased arterial
pressure and decreased uterine arterial hemodynamics.
Testosterone, in pregnant rats, also causes endothelial
dysfunction and exaggerated vasoconstriction to
contractile agonists and dysregulates renin-angiotensin
system with exaggerated vascular smooth muscle
sensitivity to angiotensin Il. In addition, testosterone
compromises rat placenta vascularization and nutrient
transport leading to placental hypoxia and fetal growth
restriction. Itis therefore possible thatsome of the vascular
and placental effects observed during preeclampsia may
indeed be testosterone mediated (Fig. 4). Therefore,
strategies that (1) diminish excessive testosterone action
in the cardiovascular and placental system and (2)
identify the cause(s) of testosterone elevations during
pregnancy, could have important therapeutic potential
in treatment of pregnancies complicated by vascular
dysfunction and fetal growth restriction.
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