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Abstract
Artificial intelligence (AI) enables machines to provide 
unparalleled value in a myriad of industries and appli-
cations. In recent years, researchers have harnessed 
artificial intelligence to analyze large-volume, unstructured 
medical data and perform clinical tasks, such as the 
identification of diabetic retinopathy or the diagnosis 
of cutaneous malignancies. Applications of artificial 
intelligence techniques, specifically machine learning 
and more recently deep learning, are beginning to 
emerge in gastrointestinal endoscopy. The most 
promising of these efforts have been in computer-
aided detection and computer-aided diagnosis of 
colorectal polyps, with recent systems demonstrating 
high sensitivity and accuracy even when compared 
to expert human endoscopists. AI has also been 
utilized to identify gastrointestinal bleeding, to detect 
areas of inflammation, and even to diagnose certain 
gastrointestinal infections. Future work in the field 
should concentrate on creating seamless integration 
of AI systems with current endoscopy platforms and 
electronic medical records, developing training modules 
to teach clinicians how to use AI tools, and determining 
the best means for regulation and approval of new AI 
technology.

Key words: Artificial intelligence; Machine learning; 
Gastrointestinal endoscopy; Computer-assisted decision 
making; Computer-aided detection; Colonic polyps; 
Colonoscopy; Computer-aided diagnosis; Colorectal 
adenocarcinoma



© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Artificial intelligence (AI) appears poised 
to transform several industries, including clinical 
medicine. Recent advances in AI technology, namely 
the improvement in computational power and advent 
of deep learning, will lead to the near-term availability 
of clinically relevant applications in gastrointestinal 
endoscopy, such as real-time, high-accuracy colon 
polyp detection and classification and fast, automatic 
processing of wireless capsule endoscopy images. 
Applications of AI toward gastrointestinal endoscopy 
will likely exponentially rise in the coming years, 
and attention should be paid toward regulation, 
approval, and effective implementation of this powerful 
technology.
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INTRODUCTION
Artificial intelligence (AI) has transformed information 
technology by unlocking large-scale, data-driven 
solutions to what once were time intensive problems. 
Over the past few decades, researchers have succe-
ssfully demonstrated how AI can improve our ability to 
perform medical tasks, ranging from the identification 
of diabetic retinopathy to the diagnosis of cutaneous 
malignancies[1,2]. As the medical community’s understanding 
and acceptance of AI grows, so too does our imagination 
of the many ways in which it can improve patient care, 
expedite clinical processes, and relieve the burden of 
medical professionals.

Gastroenterology is a field that requires physicians 
to perform a myriad of clinical skills, ranging from 
dexterous manipulation and navigation of endoscopic 
devices and visual identification and classification of 
disease to data-driven clinical decision-making. In 
recent years, AI tools have been designed to help 
physicians in performing these tasks. Research groups 
have shown how deep learning can assist with a 
variety of skills from colonic polyp detection to analysis 
of wireless capsule endoscopy (WCE) images[3,4]. As 
the number of applications of AI in gastroenterology 
expands, it is important to understand the extent of our 
success and the hurdles that lie ahead. In this review, 
we aim to (1) provide a brief overview of artificial 
intelligence technology; (2) describe the ways in which 
AI has been applied to gastroenterology thus far; (3) 
discuss what value AI offers to this field; and finally (4) 
comment on future directions of this technology. 
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ARTIFICIAL INTELLIGENCE TECHNOLOGY
Artificial intelligence is machine intelligence that mimics 
human cognitive function[5]. Research in AI began in 
the 1950s with the earliest applications being in board 
games, logical reasoning, and simple algebra. Interest 
in the field grew over the next few decades due to the 
exponential increase in computational power and data 
volume. 

Machine learning is an artificial intelligence technique 
in which computers use data to improve their performance 
in a task without explicit instruction[6]. Examples of 
machine learning include an application that learns to 
identify and discard spam emails or a thermostat that 
learns household temperature preferences over time. 
Machine learning is often classified into two categories 
- supervised and unsupervised learning. In supervised 
learning, a machine is trained with data that contain pairs 
of inputs and outputs[7]. The machine learns a function 
to map the inputs to outputs, which can then be applied 
toward new examples. Linear and logistic regression, 
which are often employed in clinical research, are 
examples of supervised machine learning because they 
produce a regression function that correlates inputs 
to outputs based on observed data. In unsupervised 
learning, machines are given data inputs that are not 
explicitly paired to labels or outputs[7]. The machine is 
tasked with finding its own structure and patterns from 
the set of objects. An example of unsupervised learning 
is clustering, in which a system creates clusters of 
similar data points from a large data set.

Feature learning refers to a set of techniques within 
machine learning that asks machines to automatically 
identify features within raw data as opposed to the 
features being explicitly labeled[8]. This technique 
enables machines to learn features and infer functions 
between inputs and outputs without being provided 
the features in advance. A subset of feature learning 
is deep learning, which harnesses neural networks 
modeled after the biological nervous system of animals. 
Deep learning is especially valuable in clinical medicine 
because medical data often consist of unstructured text, 
images, and videos that are not easily processed into 
explicit features.

Machine learning, and more specifically deep learning, 
has been widely applied in tasks such as gaming, 
weather, security, and media. Recent notable examples 
include AlphaGo beating the world’s premier Go player, 
facial recognition within iPhone images, and automatic 
text generation[9-11]. 

Deep learning has also shown significant promise 
in performing clinical tasks. Researchers from Stanford 
trained a deep convolutional neural network (CNN) on 
129450 skin lesion images consisting of 2032 different 
diseases, and showed that the network performed 
on par against 21 board-certified dermatologists in 
distinguishing keratinocyte carcinomas from benign 
seborrheic keratosis and malignant melanomas from 
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benign nevi[2]. Other research groups have applied 
machine learning to identify diabetic retinopathy from 
fundus photographs, classify proliferative breast lesions 
as benign or malignant, and predict clinical orders[12-14].

APPLICATIONS OF AI IN 

GASTROENTEROLOGY
Automatic colonic polyp detection
Automatic colon polyp detection has been one of the 
primary areas of interest for applications of artificial 
intelligence in gastrointestinal endoscopy. Generally 
speaking, automatic polyp detection constructs are 
designed to alert the endoscopist to the presence of 
a polyp on the screen through either a digital visual 
marker or sound. 

Numerous studies have demonstrated that endos-
copists with higher adenoma detection rates during 
screening colonoscopy more effectively protect their 
patients from subsequent risk of colonic cancer[15,16]. 
Corley et al[15], for example, in their evaluation of 314872 
colonoscopies performed by 136 gastroenterologists 
showed that every 1.0% increase in adenoma detection 
rate was associated with a 3.0% decrease in the risk 
of cancer (hazard ratio, 0.97; 95%CI: 0.96 to 0.98). 
However, adenoma miss rates during screening 
colonoscopy remain relatively high, and have been 
estimated to be anywhere from 6%-27%[17]. Reasons 
for missing polyps are myriad, and can include 
inadequate mucosal inspection (for instance behind 
folds in the right colon), lack of recognition of subtle 
mucosal findings representing flat polyps, and variable 
prep quality. Importantly, there is evidence that some 
missed polyps are actually present on the visual field, 
but are not recognized by the endoscopist[18-20]. 

In the past two decades, several computer-aided 
detection (CADe) techniques have been proposed 
to assist endoscopists in the detection of polyps that 
would otherwise have been missed[21-24]. The ideal 
automatic polyp detection tool must have (1) high 
sensitivity for detection of polyps; (2) decreased rate 
of false positives; and (3) low latency so that polyps 
can be tracked and identified in near-real time. This 
last objective has eluded researchers up until recently 
as automatic polyp detection during live or recorded 
video can be affected by camera motion, strong light 
reflections, lack of focus of the traditionally used 
wide-angle lens, variation in polyp size, location and 
morphology, and the presence of vascular patterns, 
bubbles, fecal material and other distractors that may 
serve as false positives[25]. 

CADe in optical colonoscopy was first utilized and 
validated using still images obtained from endoscopic 
videos. Most of the modalities described below all utilize 
some combination of the following techniques: pre-
processing of an image or series of images in order to 
discard noise, a feature extraction tool that identifies 
and extracts a feature or mix of features within the 

image (e.g., texture, shape or color), and a machine-
learning or deep learning classification that uses these 
features to identify polyps[25]. 

A number of methods for CADe were proposed in 
the 1990s. Early attempts included the use of region-
growing methods - a pixel-based image segmentation 
approach - for the extraction of large intestinal lumen 
contours and for the detection of lower gastrointestinal 
tract pathology[21-23]. By the end of the 1990s, research 
efforts mostly combined texture, color, or mixed 
analysis methods with intelligent pattern classification 
to aid in the detection of lesions in static endoscopic 
images[23]. These efforts included work targeting both 
microscopic features and macroscopic characteristics 
of lesions within the colon in order to predict the like-
lihood of neoplastic and pre-neoplastic lesions[26,27]. The 
concurrent development of neural networks helped 
push the field forward. Early grey-level texture analysis 
of endoscopic images included utilization of texture 
spectrum[24], co-occurrence matrices[28,29], Local Binary 
Pattern (LBP)[30], and wavelet-domain co-occurrence 
matrix features[31]. Using this last approach, Karkanis 
et al[31] developed one of the earliest examples of polyp 
detection software. Known as CoLD (Colorectal Lesions 
Detector), the software utilized second-order statistical 
features, calculated on the wavelet transformation 
of each image to discriminate amongst regions of 
normal or abnormal tissue. An artificial neural network 
performed the classification of these features, obtained 
from still images alone, and the work achieved a 
detection accuracy of more than 95%[32,33].

Other groups developed methods that utilized 
color features. Tjoa and Krishnan[34] combined texture 
spectrum and color histogram features to broadly 
analyze colon status as “normal” or “abnormal”. In 
2003, Karkanis et al[35] used a color feature extraction 
scheme built on wavelet decomposition (Color Wavelet 
Covariance or CWC) to develop a computer-aided 
detection method with a higher sensitivity than previous 
methods that were built on grey-level features or color-
texture inputs. The CWC method demonstrated a 90% 
sensitivity and 97% specificity for polyp detection when 
utilized on high-resolution endoscopy video-frames[35]. 
In 2015, Zheng et al[36] created an intelligent clinical 
decision support tool that utilized a Bayesian fusion 
scheme combining color, texture and luminal contour 
information for the detection of bleeding lesions and 
luminal irregularities in endoscopic images. In 2006, 
Iakovidis et al[23] developed a pattern recognition 
framework that accepted standard low-resolution video 
input and achieved a detection accuracy of greater than 
94.5%.

These early works were based on the analysis of 
static endoscopic images and video frames. Subsequent 
work focused on translating polyp detection methods 
to real-time video analysis. In 2016, Tajbakhsh et al[37] 
developed a CADe system that used a hybrid context-
shape approach, whereby context information was 
used to remove non-polypoid structures from analysis 
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and shape information was used to localize polyps. 
Using this system, Tajbakhsh et al[37] reported an 88% 
sensitivity for real-time polyp detection. Perhaps more 
importantly, this group showed a latency, defined as 
the time from the first appearance of a polyp in the 
video to the time of its first detection by the software 
system, of only 0.3 s. The limitation to this study was its 
retrospective nature and limited clinical generalizability, 
as the system was tested on only twenty-five unique 
polyps[37]. 

Subsequent work in optical colonoscopy focused on 
validating real-time polyp detection modalities on larger 
colonoscopy image databases. Fernández-Esparrach 
et al[38] developed a method for utilizing energy maps 
based on localization of polyps and their boundaries - a 
so-called Window Median Depth of Valleys Accumulation 
(WM-DOVA) energy map method. Using this method 
on 24 videos containing 31 different polyps, this group 
demonstrated a sensitivity of 70.4% and a specificity 
of 72.4% for detection of polyps[38]. Wang et al[25] 
developed a method that utilized edge-cross section 
visual features and a rule-based classification to detect 
“polyp edges”. This Polyp-Alert software was trained on 
8 full colonoscopy videos and subsequently tested on 
53 randomly selected full videos. The system correctly 
detected 42 of 43 (97.7%) polyps on the screen and did 
so with very little latency. However, the software had 
an average of 36 false-positives per colonoscopy video 
analyzed[25]. False positives commonly resulted from 
protruding folds, the appendiceal orifice and ileocecal 

valve, and areas of the colon with residual fluid[25]. 
Both of these approaches were based on tradi-

tional machine learning methods with explicit feature 
specification. More recently, several groups have begun 
to incorporate deep learning methods into CAD systems. 
At Digestive Disease Week 2016, Li et al[39] presented 
perhaps the first example of a deep learning system 
for polyp detection. This group trained a convolutional 
neural network on 32305 colonoscopy images, and 
achieved an accuracy of 86% and sensitivity of 73% 
for polyp detection[39]. This study was instrumental in 
showing that a deep learning based computer vision 
program could accurately identify the presence of 
colorectal adenomas from colonoscopic images. Wang 
et al[40] recently presented their deep learning polyp 
detection software at the 2017 meeting of the World 
College of Gastroenterology. This system, built on 
a SegNet Architecture system was developed using 
a retrospective set of 5545 endoscopist-annotated 
images from colonoscopies performed in China and 
subsequently validated prospectively using 27461 
colonoscopy images from 1235 patients (Figure 1)[40]. It 
is currently being testing in a single-center prospective 
feasibility study[40]. More recently, Misawa et al[41] 
developed a deep learning based AI system, which was 
trained on 105 polyp-positive and 306 polyp-negative 
videos. The system was tested on a separate data 
set, and was able to detect 94% of polyps with a false 
positive detection rate of 60%[41]. 

Deep learning methods hold the promise of increasing 

A B

C D

Figure 1  Automatic polyp detection by Wang et al[40]. A: Original image obtained during colonoscopy; B: Automatic detection by box method; C: Probability map 
whereby red indicates high probability of polyp and blue indicates low probability of polyp; D: Automatic detection by paint method whereby blue coloring indicates 
location of polyp.
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diagnostic accuracy and processing large amounts of 
data quickly. Future work must continue to develop 
methods that balance a high sensitivity with low latency 
and improved false positive rates.

Optical biopsy 
Once a lesion has been detected, computational analysis 
may help predict polyp histology without the need 
for tissue biopsy, a subfield sometimes referred to as 
computer-aided diagnosis (CADx). The field of optical 
biopsy is several decades old, but the addition of deep 
learning and the increasing complexity of computational 
analytic methods have led to recent developments in 
this field. The ability to diagnose small polyps such as 
diminutive adenomas in-situ via optical diagnosis may 
allow for adenomas to be resected and discarded rather 
than sent for sometimes unnecessary histopathologic 
examination[42]. This “resect and discard” strategy has 
been estimated to promise upwards of $33 million 
dollars in savings per year in the United States alone[43]. 
A similar “diagnose and disregard” strategy has been 
suggested for diminutive polyps such as hyperplastic 
polyps in the rectosigmoid colon, where non-neoplastic 
polyps are identified via optical biopsy and left in place.
Historically, advanced imaging modalities have been 
the main areas of investigation for optical biopsy. These 
include chromoendoscopy, narrow spectra technologies 
(Narrow Band Imaging, i-Scan, and Fujinon intelligent 
color enhancement), endocytoscopy, and laser-induced 
fluorescence spectroscopy. In Japan, chromoendoscopy, 
defined as the topical application of stains or pigments 
to improve tissue localization during endoscopy, is 
widely used to further characterize small polyps during 
standard screening and surveillance colonoscopy[44]. 
The Kudo pit-pattern is one of the most widely known 
classification systems used to classify and predict the 
histopathology of a given lesion[27]. Takayama et al[45] 
found that chromoendoscopy combined with magnifying 
endoscopy (in this case an endoscope that magnified 
images by a factor of 40) achieved a sensitivity for the 
diagnosis of dysplastic crypt foci of 100%. 

Narrow band imaging (NBI) is another endoscopic 
optical modality where blue and green light is used 
to enhance the mucosal detail of a polyp in order to 
better characterize vessel size and pattern[46]. The NBI 
International Colorectal Endoscopic (NICE) classification 
uses color, vessels and surface pattern to differentiate 
between hyperplastic and adenomatous histology[47]. 
However, NBI, like chromoendoscopy, has been shown 
to have significant interobserver and intraobserver 
variability[48,49]. Interobserver variance generally stems 
from differences in expertise, while intraobserver va-
riance is affected by experience, personal well-being, 
levels of distraction, and stress[50]. 

The existence of inter- and intraobserver variance 
and steep learning curves have likely contributed 
to the slow pace of adoption of these techniques be-
yond specialized medical centers. The use of CADx 

modalities may allow for decreased variance amongst 
providers, increased standardization, and, perhaps 
most importantly, more widespread adoption by non-
experts in the field[51]. Following a similar developmental 
trajectory as the field of automatic polyp detection 
(CADe), the first CADx systems were developed using 
static colonoscopic images and image series. In 2010, 
Tischendorf et al[50] developed a computer-based analysis 
algorithm for colorectal polyps using magnifying NBI, 
with a subsequent automatic classification scheme using 
machine learning. This system achieved a sensitivity of 
90% compared to a human sensitivity of 93.8% when 
using the same database of 209 polyp images (with 
corresponding biopsy)[50]. In a follow up study on smaller 
polyps in 2011, Gross et al[52] reported a 95% sensitivity 
in the computer based-algorithm group compared to a 
93.4% sensitivity in a human expert group and 86.0% 
sensitivity in a human non-expert group. Both of these 
studies were limited, however, in that they involved off-
site computer analysis of static images.

Subsequent work by Takemura et al[53] and Kominami 
et al[54] translated machine learning methods to real-
time clinical use. Takemura et al[53] developed a custom 
software (HuPAS version 3.1, Hiroshima University, 
Hiroshima, Japan) that utilized a “bag-of-features” 
representation of NBI images and hierarchical k-means 
clustering of local features. In an initial study using 
static images, this group showed a sensitivity of 97.8%, 
specificity of 97.9%, and accuracy of 97.8% for diagnosis 
of neoplastic lesions. Diagnostic concordance between 
the computer-aided classification system and the two 
experienced endoscopists was 98.7%[53]. In a follow up 
study, this same group developed a real-time software 
to automatically recognize polyps, and then analyze and 
classify them as neoplastic or non-neoplastic[54]. This 
approach yielded a sensitivity 93.0%, a specificity of 
93.3%, accuracy of 93.2%, and concordance between 
the image recognition software and human endoscopic 
diagnosis of 97.5%[54]. Though this was a study on just 
41 patients with 118 colorectal lesions, it was the first of 
its kind to demonstrate that CADx in real-time is feasible 
and comparable to human diagnostics using magnified 
NBI.

Several other advanced endoscopy imaging mo-
dalities have similarly benefited from advances in CAD. 
Endocytoscopy (EC) is an ultra-high magnification 
technique that provides images of surface epithelial 
structures at cellular resolution[55]. In 2015, Mori et al[56] 
developed the EC-CAD system, a machine-learning CAD 
system that uses nuclear segmentation and feature 
extraction to predict pathologic classification (i.e., non-
neoplastic, adenoma and cancer, unable to diagnose). In 
a pilot study consisting of images from 176 polyps and 
152 patients, the system showed a sensitivity of 92.0% 
and specificity of 79.5% compared to a sensitivity of 
92.7% and specificity of 91% by expert endoscopists[56]. 
Misawa et al[57] then developed an EC system that 
utilized NBI rather than dye staining, and developed 

Alagappan M et al . Artificial intelligence in GI endoscopy



244 October 16, 2018|Volume 10|Issue 10|WJGE|www.wjgnet.com

a 
m

ac
hi

ne
 le

ar
ni

ng
 C

AD
 s

ys
te

m
 r

ef
er

re
d 

to
 a

s 
AI

-a
ss

is
te

d 
en

do
cy

to
sc

op
y 

to
 a

na
ly

ze
 E

C-
N
BI

 im
ag

es
 p

ro
du

ce
d 

by
 t

hi
s 

in
st

ru
m

en
t. 

Th
is
 s

ys
te

m
 u

se
s 

te
xt

ur
e 

an
al

ys
is
 a

nd
 

au
to

m
at

ic
 v

es
se

l e
xt

ra
ct

io
n,

 w
hi

ch
 is

 a
na

ly
ze

d 
by

 a
 s

up
po

rt
 v

ec
to

r 
m

ac
hi

ne
 a

nd
 o

ut
pu

ts
 a

 2
-c

la
ss

 d
ia

gn
os

is
 (

no
n-

ne
op

la
st

ic
 o

r 
ne

op
la

st
ic
) 

in
 r

ea
l t

im
e 

w
ith

 a
 0

.3
 s

ec
on

d 
la

te
nc

y[5
7]
. I

n 
a 

re
ce

nt
 v

al
id

at
io

n 
st

ud
y 

us
in

g 
10

0 
ra

nd
om

ly
 s

el
ec

te
d 

im
ag

es
 o

f c
ol

or
ec

ta
l l

es
io

ns
, t

he
 A

I-
as

sis
te

d 
en

do
cy

to
sc

op
y 

ac
hi

ev
ed

 a
 s

en
sit

iv
ity

 o
f 8

5%
 fo

r 
th

e 
di

ag
no

sis
 

of
 a

de
no

m
at

ou
s 

po
ly

ps
, a

 s
pe

cifi
cit

y 
of

 9
8%

, a
nd

 a
n 

ac
cu

ra
cy

 o
f 9

0%
 (
Fi

gu
re

 2
)[5

7]
. M

or
i e

t a
l[5

8]
 re

ce
nt

ly
 re

po
rt
ed

 o
n 

th
e 

re
su

lts
 o

f a
 p

ro
sp

ec
tiv

e 
st

ud
y 

fu
rt
he

r s
tu

dy
in

g 
th

e 
AI

-
as

sis
te

d 
en

do
cy

to
sc

op
y 

sy
st

em
. T

hi
s 

sin
gl

e-
ce

nt
er

 s
tu

dy
 in

 Y
ok

oh
am

a,
 J

ap
an

 in
vo

lv
ed

 8
8 

m
en

 a
nd

 w
om

en
 w

ith
 1

26
 p

ol
yp

s.
 T

he
 s

ys
te

m
 d

em
on

st
ra

te
d 

a 
se

ns
iti

vi
ty

 o
f 9

7%
, 

sp
ec

ifi
cit

y 
of

 6
7%

, a
cc

ur
ac

y 
of

 8
3%

, a
nd

 p
os

iti
ve

 a
nd

 n
eg

at
iv

e 
pr

ed
ict

iv
e 

va
lu

es
 o

f 7
8%

 a
nd

 9
5%

 w
ith

 e
xt

re
m

el
y 

lo
w

 la
te

nc
y.

W
ith

 th
e 

ad
ve

nt
 o

f d
ee

p 
le

ar
ni

ng
, r

ea
l-t

im
e 

op
tic

al
 a

na
ly

sis
 o

f p
ol

yp
s 

m
ay

 b
e 

po
ss

ib
le

 u
sin

g 
w

hi
te

-li
gh

t a
lo

ne
, w

ith
ou

t t
he

 a
id

 o
f a

dv
an

ce
d,

 e
nd

os
co

pi
c 

im
ag

in
g 

m
od

al
iti

es
 

su
ch

 a
s 

ch
ro

m
oe

nd
os

co
py

, N
BI

, e
nd

oc
yt

os
co

py
 o

r l
as

er
-in

du
ce

d 
au

to
flu

or
es

ce
nc

e 
sp

ec
tr
os

co
py

 (
Ta

bl
e 

1)
. I

n 
20

17
, B

yr
ne

 e
t a

l[5
9]
 d

ev
el

op
ed

 a
nd

 tr
ai

ne
d 

an
 A

I d
ee

p 
co

nv
ol

ut
io

n 
ne

ur
al

 n
et

w
or

k 
(D

CN
N
) 

on
 b

ot
h 

un
al

te
re

d 
w

hi
te

-li
gh

t 
an

d 
N
BI

 c
ol

on
os

co
py

 v
id

eo
 r

ec
or

di
ng

s 
(F

ig
ur

e 
3)

. T
he

 n
et

w
or

k 
w

as
 t
es

te
d 

on
 1

25
 v

id
eo

s 
of

 c
on

se
cu

tiv
el

y 
en

co
un

te
re

d 
di

m
in

ut
iv

e 
po

ly
ps

, a
nd

 a
ch

ie
ve

d 
a 

94
%

 a
cc

ur
ac

y 
of

 c
la

ss
ifi

ca
tio

n 
fo

r 
10

6 
of

 t
he

 1
25

 v
id

eo
s 

(f
or

 1
9 

po
ly

ps
 t
he

 s
ys

te
m

 w
as

 u
na

bl
e 

to
 r

ea
ch

 a
 c

re
di

bi
lit

y 
sc

or
e 

th
re

sh
ol

d 
of

 ≥
 

50
%

).
 F

or
 t
he

se
 1

06
 p

ol
yp

 v
id

eo
s,

 t
he

 s
ys

te
m

 w
as

 a
bl

e 
to

 d
et

ec
t 
ad

en
om

as
 w

ith
 a

 s
en

sit
iv

ity
 o

f 9
8%

 a
nd

 a
 s

pe
cifi

cit
y 

of
 8

3%
[5

9]
. F

ur
th

er
m

or
e,

 t
he

 m
od

el
 w

or
ke

d 
in

 q
ua

si 

Ta
bl

e 
1
  
Su

m
m

ar
y 

of
 c

lin
ic

al
 s

tu
di

es
 in

vo
lv

in
g 

co
m

pu
te

r-
ai

de
d 

de
te

ct
io

n 
an

d 
co

m
pu

te
r-

ai
de

d 
di

ag
no

si
s 

in
 r

ea
l t

im
e 

(d
ur

in
g 

liv
e 

co
lo

no
sc

op
y 

or
 v

id
eo

 r
ec

or
di

ng
)

R
ef

er
en

ce
Y
ea

r
Ty

pe
 o

f 
C

A
D

En
do

sc
op

ic
 M

od
al

it
y/

 I
np

ut
Pr

oc
es

si
ng

 M
od

al
it
y

St
ud

y 
D

es
ig

n
Se

ns
it
iv

it
y

Sp
ec
ifi
ci
ty

A
cc

ur
ac

y
La

te
nc

y 
N

ot
es

W
an

g 
et

 a
l[2

5]
20

15
C

A
D

e 
W

hi
te

-L
ig

ht
 E

nd
os

co
py

Po
ly

p-
Ed

ge
 D

et
ec

tio
n 

A
lg

or
ith

m
 a

nd
 S

ho
t 

Ex
tr

ac
tio

n

Re
tr

os
pe

ct
iv

e
- 

-
97

.7
%

1
0.

02
 s

36
 fa

ls
e-

po
si

tiv
es

 p
er

 v
id

eo

Fe
rn

án
de

z-
Es

pa
rr

ac
h 

et
 a

l[3
8]

20
16

C
A

D
e

W
hi

te
-L

ig
ht

 E
nd

os
co

py
W

M
-D

O
V

A
Re

tr
os

pe
ct

iv
e

70
.4

%
2  

72
.4

%
2

- 
-

A
cc

ur
ac

y 
an

d 
la

te
nc

y 
re

po
rt

ed
 fo

r t
hi

s 
st

ud
y

Ta
jb

ak
hs

h 
et

 a
l[3

7]
20

16
C

A
D

e
W

hi
te

-L
ig

ht
 E

nd
os

co
py

H
yb

ri
d 

C
on

te
xt

-S
ha

pe
 

Ex
tr

ac
to

r, 
Ed

ge
 M

ap
pi

ng
Re

tr
os

pe
ct

iv
e

88
.0

%
2  fo

r C
V

C
-C

ol
on

D
B

-
-

    
 0

.3
 s

0.
1 

Fa
ls

e 
po

si
tiv

es
 p

er
 

fr
am

e
48

.0
%

 fo
r A

SU
-M

ay
o

W
an

g 
et

 a
l[4

0]
 

20
17

C
A

D
e

W
hi

te
-L

ig
ht

 E
nd

os
co

py
D

ee
p 

le
ar

ni
ng

, b
ui

lt 
on

 
Se

gN
et

 A
rc

hi
te

ct
ur

e 
Re

tr
os

pe
ct

iv
e

91
.6

%
2

96
.3

%
2

10
0.

0%
1

0.
04

 s

M
is

aw
a 

et
 a

l[4
1]

20
18

C
A

D
e

W
hi

te
-L

ig
ht

 E
nd

os
co

py
D

ee
p 

le
ar

ni
ng

, b
ui

lt 
on

 a
 

D
C

N
N

Re
tr

os
pe

ct
iv

e
90

.0
%

2  
63

.3
%

2
76

.5
%

1
-

K
om

in
am

i e
t a

l[5
4]

20
16

C
A

D
x

M
ag

ni
fy

in
g 

N
BI

Ba
g 

of
 fe

at
ur

es
 

re
pr

es
en

ta
tio

n,
 S

V
M

 o
ut

pu
t

Pr
os

pe
ct

iv
e

93
.0

%
3  

93
.3

%
3

93
.2

%
4

-
97

.5
%

 c
on

co
rd

an
ce

 
be

tw
ee

n 
au

to
m

at
ic

 
di

ag
no

si
s 

an
d 

en
do

sc
op

ic
 

di
ag

no
si

s
K

om
ed

a 
et

 a
l[7

5]
20

17
C

A
D

x
A

 m
ix

 o
f W

hi
te

-L
ig

ht
 E

nd
os

co
py

, 
N

BI
 a

nd
 C

hr
om

oe
nd

os
co

py
D

ee
p 

le
ar

ni
ng

, b
ui

lt 
on

 a
 

C
N

N
Re

tr
os

pe
ct

iv
e

-
-

75
.1

%
5

By
rn

e 
et

 a
l[5

9]
20

17
C

A
D

x
W

hi
te

-L
ig

ht
 E

nd
os

co
py

 a
nd

 N
BI

D
ee

p 
le

ar
ni

ng
, b

ui
lt 

on
 a

 
D

C
N

N
Re

tr
os

pe
ct

iv
e

  9
8.

0%
3,

6  
  8

3.
0%

 3,
6

94
.0

%
4

0.
05

 s
Fo

r 1
9 

po
ly

ps
 th

e 
sy

st
em

 
w

as
 u

na
bl

e 
to

 re
ac

h 
a 

cr
ed

ib
ili

ty
 s

co
re

 th
re

sh
ol

d 
of

 ≥
 5

0%
M

or
i e

t a
l[5

8]
20

17
C

A
D

x
En

do
cy

to
sc

op
y 

an
d 

N
BI

Te
xt

ur
e 

an
al

ys
is

, a
ut

om
at

ic
 

ve
ss

el
 e

xt
ra

ct
io

n,
 S

V
M

 o
ut

pu
t

Pr
os

pe
ct

iv
e

97
.0

%
3

67
.0

%
3

83
.0

%
4

1 Tr
ac

ki
ng

 a
cc

ur
ac

y 
or

 d
et

ec
tio

n 
ra

te
, d

efi
ne

d 
as

 n
um

be
r o

f p
ol

yp
s 

de
te

ct
ed

 b
y 

so
ftw

ar
e/

to
ta

l n
um

be
r o

f p
ol

yp
s 

pr
es

en
t i

n 
vi

de
os

; 2 Se
ns

iti
vi

ty
 a

nd
 s

pe
ci

fic
ity

 fo
r t

he
 d

et
ec

tio
n 

of
 p

ol
yp

s;
 3 Se

ns
iti

vi
ty

 a
nd

 s
pe

ci
fic

ity
 fo

r t
he

 d
ia

gn
os

is
 

of
 n

eo
pl

as
tic

 v
er

su
s 

no
n-

ne
op

la
st

ic
 le

si
on

s;
 4 A

cc
ur

ac
y 

de
fin

ed
 a

s 
di

ffe
re

nt
ia

tio
n 

of
 a

de
no

m
as

 fr
om

 n
on

-n
eo

pl
as

tic
 le

si
on

s;
 5 A

cc
ur

ac
y 

of
 a

 1
0-

ho
ld

 c
ro

ss
-v

al
id

at
io

n 
is

 0
.7

51
, w

he
re

 th
e 

ac
cu

ra
cy

 is
 th

e 
ra

tio
 o

f t
he

 n
um

be
r 

of
 c

or
re

ct
 

an
sw

er
s 

ov
er

 th
e 

nu
m

be
r 

of
 a

ll 
th

e 
an

sw
er

s 
pr

od
uc

ed
 b

y 
th

e 
C

N
N

; 6 Se
ns

iti
vi

ty
 a

nd
 s

pe
ci

fic
ity

 in
 th

is
 c

as
e 

ar
e 

ca
lc

ul
at

ed
 b

as
ed

 o
n 

hi
st

ol
og

y 
of

 1
06

/1
25

 p
ol

yp
s 

in
 th

e 
vi

de
o 

te
st

 s
et

. F
or

 th
e 

re
m

ai
ni

ng
 1

9 
po

ly
ps

 th
e 

sy
st

em
 w

as
 

un
ab

le
 to

 r
ea

ch
 a

 c
re

di
bi

lit
y 

sc
or

e 
th

re
sh

ol
d 

of
 ≥

 5
0%

; C
A

D
x:

 C
om

pu
te

r-
ai

de
d 

di
ag

no
si

s;
 C

A
D

e:
 C

om
pu

te
r-

ai
de

d 
de

te
ct

io
n;

 S
V

M
: S

up
po

rt
 v

ec
to

r 
m

ac
hi

ne
; W

M
-D

O
V

A
: W

in
do

w
 m

ed
ia

n 
de

pt
h 

of
 v

al
le

ys
 a

cc
um

ul
at

io
n;

 N
BI

: 
N

ar
ro

w
 b

an
d 

im
ag

in
g;

 C
N

N
: C

on
vo

lu
tio

n 
ne

ur
al

 n
et

w
or

k;
 D

C
N

N
: D

ee
p 

co
nv

ol
ut

io
n 

ne
ur

al
 n

et
w

or
k.

Alagappan M et al . Artificial intelligence in GI endoscopy



245 October 16, 2018|Volume 10|Issue 10|WJGE|www.wjgnet.com

real-time with a delay of just 50ms per frame[59]. This 
work is also significant in that it achieved the diagnostic 
thresholds set forth by the Preservation and Incorporation 
of Valuable Endoscopic Innovations initiative set forth 
by the American Society for Gastrointestinal Endoscopy. 
This initiative states that in order for optical biopsy to 
reach an acceptable threshold to support the “resect and 
discard” or “diagnose and leave strategies”, there must 
be ≥ 90 % agreement for post-polypectomy surveillance 
intervals for the “resect and discard” strategy, and ≥ 
90% negative predictive value (NPV) for adenomatous 
histology for the “diagnose and leave” strategy[60]. 

Future work in this field must by necessity continue 
to refine sensitivity, specificity, accuracy, PPV and NPV 
of real-time optical classification methods while working 
to combine CADe and CADx modalities. 

EGD and capsule endoscopy 
Compared to applications in colonic polyp detection 

and classification, there have been fewer applications 
of deep learning in other areas of gastroenterology. 
However, the existing applications deserve recognition 
for their novelty and promise. One notable application 
is the use of CNN to diagnose Helicobacter pylori 
(H. pylori) infection by analysis of gastrointestinal 
endoscopy images[61]. H. pylori is strongly linked to 
gastritis, gastroduodenal ulcers, and gastric cancer, so 
prompt and effective diagnosis and eradication of this 
infection is important[62]. Existing diagnostic methods 
for H. pylori infection including urea breath test and 
stool antibody testing are highly sensitive and specific, 
but can be logistically difficult to schedule and process. 
In this study by Itoh et al[61], researchers developed a 
CNN trained on 149 gastrointestinal endoscopy images 
and tested on 30 images. The resulting sensitivity and 
specificity of the CNN for detection of H. pylori infection 
was 86.7% and 86.7% with an AUC of 0.956, which 
is significantly better than the performance of human 

A B

Neoplastic:                               99%

Non-neoplastic:                        0.0%

C D

NBI

Figure 2  Output from artifical intelligence-assisted endocytoscopy system by Misawa et al[57]. A: Input from endocytoscopy with narrow band imaging; B: 
Extracted vessel image whereby green light represents extracted vessel image; C: System outputs diagnosis of neoplastic or non-neoplastic; D: Probability of 
diagnosis calculated by support vector machine classifier. NBI: narrow band imaging.

Figure 3  Automatic polyp classification system. 1: Input from narrow band imaging; 2: Computer diagnosis of NICE type 1 (hyperplastic) vs NICE type 2 
(adenomatous); 3: Probability of diagnosis; 4: Computer determined confidence in diagnosis probability. Obtained with permission from Dr. Michael Byrne (Division of 
Gastroenterology at Vancouver General Hospital and UBC).
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endoscopists[61,63].
Deep learning with convolutional neural networks 

has also been applied toward endoscopic detection of 
gastric cancer. In 2018, Hirasawa et al[64] constructed 
a CNN-based diagnostic system which was trained on 
more than 13000 endoscopic images of gastric cancer. 
The system was then tested on 2296 images and in 
just 47 s, correctly diagnosed 71 of 79 gastric cancer 
lesions for a sensitivity of 92.2%. However, the positive 
predictive value was only 30.6% as a result of several 
false positives. This study highlights the potential of 
deep learning systems to accurately and quickly detect 
cancer. One can expect that with more training data and 
improved computational hardware, both the accuracy 
and analysis speed will only improve. 

Several studies have demonstrated applications of 
deep learning in wireless capsule endoscopy (WCE). A 
major challenge of WCE for busy clinicians is the time-
intensive nature of reviewing the images. However, 
deep learning offers a solution to both problems - it 
provides quick analysis of large-volume data and uses 
representation learning to extract its own features from 
unstructured images. Capsule endoscopy can be used to 
identify mucosal changes characteristic of celiac disease, 
but visual diagnosis has low sensitivity[65]. Zhou et 
al[66] trained a CNN using capsule endoscopy clips from 
patients with and without celiac disease, and reported 
a sensitivity and specificity of 100% for distinguishing 
celiac disease patients from controls in a testing set of 
ten patients. Further, the study found that the evaluation 
confidence of the system was correlated to the severity 
of the small bowel mucosal lesions. 

Deep learning in WCE has also been shown to be 
effective in detection of small bowel bleeding. The first 
several studies to demonstrate computer-aided dia-
gnosis of bleeding from WCE images used RGB and 
color texture feature extraction to help distinguish 
areas of bleeding from non-bleeding[67-69]. More recent 
studies, including by Xiao et al[70] and Hassan et al[71], 
used deep learning and feature learning to achieve 
sensitivities and specificities as high as 99% for detection 
of gastrointestinal (GI) bleeding. Further research and 
validation of these models may allow for a fast and 
highly effective means of detecting GI bleeding, with 
less work for the interpreting physician.

Similar image processing methods have even been 
applied to infectious disease detection in WCE. He et 
al[72] developed a CNN to detect hookworms, a cause of 
chronic infection affecting an estimated 740 million people 
in areas of poverty[72,73]. Hookworm infections cause 
chronic intestinal blood loss resulting in iron-deficiency 
anemia and hypoalbuminemia, and are especially 
dangerous in children and women of reproductive age 
due to its adverse effects in pregnancy[73]. In this study, 
He et al[72] tested a CNN on 440000 WCE images, and 
developed a system with high sensitivity and accuracy 
for hookworm detection. Applications of deep learning 
to hookworm detection and diagnosis of other infectious 
disease in the gastrointestinal tract may provide 

significant clinical value worldwide, especially in low-
resource settings, if the cost of capsule endoscopy can 
be substantially lowered. 

VALUE OF AI IN GASTROENTEROLOGY
As seen from the examples of CAD in gastroenterology 
described above, there are numerous potential benefits 
to the development and integration of CADx and 
CADe systems in everyday practice. In general, using 
artificial intelligence as an adjunct to standard practices 
within GI has the potential to improve the speed and 
accuracy of diagnostic testing while aiming to offload 
human providers from time-intensive tasks. In addition, 
CAD systems are not subject to some of the pitfalls of 
human-based diagnosis such as inter- and intraobserver 
variance and fatigue.

We are entering an age where CAD tools, applied 
in academic research settings, can at least match, and 
sometimes exceed human performance for the de-
tection or diagnosis of endoscopic findings in a variety 
of modalities within gastroenterology[74]. Current 
prospective studies generally utilize CADe and CADx as 
a “second reader”, where information derived from CAD 
systems serve to support the endoscopist’s diagnosis. 
When used in this fashion, CAD modalities can assist 
human providers with time-intensive, data-rich tasks. 
Several studies have shown that human observation of 
standard colonoscopy video by either nurses or trainees 
may increase an individual provider’s polyp and adenoma 
detection rates[18-20]. The CADe systems described above, 
when integrated into daily practice, may offer a reliable, 
and ever-vigilant “second observer,” which could 
provide particular value for junior gastroenterologists or 
endoscopists with low adenoma detection rates[38]. 

FUTURE DIRECTIONS
As applications of artificial intelligence in gastroenterology 
continue to increase, there are several areas of interest 
that we believe will hold significant value in the future. 
First, the technical integration of artificial intelligence 
systems with existing electronic medical records (EMR) 
and endoscopy platforms will be important to optimize 
clinical workflow. New AI applications must be able 
to easily “read in” data from a video input or EMR, 
allowing the systems to use the data for training and 
real time decision support. A seamless integration in 
the endoscopy suite will be crucially important in en-
couraging clinician adoption. 

Second, AI systems must continue to expand their 
library of clinical applications. As discussed in this review, 
there are several promising studies that demonstrate 
how AI can improve our performance on clinical tasks 
such as polyp identification, detection of small bowel 
bleeding, and even endoscopic recognition of H. pylori 
and hookworm infection. Future research should 
continue to identify new clinical tasks that are well-
suited to machine learning tools. For example, analysis 
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of WCE for diagnosis of celiac disease suggests that 
similar methodologies may be effective in diagnosing 
inflammatory bowel disease or providing more objective 
scoring of mucosal IBD activity during treatment. 
From a performance perspective, AI systems in clinical 
endoscopy will need to eliminate latency in detection 
to facilitate the real-world applicability of these te-
chnologies. 

Third, further research is needed to understand 
the ethical and pragmatic considerations involved in 
the integration of artificial intelligence tools in gastro-
enterology practice. To begin, what is the general 
physician sentiment toward artificial intelligence? Is AI 
considered a threat or a tool by the gastroenterology 
community? A deeper understanding of the end-user is 
crucial to dictating how these tools should be designed 
and deployed. If AI tools are accepted by physicians, 
how will we train individuals to use these technologies 
effectively? Will the learning curve for using these 
systems be prohibitive? If so, further research is needed 
to describe the most effective training methods for 
physician practices beginning to adopt AI technology. 
In today’s technology-driven environment, it is clear 
that data security is of utmost importance, especially 
when dealing with protected health information. As the 
number of AI tools increases, so too should our efforts 
toward designing security systems and encryption 
methods to safeguard clinical data. Finally, the clinical 
community needs to decide on standards for approval 
and regulation of new AI technologies, including 
potential implications for legal matters including medical 
malpractice. 

CONCLUSION
Artificial intelligence is an exciting new frontier for 
clinical gastroenterology. Artificial intelligence techniques 
like deep learning allow for expedited processing of 
large-volume unstructured data, and in doing so enable 
machines to assist clinicians in important tasks, such 
as polyp detection and classification. Several research 
groups have shown how artificial intelligence techniques 
can provide significant clinical value in gastroenterology, 
and the number of applications will likely continue 
to expand as computational power and algorithms 
improve. As the field evolves, a watchful eye is needed 
to ensure that security, regulation, and ethical standards 
are upheld.
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