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Abstract

The translation of genomic sequencing technology to the clinic has greatly advanced personalized 

medicine. However, the presence of normal cells in tumors is a confounding factor in genome 

sequence analysis. Tumor purity, or the percentage of cancerous cells in whole tissue section, is a 

correction factor that can be used to improve the clinical utility of genomic sequencing. Currently, 

tumor purity is estimated visually by expert pathologists; however, it has been shown that there 

exist vast inter-observer discrepancies in tumor purity scoring. In this paper, we propose a 

quantitative image analysis pipeline for tumor purity estimation and provide a systematic 

comparison between pathologists’ scores and our image-based tumor purity estimation.
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1. INTRODUCTION

Genomic sequencing is an established tool in basic research, and the advent of massively-

parallel next-generation sequencing (NGS) has allowed the adoption of genomic sequencing 

as a clinical diagnostic tool. However, existing challenges in the analysis of NGS data serve 

to limit its clinical utility. One of these challenges is the infiltration of non-cancerous cells in 

tumors, which affects the interpretation and clinical utility of genomic analyses. For this 

reason, the estimation of tumor purity (TP) has been an important topic of many studies to 

compensate for the effect of non-cancerous cells [1][2][3].

Currently, tumor purity scores are often derived from the visual estimation of tumor 

specimens by trained pathologists. However, it has been shown that there exist vast inter-

observer discrepancies in the estimation of TP by pathologists [4], which may lead to 

incorrect indicators of prognosis and/or response to treatment in certain cancer types. For 

example, TP can indicate the presence of clonal populations of cancerous cells in a given 

tumor, a feature that may help predict prognosis and response to treatment [5][6][7]. 

Another confounding effect caused by differences in TP [8] across tumors is the detection of 

DNA copy number variations (CNV), a feature which has been shown to contribute to 

cancer pathogenesis [9][10][11]. Thus, an accurate and consistent estimation of TP promises 

to be a useful measure, not only to enhance the utility of genomic sequencing data, but also 

for better clinical outcome.
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Recently, many statistical algorithms have been developed in an attempt to measure TP from 

DNA expression data [1]. However, these methods heavily rely on statistical assumptions 

and thus can not be generalized to many forms of sequencing data [2]. Furthermore, these 

methods do not identify whether a mutation is occurring in a subpopulation of cells, an 

occurrence that can have significant implications. For these reasons, it is advantageous to 

estimate TP directly from quantitative image analysis.

In [3], the authors proposed a method to measure TP based on quantitative analysis of 

hematoxylin and eosin (H&E)-stained images of tumor specimens. To do this, they acquired 

manual annotations by pathologists and used a support vector machine classifier to classify 

individual nuclei into four different classes (cancer, lymphocyte, stromal, and artifacts), 

achieving a classification accuracy of 90.1%. They showed that image-based TP estimation 

is correlated with pathologists’ TP scores and demonstrated that quantitative image analysis 

is useful for improving survival prediction by refining and complementing genomic analysis. 

However, correlation comparisons may not be enough to decide clinical accuracy, and 

furthermore, inherent challenges in image analysis such as nuclei detection rate, 

segmentation accuracy, or imperfect classification rate, which could cause bias in image-

based TP estimation, were not explored further.

In this paper, we develop a quantitative image analysis pipeline that includes annotation, 

segmentation and classification. We also introduce a method to provide a systematic 

comparison between pathologists’ TP and image-based TP estimations. We envision that this 

framework will allow us to have a better understanding of TP estimation based on 

quantitative image analysis.

2. QUANTITATIVE IMAGE ANALYSIS PIPELINE

Figure 1 shows a conceptual illustration of the proposed pipeline. In the following section, 

we will explain each module in detail.

2.1. Annotation tool

In order to collect annotated data from tumor specimens, we installed Cytomine [12], an 

open-source software designed for image-based collaborative studies, on a campus-wide 

server. H&E whole-slide images (WSI, 20 × magnification) of breast cancer tumor 

specimens obtained and processed at OHSU using the same protocol were uploaded to 

Cytomine, and annotations were performed by pathologists using Cytomine’s web user-

interface to annotate individual as well as large regions of nuclei. Annotations and their 

respective image coordinates were downloaded using Cytomine’s Python client. Combined 

with our segmentation results (section 2.2), individual nuclei were then categorized into 

“cancer”, “stromal”, “lymphocyte” and “normal” classes, resulting in a total of 27,863 

labeled cancer nuclei and 4,831 non-cancerous nuclei for 10 WSI samples. A subset of 4,831 

cancer nuclei was randomly selected in order to balance the data for a total of 9,662 labeled 

nuclei across the 10 WSI images.
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2.2. Segmentation

In this paper, we used our automatic nuclei segmentation algorithm [13]. In H&E stained 

section, hematoxylin stains cell nuclei blue while eosin stains other structures in various 

shades of red and pink. Since each pixel has a specific intensity and also represents a part of 

morphological features, by mapping each pixel with useful morphological features and 

grouping neighboring pixels with similar features, one can differentiate between foreground 

and background, or between different tissues and nuclei. Thus, nuclei segmentation can be 

effectively performed by partitioned groups. More detailed information can be found in [13].

2.3. Training Data Set

Since we have obtained labelled data from pathologists’ annotations and individual nuclei 

masks from the segmentation results, we constructed the training data sets for supervised 

machine learning. Because we are interested in tumor purity estimation, segmented nuclei 

are simply classified into “cancerous” and “non-cancerous” categories based on the 

pathologists’ annotations; thus we merged stromal, lymphocyte and normal nuclei into the 

“non-cancerous” nuclei class.

2.4. Classification

In order to classify segmented nuclei as cancerous or non-cancerous, we used supervised 

classification techniques. First, we used a balanced training data set (as described in section 

2.1) and trained an L1-regularized logistic regression (LR) classifier with basic features 

including intensity and morphology features (area, perimeter, shape indexes, etc.) extracted 

from 9,662 labeled cells. We used 90% of the data for training our classifier and held out 

10% of the data as a testing set. In order to measure the performance of the classifier on 

unseen data, we used 10-fold cross-validation, in which for each “fold”, a classifier is trained 

using 90% of the training data and the model is validated on 10% of the training data. The 

performance was then calculated as the prediction accuracy on our testing set. Using only 

intensity and morphology features, we obtained 79.0% prediction accuracy using the above 

process.

To improve the performance of the classifier, we added texture features extracted from each 

segmented nuclei mask and trained our classifier again. In order to calculate texture features, 

we calculated a gray-level co-occurrence matrix (GLCM) based on a patch determined by 

the bounding box of each individual nuclei as shown in Figure 2 (left), where patch size 

depends on the size of segmented nuclei; a GLCM describes the second order statistics of 

pixel pairs located at a given offset. Haralick texture features for each color channel, 

including contrast, dissimilarity, homogeneity, energy, correlation and angular second 

moment (ASM) are then calculated based on each nucleus’s GLCM. We obtained 82.0% 

prediction accuracy using our testing set.

In order to extract context-specific texture features, we chose a fixed patch size of 64 × 64 

pixels per individual nucleus as shown in Figure 2 (right). This allowed us to include 

information about the individual nucleus’ environment such as features related to 

neighboring nuclei and their density. This is inspired by deep learning architecture for 

feature learning where some of the input features may include neighboring nuclei 
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information. Following this adjustment in texture feature extraction, we obtained 94.5% 

classification accuracy using our testing set.

Finally, we also trained a support vector machine (SVM) [14] using the radial basis function 

kernel with the same features. All prediction results are summarized in Table 1. Each model 

we used has parameters that affect the accuracy; in order to achieve maximal training and 

cross-validation accuracy, we performed a single parameter grid search in which one 

parameter is calibrated while the others are held at default values and the model is trained. 

Using this method we obtained 98.4% prediction accuracy for the training data set. Once the 

best parameters were determined, we checked for overfitting by testing the model on a 

testing set and obtained similar precision accuracy (98.6%). A confusion matrix is shown in 

Table 2 for this testing data set, and Figure 3 shows the comparison between the ground truth 

(pathologists’ annotation) and our prediction (sampled ROI).

3. RESULT AND DISCUSSION

We define tumor purity (TP#) as follows:

TP# =
nT

nT + nN
= 1

1 + γ (1)

where nT represents the number of tumor cells, nN represents the number of normal cells and 

we denote the ratio of these numbers by γ ≜ nN/nT. For example, if we have three times 

more normal cells than tumor cells (i.e., γ = 3), then we have TP#=0.25. In Figure 4, solid 

black line shows a nonlinear relationship between γ and TP based on (1) and blue diamond 

marker represents pathologists’ tumor purity score across 10 WSI samples where γ is simply 

calculated based on (1), i.e., γ =
1 − TP#

TP#
. Note that we use semi-log plot (i.e., x-axis is 

plotted on a logarithmic scale).

With this notion, you can see how TP changes according to γ. For example, if TP changes 

from 0.8 to 0.4 (reduced by half), γ changes from 0.25 to 1.5 (increased by 6 times). Thus, 

when pathologists examine two different WSI samples which have tumor purity 0.8 and 0.4 

respectively, they should see the difference from 0.25 and 1.5 in γ. Similarly, if TP changes 

from 0.8 to 0.2 (reduced by one-quarter), γ changes from 0.25 to 4 (increased by 16 times). 

This numerical example illustrates that sensitivity factor of pathologists evaluation may vary 

over the ranges of γ.

Red circle marker in Figure 4 represents tumor purity estimations from quantitative image 

analysis showing that our image-based TP estimations are correlated with pathologists’ 

score but overall, our estimation is slightly higher than pathologist’s score (note that the red 

cross marker represents outliers, where the WSI includes artifacts, such as tissue folds and 

bubbles). There could be many possible reasons for this overestimation, such as over-

segmentation, overall detection rate, pathologists’ bias, etc. In terms of over-segmentation, 

for example, cancer cells are clustered together in general so we need to use watershed 
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algorithm to separate the clustered cells as shown in Figure 3. However, normal cells such as 

lymphocytes are not clustered (i.e., not touching each other) so they can be segmented well 

without any separation. Then, γ could be smaller than the ground truth (thus, higher TP 

estimation) because we may have more chance to do over-segmentation in tumor cell 

regions.

In order to provide a systematic comparison between pathologists’ scores and our TP 

estimation, we fit our TP# score with given γ calculated from pathologists’ TP score to 

understand this discrepancy. Our fitting function shows TP# = 1
1 + 0.5688 ⋅ γ  where 

1.7581(=1/0.5688) could be the scaling factor reflecting this over-segmentation. There could 

be another possibility, for example, pathological scores may reflect primarily the area ratio:

TParea =
AT

AT + AN
= 1

1 +
AN
AT

= 1

1 +
āN ⋅ nN
āT ⋅ nT

= 1
1 + β ⋅ γ (2)

where AT , AN represent total area covered by tumor and normal cell in tissue section 

respectively, āT , āN represent mean area size of tumor and normal cell respectively and 

β = āN / āT reflects the ratio of these numbers. Without loss of generality, we have TP# ≤ 

TParea as shown in Figure 4 where TParea, image (green square) is slightly higher than 

TP#,image (red circle). Note that equality holds when mean of tumor cell area size is equal to 

mean of normal cell area size, i.e., ān = āT. With this notion (i.e., pathologist scores reflect 

primarily the area of tumor cells seen in a given area), we need to compensate 

γ = 1
β ⋅

1 − TParea
TParea

 since tumor cell size is bigger than normal cell size (āN ≤ āT, i.e.,β ≤ 

1) in general.

4. CONCLUSION

In this paper, we developed a quantitative image analysis pipeline for tumor purity 

estimation. We demonstrated that our TP estimations are correlated with, but slightly higher 

than the estimates from pathologists. To understand inherent challenges in image analysis 

for improved clinical accuracy, we introduced a simple but effective way to provide a 

systematic comparison. To better understand this small discrepancy and the statistical 

comparison, we are currently applying our image analysis pipelines on larger data sets.
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Fig. 1. 
Conceptual illustration of the proposed pipeline: histopathology image annotation, 

segmentation, feature extraction, classification and tumor purity calculation.
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Fig. 2. 
Image patch for texture feature extraction where red boundaries represent individual 

segmented nuclei and blue boundaries represent separation of touching nuclei using 

watershed algorithm: (left) initial patch for texture feature extraction based on the bounding 

box of segmented nuclei; (right) fixed size patch centered at centroids of segmented nuclei 

allows for context-specific feature extraction and increases classification accuracy.
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Fig. 3. 
Example of a prediction result from a test data set: (A and C) Nuclei that have been 

annotated with pathologists’ labels overlaid on top of our nuclei segmentation. (B and D) 

Classes predicted by our SVM classifier for annotated nuclei. Cancerous nuclei outlined in 

yellow, non-cancerous nuclei outlined in cyan. (Lack of outlines for some nuclei represent 

nuclei without pathologists’ annotations).
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Fig. 4. 
Tumor purity comparison where α = 0.5688 with 95% confidence bounds.
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Table 1.

Classification results of different classifiers/features (1: with basic features, 2: with basic + texture features, 

and 3: with basic + texture features with fixed patch).

Classifier Prediction Sensitivity Specificity

LR1 0.79 0.80 0.78

LR2 0.82 0.84 0.80

LR3 0.95 0.93 0.96

SVM3 0.99 0.98 0.99
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Table 2.

Confusion matrix (testing data set).

True diagnosis

cancer non-cancer

Prediction
cancer 479 10

non-cancer 4 473
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