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Abstract

We consider perceptual learning -- experience-induced changes in the way perceivers extract 

information. Often neglected in scientific accounts of learning and in instruction, perceptual 

learning is a fundamental contributor to human expertise and is likely a crucial contributor in 

domains where humans show remarkable levels of attainment, such as chess, music, and 

mathematics. In Section II, we give a brief history and discuss the relation of perceptual learning 

to other forms of learning. We consider in Section III several specific phenomena, illustrating the 

scope and characteristics of perceptual learning, including both discovery and fluency effects. We 

describe abstract perceptual learning, in which structural relationships are discovered and 

recognized in novel instances that do not share constituent elements or basic features. In Section 

IV, we consider primary concepts that have been used to explain and model perceptual learning, 

including receptive field change, selection, and relational recoding. In Section V, we consider the 

scope of perceptual learning, contrasting recent research, focused on simple sensory 

discriminations, with earlier work that emphasized extraction of invariance from varied instances 

in more complex tasks. Contrary to some recent views, we argue that perceptual learning should 

not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, 

can be unified by models that emphasize discovery and selection of relevant information. In a final 

section, we consider the potential role of perceptual learning in educational settings. Most 

instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends 

heavily on implicit pattern recognition and selective extraction skills acquired through perceptual 

learning. We consider reasons why perceptual learning has not been systematically addressed in 

traditional instruction, and we describe recent successful efforts to create a technology of 

perceptual learning in areas such as aviation, mathematics, and medicine. Research in perceptual 

learning promises to advance scientific accounts of learning, and perceptual learning technology 

may offer similar promise in improving education.

Keywords

perceptual learning; expertise; pattern recognition; automaticity; cognition; education

3Corresponding author: kellman @cognet.ucla.edu. Correspondence concerning this article should be addressed to Philip J. Kellman, 
Department of Psychology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA, 90095-1563. Email 
correspondence may be sent to < kellman@cognet.ucla.edu>. 

HHS Public Access
Author manuscript
Phys Life Rev. Author manuscript; available in PMC 2018 October 23.

Published in final edited form as:
Phys Life Rev. 2009 June ; 6(2): 53–84. doi:10.1016/j.plrev.2008.12.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I. Introduction

On a good day, the best human chess grandmaster can beat the world’s best chess-playing 

computer. The computer program is no slouch; every second, it examines upwards of 200 

million possible moves. Its makers incorporate sophisticated methods for evaluating 

positions, and they implement strategies based on advice from grandmaster consultants. Yet, 

not even this formidable array of techniques gives the computer a clear advantage over the 

best human player.

If chess performance were based on raw search, the human would not present the slightest 

problem for the computer. Estimates of human search through possible moves in chess 

suggest that even the best players examine on the order of 4 possible move sequences, each 

about 4 plies deep (where a ply is a pair of turns by the two sides). That estimate is per turn, 

not per second, and a single turn may take many seconds. Assuming the computer were 

limited to 10 sec of search per turn, the human would be at a disadvantage of about 

1,999,999,984 moves searched per turn.

Given this disparity, how is it possible for the human to outplay the machine? The 

accomplishment suggests information processing abilities of remarkable power but 

mysterious nature. Whatever the human is doing, it is, at its best, roughly equivalent to 2 

billion moves per sec of raw search. “Magical” would not seem too strong a description for 

such abilities.

We have not yet said what abilities these are, but before doing so, we add one more striking 

observation. Biological systems often display remarkable structures and capacities that have 

emerged as evolutionary adaptations to serve particular functions. Compared to machines 

that fly, for example, the capabilities of a dragonfly or hummingbird (or even the lowly 

mosquito) are astonishing. Yet the information processing capabilities we are considering 

may be seen as all the more remarkable because they do not appear to be adaptations 

specialized for one particular task. We did not evolve to play chess. In other words, it is 

likely that human attainments in chess are consequences of highly general abilities that 

contribute to learned expertise in many domains. Such abilities may have evolved for more 

ecological tasks, but they are of such power and generality that humans can become 

remarkably good in almost any domain involving complex structure.

What abilities are these? They are abilities of perceptual learning. The effects we are 

describing arise from experience-induced changes in the way perceivers pick up 

information. With practice in any domain, humans become attuned to the relevant features 

and structural relations that define important classifications, and over time we come to 

extract these with increasing selectivity and fluency. As a contrast, consider: Most artificial 

sensing devices that exist, or those we might envision, would have fixed characteristics. If 

they functioned properly, their performance on the 1000th trial of picking up some 

information would closely resemble their performance on the first trial. Not so in human 

perception. Rather, our extraction of information changes adaptively to optimize particular 

tasks. A large and growing research literature suggests that such changes are pervasive in 

perception and that they profoundly affect tasks from the pickup of minute sensory detail to 
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the extraction of complex and abstract relations that underwrite symbolic thought. 

Perceptual learning thus furnishes a crucial basis of human expertise, from accomplishments 

as commonplace as skilled reading to those as rarified as expert air traffic control, 

radiological diagnosis, grandmaster chess, and creative scientific insight.

In this paper, we give an overview of perceptual learning, a long-neglected area of learning, 

both in scientific theory and research, as well as in educational practice. Our consideration 

of perceptual learning will proceed as follows. In the second section, we provide some brief 

historical background on perceptual learning and some taxonomic considerations, 

contrasting and relating it to other types of learning. In the third section, we consider some 

instructive examples of perceptual learning, indicating its influence in a range of levels and 

tasks, and arguing that the information processing changes brought about by perceptual 

learning can be usefully categorized as discovery and fluency effects. In the fourth section, 

we consider explanations and modeling concepts for perceptual learning, and we use this 

information to consider the scope of perceptual learning in the fifth section. As its role and 

scope in human expertise become clearer, its absence from conventional instructional 

settings becomes more paradoxical. In a final section, we discuss these issues and the 

potential for improving education by using perceptual learning techniques.

II. Perceptual Learning in Context

Perceptual Learning and Taxonomies of Learning

Perceptual learning can be defined as “an increase in the ability to extract information from 

the environment, as a result of experience and practice with stimulation coming from it.” 

(Gibson, 1969, p. 3). With sporadic exceptions, this kind of learning has been neglected in 

scientific research on learning. Researchers in animal learning have focused on conditioning 

or associative learning phenomena – connections between responses and stimuli. Most work 

on human learning and memory has focused on encoding of items in memory (declarative 

knowledge) or learning sequences of actions (procedural learning).

Perceptual learning is not encompassed by any of these categories. It works synergistically 

with them all, so much so that it often comprises a missing link, concealed in murky 

background issues of other learning research. In stimulus-response approaches to animal and 

human learning, it is axiomatic that the “stimulus” is part of the physical world and can be 

described without reference to internal variables in the organism. Used in this way 

“stimulus” omits a set of thorny issues. For an organism, a physical event is not a stimulus 

unless it is detected. And what kind of stimulus it is will depend on which properties are 

registered and how it is classified. Like the sound made (or not) by the proverbial tree falling 

in the forest, “stimulus” has two meanings, and they are not interchangeable. The tone or 

light programmed by the experimenter is a physical stimulus, but whether a psychological 

stimulus is present and what its characteristics are depends on the organism’s perceptual 

capacities.

When stimuli are chosen to be obvious, work in associative learning can occur without 

probing the fine points of perception and attention. The problem of perceptual learning, 

however, is that with experience, the organism’s pick-up of information changes. In its most 
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fascinating instances, perceptual learning leads the perceiver to detect and distinguish 

features, differences, or relations not previously registered at all. Two initially 

indistinguishable stimuli can come to be readily distinguished, even in basic sensory 

acuities, such as those tested by your optometrist. In higher level tasks, the novice chess 

player may be blind to the impending checkmate that jumps out at the expert, and the novice 

art critic may lack the expert’s ability to detect the difference between the brush strokes in a 

genuine Renoir painting and those in a forgery. Perceptual learning is not the attachment of a 

stimulus to a response, but rather the discovery of new structure in stimulation.

Perceptual learning is also not procedural knowledge. Some learned visual scanning routines 

for specialized tasks may be procedural, but much perceptual learning can be shown in 

improved pickup of information in presentations so brief that no set of fixations or scan 

pattern could drive the relevant improvements. In general, the relation between perceptual 

learning and procedures is flexible. The perceptual expertise of an instrument flight 

instructor, for example, may allow her to notice at a glance that the aircraft has drifted 200 

feet above the assigned altitude. If she is flying the plane, the correct procedure would be to 

lower the nose and descend. If she is instructing a student at the controls, the proper 

procedure may be a gentle reminder to check the altimeter. In examples like this one, the 

perceptual information so expertly extracted can be mapped onto various responses. Another 

difference is that in many descriptions (e.g., Anderson, Corbett, Fincham, Hoffman, & 

Pelletier, 1992), procedures consist of sets of steps that are conscious, at least initially in 

learning. Availability to consciousness is often not an obvious characteristic of changes in 

sensitivity that arise in perceptual learning.

Finally, it should be obvious that perceptual learning does not consist of learning declarative 

information – facts and concepts that can be verbalized. Besides the fact that structures 

extracted by experts in a domain often cannot be verbally explained, the effect of learning is 

to change the capacity to extract. This idea has been discussed in instructional contexts 

(Bereiter & Scardamalia, 1998). Most formal learning contexts implicitly follow a “mind as 

container” metaphor (see section VI below), with learning as the transfer of declarative 

knowledge – facts and concepts that can be verbalized. Perceptual learning effects involve 

“mind as pattern recognizer” (Bereiter & Scardamalia, 1998).

Looking back at our example of chess, some readers may be puzzled by our emphasis on 

perceptual processes in what appears to be a high-level domain involving explicit reasoning 

and perhaps language. Although reasoning is certainly involved in chess expertise, it is 

precisely the difficulty of accounting for human competence within the computational 

limitations of human reasoning that makes chess, and many other domains of expertise, so 

fascinating. The most straightforward ideas about explicit reasoning in chess are those that 

have been successfully formalized and implemented in classic artificial intelligence work. 

Given a position description (a node in a problem space), there are certain allowable moves, 

and these may be considered in terms of their value via some evaluation function. Search 

through the space for the best move is computationally unwieldy, but may be aided by 

heuristics that prune the search tree. But as we noted earlier, human search of this sort is 

severely limited and easily dwarfed by computer chess programs. Perhaps more fertile 

efforts to connect these concepts to human chess playing lie in reasoning about positions as 
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a basis for heuristically guiding search. It is unlikely, however, that the synergy of pattern 

recognition and reasoning can be explained by explicit symbolic processes, such as those 

mediated by language. If chess expertise were based on explicit knowledge, the grandmaster 

consultants to the developers of chess-playing programs would have long since incorporated 

the relevant patterns used by the best human players. This has not been feasible because 

much of the relevant pattern knowledge is not verbally accessible. These are some of the 

reasons that classic studies of chess expertise (e.g., DeGroot, 1965; Chase & Simon, 1973) 

have pointed to the crucial importance of perception of structure and a more limited role for 

explicit reasoning (at least relative to our preconceptions!). We believe that similar 

conclusions apply to many high-level domains of human competence.

The counterintuitive aspects of perception vs. reasoning in expertise derive both from 

excessive expectations of reasoning and misunderstandings of the nature of perception. 

These issues are not new. Max Wertheimer, in his classic work Productive Thinking, 

discussed formal logical and associative approaches to reasoning and argued that neither 

encompasses what is perhaps the most crucial process: the apprehension of relations. It was 

the belief of the Gestalt psychologists, such as Wertheimer, that this apprehension is rooted 

in perception. Although the point is still not sufficiently appreciated, perception itself is 

abstract and relational. If we see two trees next to each other, one twice as tall as the other, 

there are many accurate descriptions that may be extracted via perception. The shade of 

green of the leaves and the texture of the bark are concrete features. But more abstract 

structure, such as the ratio of the height of one tree to the other, are just as “real,” as are 

informational variables in stimulation that make them perceivable. This is a deeply 

important point, one that has proven decisive in modern theories of perception (Gibson, 

1969, 1979; Marr, 1982; Michotte, 1952). In recovering the connectivity of a non-rigid, 

moving entity from otherwise meaningless points of light (Johannson, 1973) or perceiving 

causal relations from stimulus relations (Michotte, 1952), it is obvious that apprehending the 

abstract structure of objects, arrangements and events is an important, perhaps the most 

important, goal of perceptual processing.

Still the foregoing analyses leave some questions unanswered. One might ask why humans 

play chess (and understand chemistry, etc.) whereas animals do not. Some answers to this 

question are peripheral to our interests here, such as the fact that instructing new players 

about rules, procedures, and basic strategy is greatly facilitated by language. Here again, 

however, the fact that one can produce in a short time novice players who can recite the rules 

and moves of chess flawlessly contrasts with the fact that no verbal instruction suffices to 

produce grandmasters. More pertinent, however, is the issue of the pickup of abstract 

structural relations in perception. Might this faculty differ between humans and most 

animals? Might humans be more disposed to find abstract structure than animal perceivers? 

Might language and symbolic functions facilitate the salience of information and help guide 

pattern extraction? These are fascinating possibilities, which we take up below.

Perceptual Learning and the Origins of Perception

The phrase “perceptual learning” has been used in a number of ways. In classical empiricist 

views of perceptual development, all meaningful perception (e.g., perception of objects, 
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motion, and spatial arrangement) was held to arise from initially meaningless sensations. 

Meaningful perception was thought to derive from associations among sensations (e.g., 

Locke, 1690/1971; Berkeley, 1709/1910; Titchener, 1902) and with action (Piaget, 1952). In 

this view, most of perceptual development early in life consists of perceptual learning. This 

point of view, dominant through most of the history of philosophy and experimental 

psychology, was based primarily on logical arguments (about the ambiguity of visual 

stimuli) and on the apparent helplessness of human infants in the first 6 months of life. 

Young infants’ lack of coordinated activity was at once an ingredient of a dogma about early 

perception and at the same time an obstacle to its direct study.

Over the past several decades, experimental psychologists developed methods of testing 

infant perception directly. Although infants do not do much, they perceive quite a lot. And 

they do deploy visual attention, via eye and head movements. With appropriate techniques, 

these tendencies, as well as electrophysiological and other methods, can be used to reveal a 

great deal about early perception (for a review see Kellman & Arterberry, 1998).

What this research has shown is that the traditional empiricist picture of perceptual 

development is incorrect. Although perception becomes more precise with age and 

experience, basic capacities of all sorts – such as the abilities to perceive objects, faces, 

motion, three-dimensional space, the directions of sounds, coordinate the senses in 

perceiving events, and other abilities -- arise primarily from innate or early-maturing 

mechanisms (Bushnell, Sai & Mullin, 1989; Held, 1985; Kellman & Spelke, 1983; Meltzoff 

& Moore, 1977; Slater, Mattock & Brown, 1990).

Despite its lack of viability as an account of early perceptual development, the idea that 

learning may allow us to attach meaning to initially meaningless sensations has been 

suggested to characterize perceptual learning throughout the lifespan. In a classic article, 

Gibson & Gibson (1955) criticized this view and contrasted it with another.

They called the traditional view – that of adding meaning to sensations via associations and 

past experience – an enrichment view. We must enrich and interpret current sensations by 

adding associated sensations accumulated from prior experience. In Piaget’s (1952; 1954) 

more action-oriented version of this account, it is also the association of perception and 

action that leads to meaningful perception of objects, space and events.

The Gibsons noticed a curious fact about enrichment views: The more learning occurs, the 

less perception will be in correspondence with the actual information present in a situation. 

This is the case because with more enrichment, the current stimuli play a smaller role in 

determining the percept. More enrichment means more reliance on previously acquired 

information. Such a view has been held by generations of scholars who have characterized 

perception as a construction (Berkeley, 1709/1910; Locke, 1690/1971), an hypothesis 

(Gregory, 1972), an inference (Brunswik, 1956) or an act of imagination based on past 

experience (Helmholtz, 1864/1962).

The Gibsons suggested that the truth may be quite the opposite. Experience might make 

perceivers better at using currently available information. With practice perception might 

become more, not less, in correspondence with the given information. They called this view 
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of perceptual learning differentiation. Differentiation, or the discovery of distinguishing 

features, may play an important role in various creative and cognitive processes. Through 

discovery, undifferentiated concepts come to have better-defined boundaries (Jung, 1923). 

Creativity, it has been argued, involves connecting various well differentiated concepts to 

unconscious representations of knowledge, like instincts and emotion (Perlovsky, 2006). In 

any situation, there is a wealth of available information to which perceivers might become 

sensitive. Learning as differentiation is the discovery and selective processing of the 

information most relevant to a task. This includes filtering relevant from irrelevant 

information, but also discovery of higher-order invariants that govern some classification. 

Perceptual learning is conceived of as a process that leads to task-specific improvement in 

the extraction of what is really there.

In our review, we focus on this notion of perceptual learning, that is, learning of the sort that 

constitutes an improvement in the extraction of information. Most contemporary perceptual 

learning research, although varying on other dimensions, fits squarely within the 

differentiation camp and would be difficult to interpret as enrichment. Although 

contemporary computational vision approaches that emphasize use of Bayesian priors in 

determining perceptual descriptions may be considered updated, more quantitative, versions 

of traditional enrichment views, the use of enrichment as an account of learning by the 

individual is rare in perceptual learning research today. This is partly due to the consistent 

emphasis on perceptual learning phenomena that involve improvements in sensitivity (rather 

than changes in bias). Also, enrichment is not much reflected in contemporary perceptual 

learning work because there is little evidence of perception being substantially influenced by 

accumulation of priors ontogenetically (i.e., during learning by the individual). Current 

Bayesian approaches to perception often suggest that priors have been acquired during 

evolutionary time (e.g., Purves, Williams, Nundy, & Lotto, 2004). This emphasis on 

evolutionary origins is much more consistent with what is known about early perceptual 

development (Kellman & Arterberry, 1998).

The contemporary focus on differentiation in perceptual learning can also understood in 

terms of signal detection theory (SDT). SDT is a psychological model of how biological 

systems can detect signals in the presence of noise. It is closely related to the concept of 

signal to noise ratio in telecommunications (e.g., Cover & Thomas, 1991), but also considers 

potential response biases of subjects that can arise due to, for example, the costs associated 

with failing to detect a signal or mistaking noise for a signal. More specifically, SDT offers 

mathematical techniques for quantifying sensitivity independent of response bias from 

perceptual data, where sensitivity represents accuracy in detecting or discriminating and 

response bias represents the tendencies of an observer to use the available response 

categories in the presence of uncertainty.

A well-established fact of SDT is that stimulus frequency affects response bias, not 

sensitivity (e.g., Wickens, 2002). Consider an experiment in which the observer must say red 

or blue for a stimulus pattern presented on each trial, and the discrimination is difficult (so 

that accuracy is well below perfect). For an ambiguous stimulus, observers will be more 

likely to respond blue if “blue” is the correct answer on 90% of trials than if “blue” is the 

correct answer on 50% of trials. SDT analysis will reveal that sensitivity is the same, and 

Kellman and Garrigan Page 7

Phys Life Rev. Author manuscript; available in PMC 2018 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



what has changed is response bias. Such frequency effects contain the essential elements 

both of associative “enrichment” theories of perceptual learning and of the use of Bayesian 

priors in generating perceptual responses.

Although there are interesting phenomena associated with such changes in response bias 

(including optimizing perceptual decisions), perceptual learning research today is much 

more concerned with the remarkable fact that practice actually changes sensitivity. 

Sensitivity in SDT is a function of the difference between the observer’s probability of 

saying blue given a blue stimulus and the probability of saying “blue” given a red stimulus). 

The perceptual learning effects we will consider are typically improvements in sensitivity or 

facility in dealing with information available to the senses. As we will see, such 

improvements can come in the form of finer discriminations or discovery and selective use 

of higher-order structure.

A Brief History of Perceptual Learning

This notion of perceptual learning as improvement in the pick-up of information has not 

been a mainstay in the psychology of learning. Still it has made cameo appearances. William 

James devoted a section of his Principles of Psychology to “the improvement of 

discrimination by practice (James, 1890, Vol. I, p. 509).” Clark Hull, the noted mathematical 

learning theorist, did his dissertation in 1918 on a concept learning experiment in which 

slightly deformed Chinese characters were used. In each of twelve categories of characters, 

differing exemplars shared some invariant structural property. Subjects learned to associate a 

sound (as the name of each category) using 6 instances of each category and were trained to 

a learning criterion. A test phase with 6 new instances showed that learning had led to the 

ability to classify novel instances accurately (Hull, 1920). This ability to extract invariance 

from instances and to respond selectively to classify new instances mark Hull’s study as not 

only a concept formation experiment but as a perceptual learning experiment.

Hull’s later contributions to learning theory had little to do with this early work, a bit of an 

irony, as Eleanor Gibson, who did the most to define the modern field of perceptual learning, 

was later a student in Hull’s laboratory. She found Hull’s laboratory preoccupied with 

conditioning phenomena when she did her dissertation there in 1938 (Szokolszky, 2003). It 

was Gibson and her students who made perceptual learning a highly visible area of research 

in the 1950s and 1960s, much of it summarized in a classic review of the field. By the 

mid-1970s, this area had become quiescent. One reason was that much of the research at the 

time had shifted focus to infant perception and cognition. Most of this research focused on 

characterizing basic perceptual capacities of young infants rather than on perceptual learning 

processes. Research specifically directed at perceptual learning in infancy has become more 

common recently, however (e.g., Fiser & Aslin, 2002; Saffran, Loman, & Robertson, 2000; 

Gomez & Gerken, 2000).

In the last decade and a half, there has been an explosion of research on perceptual learning. 

This newest period of research has distinctive characteristics. It has centered almost 

exclusively on learning effects involving elementary sensory discriminations. The research 

has produced remarkable findings of marked improvements on almost any sensory task 

brought about by discrimination practice. The focus on basic sensory discriminations has 
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been motivated by interest in cortical plasticity and attempts to connect behavioral and 

physiological data. This focus differs from earlier work on perceptual learning, as we 

consider below, and relating perceptual learning work spanning different tasks and levels 

poses a number of interesting challenges and opportunities. One goal of this review is to 

highlight phenomena and principles appearing at different levels and in different tasks that 

point toward a unified understanding of perceptual learning.

III. Some Perceptual Learning Phenomena

To give some idea of its scope and characteristics, we consider a few examples of perceptual 

learning phenomena. Our examples come primarily from visual perception. They span a 

range of levels, from simple sensory discriminations to higher-level perceptual learning 

effects more relevant to real-world expertise.

Highlighting these examples may also illustrate that perceptual learning phenomena can be 

organized into two general categories – discovery and fluency effects (Kellman, 2002). 

Discovery involves some change in the bases of response: Selecting new information 

relevant for a task, amplifying relevant information, or suppressing information that is 

irrelevant are cases of discovery. Fluency effects involve changes, not in what is extracted, 

but in the ease of extraction. When relevant information has been discovered, continued 

practice allows its pickup to become less demanding of attention and effort. In the limit, it 

becomes automatic -- relatively insensitive to attentional load (Schneider & Shiffrin, 1977).

The distinction between discovery and fluency is not always clearcut or easily assessed, as 

these effects typically co-occur in learning. Particular dependent variables may be sensitive 

to both. Improved sensitivity to a feature or relation would characterize discovery, whereas 

improved speed, load insensitivity, or dual-task performance would naturally seem to be 

fluency effects. But improved speed may also be a consequence of discovering a higher-

order invariant that provides a shortcut for the task (a discovery effect). Conversely, when 

performance is measured under time constraints, fluency improvements may influence 

measures of sensitivity or accuracy, because greater fluency allows more information to be 

extracted in a fixed time. The distinction between discovery and fluency is nevertheless 

important; understanding perceptual learning will require accounts of how new bases of 

response are discovered and how information extraction becomes more rapid and less 

demanding with practice.

The examples we consider illustrate a variety of perceptual learning effects but do not 

comprise a comprehensive treatment of phenomena in the field. Also, there are a number of 

interesting issues in the field that fall outside the scope of this article. These include several 

factors that affect perceptual learning, including the effects of sleep (e.g. Karni & Sagi, 

1993; Stickgold, James, & Hobson, 2000), the importance or irrelevance of feedback (e.g. 

Shiu & Pashler, 1992; Fahle & Edelman, 1993; Petrov, Dosher, & Lu, 2005), and even 

whether or not subjects need to be perceptually aware of the stimuli (Watanabe, Nanez, & 

Sasaki, 2001; Seitz & Watanabe, 2003). For these and other issues not treated here, we refer 

the interested reader to more inclusive reviews (Gibson, 1969; Goldstone, 1998; Kellman, 

2002; Fahle & Poggio, 2002).
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Basic Visual Discriminations

What if someone were to tell you that your visual system’s maximal ability to resolve fine 

detail could improve with practice – by orders of magnitude? This may surprise you, as you 

might expect that basic limits of resolution, such as discriminating two lines with slightly 

different orientations, would rest on mechanisms that are fixed. Because basic characteristics 

of resolution affect many higher-level processes, we might expect on evolutionary grounds 

that observers’ efficiency for extracting detail is optimal within biophysical constraints. In 

fact, this is not the case – not for orientation sensitivity or for a variety of other basic, visual 

sensitivities. Appropriately structured perceptual learning can produce dramatic changes in 

basic sensitivities.

Vernier acuity – judging the alignment of two small line segments – is a frequently studied 

task that reveals the power of perceptual learning. In a typical Vernier task, two lines, one 

above the other, are shown on each trial, and the observer indicates whether the upper line is 

to the left or right of the lower line. In untrained subjects, Vernier acuity is already 

remarkably precise. So precise, in fact, that it is not uncommon for subjects to be able to 

detect misalignments of less than 10 arc secs (Westheimer & McKee, 1978). Because this 

detection threshold is smaller than the aperture diameter of one foveal cone photoreceptor, 

this acuity, along with others, has been labelled a “hyperacuity” (Westheimer, 1975).

Hyperacuity phenomena have posed challenges to vision modelers. Recent modeling efforts 

suggest that the basic acuity limits of the human visual system are achieved in part by 

exploiting sources of information that arise due to the non-linear response properties of 

retinal and cortical cells responding to near-threshold signals in the presence of noise 

(Hongler, de Meneses, Beyeler, and Jacot, 2003; Hennig, Kerscher, Funke, and Worgotter, 

2002). Despite the neural complexity already involved in achieving hyperacuity, with 

training over thousands of trials, Vernier thresholds improve substantially. Saarinen & Levi 

(1995), for example, found as much as a 6-fold decrease in threshold after 8000 trials of 

training. Similar improvements have been found for motion discrimination (Ball & Sekuler, 

1982) and simple orientation sensitivity (Shiu & Pashler, 1992; Vogels & Orban, 1985).

Visual Search

A task with more obvious ecological relevance is visual search. Finding or discriminating a 

target object hidden among distractors, or in noise, characterizes a number of tasks 

encountered by visually guided animals, including detection of food and predators. Studies 

of perceptual learning in various visual search tasks show that experience leads to robust 

gains in sensitivity and speed. Karni & Sagi (1993) had observers search for obliquely 

oriented lines in a field of horizontal lines. The target, always in one quadrant of the visual 

field, consisted of a set of three oblique lines arrayed vertically or horizontally. (The 

subject’s task was to say on each trial whether the vertical or horizontal configuration was 

present.) The amount of time needed to reliably discriminate decreased from about 200 ms 

on session 1 to about 50 ms on session 15. Sessions were spaced 1–3 days apart, and training 

effects persisted even years later. Data from their study are shown in Figure 1.
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The learning observed by Karni & Sagi was specific to location and orientation (of the 

background elements). This specificity is observed in many perceptual learning tasks using 

basic discriminations, a small number of unchanging stimulus patterns, and fixed 

presentation characteristics. The lack of transfer to untrained retinal locations, across eyes, 

and to different stimulus values is often argued to indicate a low-level locus of learning. 

Learning that is specific to a retinal position, for example, may involve early cortical levels 

in which the responses of neural units are retinotopic – mapped to particular retinal positions 

– rather than units in higher level areas which show some degree of positional invariance. On 

the other hand, other studies of perceptual learning have shown robust transfer. In visual 

search studies, Ahissar & Hochstein (2000) showed that learning to detect a single line 

element hidden in an array of parallel, differently-oriented line segments could generalize to 

positions at which the target was never presented. Sireteanu & Rettenbach (2000) discussed 

learning effects in which learning leads serial (sequential) search tasks to become parallel or 

nearly so; such effects often generalize across eyes, retinal locations, and tasks. 

Inconsistency of results regarding specificity of transfer have complicated the idea that lack 

of transfer implies a low-level site of learning. The basic inference that specificity indicates 

that learning occurs at early processing levels has also been argued to be a fallacy (Mollon & 

Danilova, 1996). We discuss this issue in relation to general views of perceptual learning in 

section V.

Automaticity in Search

Earlier work involving perceptual learning in visual search provides a classic example of 

improvements in fluency. In a series of studies, Schneider & Shiffrin (1977) had subjects 

judge whether any letters in a target set appeared at the corners of rectangular arrays that 

appeared in sequence. Attentional load was manipulated by varying the number of items in 

the target set and the number of items on each card in the series of frames. (Specifically, load 

was defined as the product of the number of possible target items and the number of possible 

locations to be searched.) Early in learning, or when targets and distractors were 

interchangeable across trials, performance was highly load-sensitive: Searching for larger 

numbers of items or checking more locations took longer. For subjects trained with a 

consistent mapping between targets and distractors (i.e., an item could appear as one or the 

other but not both), subjects not only became much more efficient in doing the task, but they 

came to perform the task equally well over a range of target set sizes and array sizes. The 

fact that performance became load-insensitive led Schneider & Shiffrin to label this type of 

performance automatic processing.

Unitization in Shape Processing

Some perceptual learning effects on visual search suggest that the representation of targets, 

distractors, or both, can change due to experience. Consider the results of Sireteanu & 

Rettenbach (2000), in which a previously serial visual search comes to be performed in 

parallel as a result of training. The classic interpretation of this result is that training caused 

the target of the visual search to become represented as a visual primitive, or feature 

(Treisman & Gelade, 1980). More generally, this result suggests that conjunctions of 

features can become represented as features themselves, i.e., they become a unit.
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Unitization, like “chunking” (Miller 1956), refers to the process of how information can get 

encoded or processed more efficiently. The idea is that the information capacity of various 

cognitive functions is fixed and limited. We can, however, learn to utilize the available 

capacity more efficiently by forming higher-level units based on relations discovered 

through learning.

Goldstone (2000) studied unitization using simple 2D shapes like those shown in Figure 2. 

Each shape is formed from 5 separate parts. Subjects were trained to sort these shapes into 

categories based on the presence of a single component, a conjunction of 5 components, or a 

conjunction of 5 components in a specific order. Performance, measured by response time, 

improved with training, and although categorization based on a single feature was fastest, 

the greatest improvement due to training was for categorization based on 5 parts in a specific 

order. Goldstone suggests that the improvement was because the shapes came to be 

represented in a new way. The original representation of the shapes, through training, was 

replaced with new, more efficient, chunk-like representation formed from parts that were 

always present in the stimuli, but previously not perceived. A detailed study of response 

times indicated that the improvement based on unitization was greater than would be 

predicted based on improvements in processing of individual components. This result 

furnished strong evidence that new perceptual units were being used.

An interesting issue with this and other sources of evidence for perceptual unitization or 

chunking is whether basic elements have merely become cemented together perceptually or 

whether a higher-order invariant has been discovered that spans multiple elements and 

replaces their separate coding (Gibson, 1969). In the top display in Figure 2, for example, 

the learner may come to encode relations among positions of peaks or valleys in the contour. 

Such relations are not defined if individual components are considered separately. It is 

possible that unitization phenomena in general depend on discovery of higher-order pattern 

relations, but these ideas deserve further study.

Perceptual Learning in Real-World Tasks

In recent years, perceptual learning research has most often focused on basic sensory 

discriminations. Both the focus and style of this research contrast with real-world learning 

tasks, in which it would be rare for a learner to have thousands of trials discriminating two 

simple displays differing minimally on some elementary attribute. Ecologically, the function 

of perceptual learning is almost certainly to allow improvements in information extraction 

from richer, multidimensional stimuli, where even those falling into some category show a 

range of variation. A requirement of learning in such tasks is that the learner comes to 

extract invariant properties from instances having variable characteristics. As E. Gibson put 

it “It would be hard to overemphasize the importance for perceptual learning of the 
discovery of invariant properties which are in correspondence with physical variables. The 
term ‘extraction’ will be applied to this process, for the property may be buried, as it were, 
in a welter of impinging stimulation.”(Gibson, 1969, p. 81).

These aspects of real-world tasks at once indicate why perceptual learning is so important 

and why it is task-specific. For a given purpose, not all properties of an object are relevant. 

In fact, for understanding causal relations and structural similarities, finding the relevant 
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structure is a key to thinking and problem solving (Duncker, 1945; Wertheimer, 1957). For 

different tasks, the relevant properties will vary. For example, in classifying human beings, 

the relevant properties differ in an employment interview and in an aircraft weight and 

balance calculation (at least for most jobs). Often, perceptual learning in real-world 

situations involves discovery of relations and some degree of abstraction. Perceptual 

learning that ferrets out dimensions and relations crucial to particular tasks underwrites not 

only remarkable improvements in orientation discrimination but also the expertise that 

empowers a sommelier or successful day-trader. In understanding human expertise, these 

factors play a greater role than is usually suspected; conversely, the burden of explanation 

placed on the learning of facts, rules, or techniques is often exaggerated, and the dependence 

of these latter processes on perceptual learning goes unnoticed. Some examples may 

illustrate this idea.

Chess Expertise.—Chess is a fascinating domain in which to study perceptual learning, 

for several reasons. One is that, as mentioned earlier, humans can reach astonishing levels of 

expertise. Another is that the differences between middle level players and masters tend not 

to involve explicit knowledge about chess. DeGroot (1965) and Chase & Simon (1973) 

studied chess masters, intermediate players, and novices to try to determine how masters 

perform at such a high level. Masters did not differ from novices or mid-level players in 

terms of number of moves considered, search strategies, or depth of search. Rather, the 

differences appeared to be perceptual learning effects – exceptional abilities to encode 

rapidly and accurately positions and relations on the board. These abilities were tested in 

experiments in which players were given brief exposures to chess positions and had to 

recreate them with a set of pieces on an empty board. Relative to intermediate or novice 

players, a chess master seemed to encode larger chunks, picked up important chess relations 

in these chunks and required very few exposures to fully recreate a chessboard. One might 

wonder if masters are simply people with superior visual memory skills – skills that allowed 

them to excel at chess. A control experiment (Chase & Simon, 1973) suggested that this is 

not the case. When pieces were placed randomly on a chessboard, a chess master showed no 

better performance in recreating board positions than a novice or mid-level player. (In fact, 

there was a slight tendency for the master to perform worse than the others.) These results 

suggest that the master differs in having advanced skills in extracting structural patterns 

specific to chess.

The Word Superiority Effect.—It is comforting to know that perceptual expertise is not 

the sole province of grandmasters, as few of us would participate. Common to almost all 

adults is a domain in which extensive practice leads to high expertise: fluent reading. An 

intriguing indicator of the power of perceptual learning effects in reading is the word 
superiority effect. Suppose a participant is asked to judge on each trial whether the letter R 

or L is presented. Suppose further that the presentations consist of brief exposures and that 

the time of these exposures is varied. We can use such a method to determine an exposure 

time that allows the observer to be correct about 80% of the time.

Now suppose that, instead of R or L, the observer’s task is to judge whether “DEAR” or 

“DEAL” is presented on each trial. Again, we find the exposure time that produces 80% 
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accuracy. If we compare this condition to the single letter condition, we see a remarkable 

effect first studied by Reicher (1969) and Wheeler (1970). (For an excellent review, see 

Baron, 1978.) The exposure time allowing 80% performance will be substantially shorter for 

the words than for the individual letters. Note that the context provided by the word frame 

provides no information about the correct choice, as the frame is identical for both. In both 

the single letter and word conditions, the discrimination must be based on the R vs. the L. 

Somehow, the presence of the irrelevant word context allows the discrimination to be made 

more rapidly.

One might suppose that the word-superiority effect comes from readers having learned the 

overall shapes of familiar words. If practice leads to discovery of higher-order structure of 

the word (beyond the processing of the individual letters), this structure may become more 

rapidly processed. It turns out that this explanation of the word superiority effect is not 

correct. The most stunning evidence on the point is that the effect is not restricted to familiar 

words; it also works for pronounceable nonsense (e.g., GEAL vs. GEAD, but not GKBL vs. 

GKBD). The fact that most of the effect is preserved with pronounceable nonsense suggests 

that learning has led to extraction and rapid processing of structural regularities 

characteristic of English spelling patterns. The idea that the word superiority effect results 

from perceptual learning of higher-order regularities would predict that beginning readers 

would not show the word superiority effect. This proves to be the case (Feitelson & Razel, 

1984).

Interaction of Fluency and Discovery Processes.—It has long been suspected that 

fluency and discovery processes interact in the development of expertise. Writing in 

Psychological Review in 1897, Bryan & Harter proposed that automatizing the pick-up of 

basic structure serves as a foundation for discovering higher-order relationships (Bryan & 

Harter, 1897). These investigators studied learning in the task of telegraphic receiving. When 

the measure of characters received per minute (in Morse Code) was plotted against weeks of 

practice, a typical, negatively accelerated learning curve appeared, reaching asymptote after 

some weeks. With continued practice, however, many subjects produced a new learning 

curve, rising from the plateau of the first. And for some subjects, after even more practice, a 

third learning curve ultimately emerged. Each learning curve raised performance to 

substantially higher levels than before.

What could account for this remarkable topography of learning? When Bryan & Harter 

asked their subjects to describe their activity at different points in learning, responses 

suggested that the information being processed differed considerably at different stages. 

Those on the first learning curve reported that they were concentrating on the way letters of 

English mapped onto the dots and dashes of Morse Code. Those on the second learning 

curve reported that dots and dashes making letters had become automatic for them; now they 

were focusing on word structure. Finally, learners at the highest level reported that common 

words had become automatic; they were now focusing on message structure. To test these 

introspective reports, Bryan & Harter presented learners in the second phase with sequences 

of letters that did not make words. Under these conditions, performance returned to the 

asymptotic level of the first learning curve. When the most advanced learners were presented 

with sequences of words that did not make messages, their performance returned to the 
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asymptotic levels of the second learning curve. These results confirmed subjects’ subjective 

reports.

The Bryan & Harter results serve as a good example for distinguishing discovery and 

fluency effects in perceptual learning. Both are involved in the telegraphers’ learning. As 

learning curves are ascending, we may assume that at least some of what is occurring is that 

learners are discovering new structure that enables better performance. The acquisition of 

new bases of response (discovery) is clearly shown in the tests Bryan & Harter did with non-

meaningful letter and word sequences. What is also noticeable, however, are long periods at 

asymptotic performance at one level before a new learning curve emerges. In Figure 2 (top 

curve), such a period continues for nearly a month of practice. Given that performance 

(words per minute transcribed) is not changing, the information being extracted is unlikely 

to be changing in such periods. What is changing? Arguably, what is changing is that 

controlled, attentionally demanding processing is giving way to automatic processing 

(Schneider & Shiffrin, 1973). If in fact the information being extracted is constant, then this 

change would appear to be a pure fluency effect. Both the discovery of structure and 

automatizing its pick-up appear to be necessary to pave the way for discovery of higher level 

structure.

Although the universality of the phenomenon of three separable learning curves in 

telegraphic receiving has been questioned (Keller, 1958), Bryan & Harter’s data indicate use 

of higher-order structure by advanced learners and suggest that discovery of such structure is 

a limited capacity process. Automating the processing of basic structure at one level frees 

attentional capacity to discover higher level structure, which can in turn become automatic, 

allowing discovery of even higher level information, and so on. This cycle of discovery and 

fluency in perceptual learning --- discovering and automating of higher and higher levels of 

structure -- may account for the seemingly magical levels of human expertise that sometimes 

arise from years of sustained experience, as in chess, mathematics, music and science. These 

insights from the classic Bryan & Harter study are reflected in more recent work, such as 

demonstrations that expertise involves learning across multiple time scales in pure motor 

skill development (Liu, Mayer-Kress, and Newell, 2006) and automating basic skills in 

development of higher-level expertise in areas such as reading (Samuels and Flor, 1997) and 

mathematics (Gagne, 1983). These principles are increasingly reflected in modern 

application of perceptual learning to training procedures (e.g., Clawson, Healy, Ericcson, 

and Bourne, 2001). Bryan & Harter’s study offers a compelling suggestion about how 

discovery and fluency processes interact. Their 1897 article ends with a memorable claim: 

“Automaticity is not genius, but it is the hands and feet of genius.”

Abstract Perceptual Learning

Two important tenets of contemporary theories of perception are that perceptual systems are 

sensitive to higher-order relationships (Gibson, 1979; Marr, 1982), and they produce as 

outputs abstract descriptions of reality (Marr, 1982; Michotte, 1952), that is, descriptions of 

physical objects, shapes, spatial relations and events. These modern ideas contrast with 

pervasive earlier views that sensory systems produce initially meaningless sensations, which 

acquire meaning only through association and inference.
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Sensitivity to abstract relations is reflected as well in perceptual learning. It is probably 

worth making clear what we mean by abstract, as there are a variety of uses of the term. For 

our purposes, abstract information may be illustrated as follows. Suppose we hear and 

encode a melody. Encoding the information that the first note has fundamental frequency f1 

is a concrete encoding. Encoding that the second note has a fundamental frequency that is 

higher in frequency than the first note by some amount k is encoding a relation. Encoding 

that the second note is higher than the first by an octave is encoding an abstract relation. The 

idea is that the abstract encoding is dependent on a concrete value only conditionally. For an 

octave, whatever the first frequency is, the second must be twice that. In general, a relation is 

abstract if it involves binding the value of a variable. (In this example, the first frequency can 

be any frequency x, but the second must be 2x.) Our notion of abstract information is close 

to J. Gibson’s notion of higher-order invariants (Gibson, 1950).

The importance of relations and abstract relations was crucial in Gestalt Psychology (e.g., 

Wertheimer, 1923/1938; Koffka, 1935). Our use of a melody borrows from the Gestaltists, as 

it was a classic example of theirs. If you hear a new melody and remember it, what is it that 

you have learned? If learning were confined to a concrete, sensory level, the learning would 

consist of a temporal series of frequencies of sound. But this description would not capture 

the learning of most listeners. Most of us (except those with “perfect pitch”) will not retain 

the particular frequencies (or more accurately, the sensations of pitch corresponding to those 

frequencies). Your learning is such that you will seamlessly recognize the melody as the 

same if you hear it later, even if it has been transposed to a different key. The fact that the 

melody retains its identity despite changes in all of the constituent frequencies of sound 

indicates encoding of the melody in terms of abstract relations. Conversely, most hearers 

would have little ability to identify later the exact key in which the melody was played at 

first hearing.

In vision, abstract relations are pervasive in our encoding of shape. A miniature plastic 

replica of an elephant is easily recognizable as an elephant. This ability is more remarkable 

than it first appears. It involves abstract relations and using these to classify despite novel 

(and starkly conflicting) concrete features. (No real elephants are made of plastic or fit in the 

palm of your hand.) Seeing the miniature elephant as appropriately shaped involves abstract 

relations, such as the proportions of the body, trunk and ears, that are applied to a novel set 

of concrete size values. Perceptual learning about shape seems to have this property in any 

situation in which shape invariance is required across changes in constituent elements, size 

or other changes (what the Gestalt psychologists called “transposition” phenomena).

In the cases of a melody and for some shape perception, abstract relations are salient even in 

initial encoding (although there is a possibility that such invariance is initially discovered 

through learning processes). In other contexts, learning processes have a larger challenge in 

discovering over a longer period some higher-order invariance that determines a 

classification (Gibson, 1969). Whether the relevant relations “pop out” or are discovered 

gradually, the pickup of abstract structure is common in human perceptual learning, and it 

presents challenges in the modeling of perceptual learning.
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There has not been much work on perceptual learning of abstract relations. Numerous efforts 

have involved shape perception (Gibson, 1969), but not much has been done to specifically 

examine invariance over transformations after learning. Intuitively, work on caricature (Ryan 

& Schwartz, 1956) or on recognition of people and events in point-light displays (e.g., a 

person walking has small lights placed on the major joints of the body and is filmed in the 

dark; Johansson, 1973) are studies of the effects of abstract perceptual learning processes.

Although sensory discrimination tasks used in most contemporary perceptual learning 

research do not appear to involve abstract perceptual learning, it may be more pervasive than 

suspected. An interesting example comes from the work of Nagarajan, Blake, Wright, Byl, 

and Merzenich (1998). They trained subjects on an interval discrimination for vibratory 

pulses. The sensory (concrete) aspects of this learning would be expected to involve tactile 

sensations sent to somatosensory cortex. They found that after training, learning transferred 

to other parts of the trained hand, and to the same position on the contralateral hand. More 

remarkable, they found that learning also transferred to auditory stimuli with the same 

intervals. So, what was learned was actually the time interval – an abstract relation among 

inputs, with the particular inputs being incidental. This idea that even apparently low-level 

tasks may involve relational structure is also reflected in recent work suggesting that 

perceptual learning may not operate directly on sensory analyzers but only through 

perceptual-constancy based representations (Garrigan & Kellman, 2008). We discuss that 

work more thoroughly in section V below.

Research suggests that perceptual learning of abstract relations is a basic characteristic of 

human perceptual learning from very early in life. Marcus, Vijayan, Bandi Rau & Vishton 

(1999) familiarized 7-month-old infants with syllable sequences in which the first and last 

elements matched, such as “li na li” or “ga ti ga”. Afterwards, infants showed a novelty 

response (longer attention) to a new string such as “wo fe fe” but showed less attention to a 

new string that fit the abstract pattern of earlier items, such as “wo fe wo”. Similar results 

have been obtained in somewhat older infants (Gomez & Gerken, 2000). These findings 

suggest an early ability to discover abstract relationships, although there is some possibility 

that speech stimuli are somewhat special in this respect (Saffran & Greipentrog, 2001).

That learning often latches onto abstract relations is important in attaining behaviorally 

relevant descriptions of our environment: For thought and action, it is often the case that 

encoding relations and abstract relations is more crucial than encoding sensory particulars 

(Gibson, 1979; Koffka, 1935; von Hornbostel, 1927). Whether this holds true depends on the 

task and environment, of course.

IV. Explaining and Modeling Perceptual Learning Phenomena

How have researchers sought to explain and model perceptual learning? These questions are 

important not only for understanding human performance but for artificial systems as well. 

Understanding how learners discover invariance among variable instances would have value 

for creating learning devices as well as explaining human abilities. We currently have no 

good machine learning algorithms that can learn from several examples to correctly classify 

new instances of dogs, cats, and squirrels the way 4-year-old humans do routinely. Even 
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understanding how basic acuities improve with practice presents interesting challenges for 

modeling. Here we describe several foundational ideas that have been proposed and 

illustrated by empirical studies or models, or both.

Receptive Field Modification

Aligned with the focus of much research is the idea that low-level perceptual learning might 

work by modifying the receptive fields of the cells that initially encode the stimulus. For 

example, individual cells could adapt to become more sensitive to important features, 

effectively recruiting more cells for a particular purpose, making some cells more 

specifically tuned for the task at hand, or both. Equivalently, receptive field modification can 

be thought of as a way to exclude irrelevant information. A detector that is sensitive to two 

similar orientations might develop narrower sensitivity to facilitate discrimination between 

the two.

The idea of receptive field modification in early cortical areas would fit with some known 

properties of perceptual learning. In vision, specificity to retinal location and to particular 

ranges on stimulus dimensions (e.g., orientation) would be consistent with known properties 

of cells in early cortical areas (V1 and V2). Consistent with some perceptual learning 

results, effects of changing a cell’s receptive field would be long lasting, compared to other 

adaptation effects. As a cell’s receptive field becomes more specifically tuned, it may also 

become more resilient to future, experience-induced changes since it would be less broadly 

sampling the statistics of the environment.

Evidence for receptive field change has been found using single-cell recording techniques in 

primates. In monkey somatosensory cortex, there is high variability in the size of 

representations of the digits (Merzenich, et al., 1987). At least some of this variability may 

be due to effects of experience. Perceptual learning can dramatically alter both the total 

amount of cortex devoted to a particular mental representation as well as the size of the 

receptive fields of the individual cells. Recanzone, et al., (1992) trained owl monkeys to 

discriminate different frequencies of tactile vibration. Following training, the total size of 

cortex corresponding to the trained digits increased 1.5–3 fold. Other studies have shown 

that a task requiring fine dexterity, e.g. retrieving food pellets from small receptacles, 

resulted in a decrease in the size of the receptive fields of cells corresponding to the tips of 

the digits used in the task (Xerri, et al., 1999). Presumably, smaller receptive fields would 

lead to finer tactile acuity, and thereby increase the level of performance in retrieving the 

pellets.

In the auditory domain, Recanzone, Schreiner & Merzenich (1993) showed that monkeys 

trained on a difficult frequency discrimination improved over several weeks. Mapping of 

primary auditory cortex after training showed that receptive fields of cortical cells 

responding to the task-relevant frequencies were larger than before training.

An example of a specific model that attempts to explain learning effects by receptive field 

change is the vision model of Vernier hyperacuity proposed by Poggio, Fahle, & Edelman 

(1992). Their model begins with a network of non-oriented units receiving input from 

simulated photoreceptors. The photoreceptor layer of their model remains static, while the 
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second layer is an optimized representation of the photoreceptor activity using radial basis 

functions. This second layer represents cells whose receptive field structure changes to more 

effectively utilize task-relevant information from the photoreceptors.

Selection and Differentiation

An alternative approach for modeling perceptual learning is the idea of selection. Selection 

describes learning to preferentially use some subset of the information available for making 

a decision. This notion was at the core of Eleanor Gibson’s work, so much so that she often 

used “differentiation learning” as synonymous with perceptual learning. Summing up the 

approach, she said:

It has been argued that what is learned in perceptual learning are distinctive 

features, invariant relationships, and patterns; that these are available in stimulation; 

that they must, therefore, be extracted from the total stimulus flux. … From the 

welter of stimulation constantly impinging on the sensory surfaces of an organism, 

there must be selection. (Gibson, 1969, p. 119.)

A specific proposal put forth by Gibson was that perceptual learning works by discovering 

distinguishing (or distinctive) features. Distinguishing features are task-specific: they are 

those features that provide the contrasts relevant to some classification. Thus, in learning to 

discriminate objects, the learner will tend to select information along dimensions that 

distinguish the objects, rather than forming better overall descriptions of the objects (Pick, 

1965).

In contemporary perceptual learning work with basic sensory discriminations, the notion of 

selection is also a viable candidate for explaining many results. Imagine an experiment in 

which the learner improves at distinguishing two different Gabor patches (or lines) having a 

slight orientation difference. On each trial the learner must decide which of the two patches 

was presented. Now envision in cortex an array of orientation-sensitive units responsive at 

the relevant stimulus positions. Some units are activated by either stimulus; some more by 

one stimulus than the other; others may be activated by only one stimulus. Suppose the 

learner’s decision initially takes all of these responses into account, giving each equal 

measure. As learning proceeds, the weights of these inputs are gradually altered. Units that 

do not discriminate well between the stimuli will be given less weight, whereas those that 

discriminate strongly will be given more weight. It may even be the case that the best 

discriminators are not the units that initially give the largest response to either stimulus. For 

example, suppose the learner is to discriminate lines at 10o vs. 14 o, and suppose orientation-

sensitive units respond somewhat to inputs within ± 6o of their preferred orientations. In this 

simple example, an analyzers at 7 o and 17 o may be more informative than the units 

centered at 10 o or 14o, because such analyzers would be activated by only one of the two 

displays.

Recently, Petrov, Dosher & Lu (2005) presented experimental and modeling results 

indicating that in a low-level task (orientation discrimination of two Gabor patches in noise), 

perceptual learning was best described, not in terms of receptive field modification, but by 

selective reweighting. They argued that even in simple discrimination paradigms, perceptual 

learning might be explained in terms of discovery of which analyzers best perform a 
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classification and the increased weighting of such analyzers. In their model, encodings at the 

lowest level remain unchanged.

This approach brings to light an interesting set of issues. Earlier models of perceptual 

learning posited that the changes occurred in the earliest encodings because these areas have 

the same specificity – e.g. position and orientation – that has been reported in the perceptual 

learning literature. Petrov, et al, point out, however, that specificity in perceptual learning 

only requires that some part of the neural system responsible for making a particular 

decision have specificity, not that the changes that drive perceptual learning occur in units 

that have specificity. The solution, they argue, again involves selection. Learning can occur 

via changes in higher level structures and still have specificity, provided that those structures 

are reading the outputs of lower-level units that are specific to visual field location, 

orientation, or some other stimulus attribute. Specificity can arise from differentially 

selecting information from units with specificity, and can therefore arise from changes in 

higher-level, abstract representations of the relevant stimuli.

In order to unambiguously demonstrate lack of transfer, many perceptual learning 

experiments utilize two conditions (for learning and transfer testing) that involve distinct 

neural structures, e.g. stimuli at two orientations orthogonal to one another. In these 

experiments, lack of transfer is defined as training in one condition that does not enhance 

performance (or enhances performance less) in the other condition. This setup, Petrov, et al., 

argue, is poorly suited for discriminating between the receptive field modification hypothesis 

and the selective reweighting hypothesis. In this type of experiment, training in each 

condition involves distinct neural representations at the lowest level and distinct connections 

between these representations and higher level “decision units”. Since both the 

representations and the connections are distinct, specificity could result from modification at 

either stage, and therefore cannot distinguish between the receptive field hypothesis 

(changes at the level of representation) and the selective reweighting hypothesis (changes in 

the connections).

In the Petrov, et al. experiments, instead of having a different stimulus in each condition, the 

same stimulus was presented in a different context in each condition.. In this case the 

representation at the lowest level is the same (i.e. the same units in V1), and the connection 

from these units to higher level units could be shared or distinct. Their experimental data 

were well-described by a model with a single representation of the stimulus, with training 

effects occurring in distinct connections between the representation and the decision units.

This recent work adds to earlier results that seemed discrepant with hypotheses of receptive 

field change. Ahissar, Laiwand, Kozminsky, & Hochstein (1998) trained subjects in a pop-

out visual search task with a target of one orientation and distractors in another orientation. 

After learning had occurred, they swapped target and distractor orientations and again 

trained subjects to criterion. Finally, they switched back to the original orientations and 

found that performance was neither better nor worse than at the end of the first session of 

training. If training had caused modification of receptive fields of orientation-sensitive units 

in V1, they argued, then switching target and distractor orientations after training should 

have interfered with the earlier learning. Yet the earlier learning was preserved, and it 
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coexisted with the later learning. These results are more consistent with a model in which a 

particular task leads to selective use of particular analyzers, but the underlying analyzers 

themselves remain unchanged. This kind of result also addresses a deep concern about the 

idea of receptive field modification in vision: Given that the earliest cells in the striate 

pathway (beginning with cortical area V1) are the inputs for many visual functions, 

including contour, texture, object, space, and motion perception, task-specific learning that 

altered receptive fields at this level would be expected to affect or compromise many other 

visual functions. The fact that such effects do not seem to occur is comforting for visual 

health but less so for explanations of perceptual learning in terms of receptive field change.

The notion of selective reweighting corresponds nicely to Gibson’s earlier account of 

perceptual learning as selection and the learning of distinguishing features. It raises the 

fascinating possibility that perceptual learning at all levels can be modeled as selection. One 

difference is that Gibson talked about selection of relevant stimulus information, whereas 

Petrov et al (2005) and others cast the selection notion in terms of selection and weighting of 

analyzers within perceptual systems. We believe these two versions of selection are two 

sides of the same coin. To be used, information must be encoded, and the function of 

encoding processes is to obtain information. Perceptual learning processes, we might say, 

select information relevant to a task by weighting heavily the analyzers that encode it. 

(Trying to distinguish more deeply between selection of information and selection of 

analyzers is much like puzzling over whether we really “see” objects in the world, or we see 

electrical signals in our brains. For discussion, including a claim that we see the world, not 

cortical signals, see Kellman & Arterberry, 1998, p. 10–11).

Relational Recoding

Neither receptive field modification nor simple selection from concrete inputs can account 

for the substantial part of human perceptual learning that is abstract. Take the idea of 

learning what a square is. A given square, having a specific size and viewed on a particular 

part of the retina, activates a number of oriented units in visual cortex. Suppose the learner is 

given category information that this pattern is a square. Using well-known connectionist 

learning concepts, this feedback could be used to strengthen the connection of each activated 

oriented unit with the label “square.” One result of this approach is that with sufficient 

learning (to stabilize weights in the network), the network would come to accurately classify 

this instance if it recurred. Moreover, with appropriate design, the network would also be 

able to respond “square” to a display that contained a large part, but not all, of the previously 

activated units. These kinds of learned classification and generalization results are readily 

obtainable by well-established methods common in machine learning.

There is another level to the problem, however, and as we noted earlier, it is one with deep 

roots. At the turn of the last century, Gestalt psychologists criticized their structuralist 

predecessors for the idea that complex perceptions, such as perception of an object, are 

obtained by associating together local sensory elements. Their famous axiom “The whole is 

different from the sum of the parts” was aptly illustrated in many domains that are 

commonplace for perceivers but profoundly puzzling for the structuralist aggregating of 

sensory elements or, in our era, the weighting of concrete detector inputs. A square, for 
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example, is not the sum of the activations triggered by any particular square. Another square 

may be smaller, rotated, or displaced on the eye. All of these transformations activate 

different populations of oriented units in early cortical areas. Moreover, we also readily 

recognize squares made of little green dots, or squares made of sequences of lines that are 

oriented obliquely along the edges of a square. A square made in this way may have no 

elementary units in common with an earlier example of square, whereas another pattern that 

shares 90% of the activated units with an earlier example may simply not be a square at all. 

Being a square has to do with relations among element positions, not the elements 

themselves.

Kellman, Burke & Hummel (1999) made a proposal about how such abstract invariants may 

be learned. A crucial part of their approach is that the model be generic, in that it contains 

only properties we might expect on other grounds to be available in visual processing. That 

is, one could easily build a specific device to learn about squares, but the goal is to 

understand how we can be a general purpose device that learns the invariants of squares, 

rhombuses, dogs, cats, chess moves, etc. The key, according to these investigators, is a stage 

of early relational recoding of inputs. In vision, there are basic features and dimensions to 

which we are sensitive. Besides these, there must be operators that compute relations among 

features or values on dimensions. In the simulations of Kellman et al (1999), the key 

operator was an “equal / different” operator. This operator compared values, and produced 

an output that was large when two values were approximately equal and small when they 

differed beyond some threshold value. Their model learned to classify, from only one or two 

examples, various quadrilaterals (e.g., square, rectangle, parallelogram, trapezoid, rhombus, 

etc.). The model was given the ability to extract contour junctions and distances between 

these. The layer of equal / different operators scanned all pairs of inter-junction distances. A 

response layer that used the results of all equal / different operators readily learned the 

quadrilateral classifications from simple category feedback. Learning, even with a minimum 

of examples of each form class, generalized to patterns of different size, orientation, and 

position; with certain types of preprocessing, they would also generalize to figures made of 

any elements.

The key idea here is not to provide a complete account of learning in this particular domain 

but to begin to address the perceptual learning ability to discover higher-order invariants. We 

believe that along with the basic encodings of features and dimensions there is a set of 

operators that computes new relations. There is evidence for equal / different operators and 

one or two others. Some of these relational computations are automatic or nearly so; some 

may be generated in a search for structure over longer learning periods in complex tasks. 

The outputs of automatically generated relational recodings or newly synthesized ones that 

were not initially obvious may account for the salience of some relations in perception and 

for the longer term learning of other, less salient ones.

It is implied by this view that there is essentially a “grammar” of perceptual learning and 

learnability. Some relations in stimuli are obvious; some may be discovered with experience 

and effort; and some are unlearnable. These outcomes depend on the operators that compute 

relations on the concrete inputs, as well as on search processes that explore the space of 

potentially computable operations for classifications that are not initially obvious. If this 
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overall approach has merit, then determining the operators in this grammar, although 

difficult, stands as a key question in understanding abstract perceptual learning. The solution 

of this “Kantian” question of what relational operators we possess that may allow us to 

discover new invariants will help us understand how we learn to classify dogs and cats, 

become experts at chess and radiology, and will also empower artificial learning devices that 

may someday share in the remarkable levels of structural intuition displayed by human 

experts.

Abstract Relations and Language

Earlier we raised the question of whether human extraction of abstract relations requires 

capabilities extending beyond perception, such as symbolic processes in general or language 

in particular. We now return to this question in the context of modeling perceptual learning, 

as the answer we suggests fits within a general scheme of the process of discovery in 

perceptual learning.

Although we do not have a detailed process model of high-level perceptual learning, there 

are certain elements that seem likely to be part of any successful model. To see what these 

are, we focus on tasks in which the learner must discover what features or patterns appearing 

in particular instances (objects, events, situations) determine whether or not a particular 

instance is a member of a category. Such learning is common (as when a child learns the 

notion of dog). We assume for simplicity that the training consists of instances along with 

category feedback about whether particular instances are or are not in the category. We also 

assume that explicit instruction about which variables determine category membership is not 

given.

Any perceptual discovery task of this type involves what may be described broadly as a 

search process. The learner must somehow determine which attributes of the observed 

instances determine membership in a category. “Search” does not imply a particular 

mechanism. It is convenient to think of it as a process that involves sampling from a set of 

candidate features and then comparing the values of these features with outcome feedback. 

This sort of search can be implemented through gradual strengthening of various weights in 

a neural network, but not all inputs are available for adjustment on each learning trial. In 

human and animal learning, evidence suggests a sampling process involving limitations of 

attention (e.g., Trabasso & Bower, 1969), a point to which we return below. Our immediate 

focus, however, is on the potential candidate attributes that may determine a classification. 

Most obviously, these include perceptual features and relations that are naturally encoded. In 

classic discrimination learning work (some of which is summarized in Trabasso & Bower, 

1969), humans or animals were tested for acquisition of correct responding where some 

outcome depended on highly salient stimulus features. In a typical experiment, figures (on a 

card or on a door in a jumping stand for rats) might be triangles vs. circles, red vs. black, and 

large vs. small. Learning involved determining which of these dimensions were relevant 

(e.g., color), as well as the significance of particular values on the dimension (e.g., red 

produces the reward). In cases where the perceptual dimensions are highly salient, the 

discovery problem in perceptual learning is minimized. With more complicated stimuli, it 

may be much harder to notice immediately what features and relations should be on the 
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candidate list. In fact, the candidate list for features or relations that could be crucial to some 

new classification seems unlikely to be a fixed list. In complex learning tasks, certain 

properties or relations that are initially unnoticed can be discovered. Advanced competence 

in chess, chemistry, radiology, mathematics, and many other domains almost certainly 

involves sensitivity to relations to which the novice is essentially blind. Earlier we discussed 

how new relations might be synthesized through a combination of initial perceptual 

encodings and the application of relational operators. This function – generating candidates 

for search -- seems to be required to explain advanced human perceptual learning. This view 

has similarities to the approach described by Perlovsky (2006) in that cognitive (and 

linguistic) models evolve to best correspond to and account for input signals.

In terms of process, the notion of search suggests that not all candidate features and relations 

are checked at the same time. This fact is consistent with the gradual nature of perceptual 

learning in many contexts and also with discrimination learning in simple contexts (Trabasso 

& Bower, 1969). Candidate features derived from basic perception and from the generation 

of higher-level relations must be checked for their correspondence with the categorization 

outcomes. Again, this description does not imply any particular implementation, but it does 

imply that not all candidates are checked at the same time. Such a limitation need not even 

arise specifically in the “checking” or weighting process; it might occur in capacity limits on 

what can be encoded in memory from perceiving each instance. Feedback based on the 

progression of learning could be used to determine whether to broaden, narrow or otherwise 

guide sampling. Obviously, many details of such a framework need to be further specified, 

and some suggest empirical tests.

For current purposes, however, the key idea is that of a salience hierarchy – some preferred 

ordering of candidate features. The idea that some properties are obvious at first glance and 

others require more effort to notice seems straightforward: it is required by the fact that 

some perceptual discovery tasks are trivially easy whereas others require extended learning. 

This aspect of perceptual learning is the likely locus for effects of symbolic learning and 

language. By assigning symbols to particular properties or relations, as by naming a relation, 

its salience may be increased. Increased salience for some property leads to a greater 

likelihood that it will be searched for, encoded, and checked for relevance to the 

categorization outcomes.

Humans may well exceed animals in their extraction of abstract relations from objects, 

arrangements and events, and this difference may depend on language. The dependence, 

however, does not imply a fundamentally different process from perceptual learning as we 

have described it. Rather, the effects of language and symbolic experience may influence 

salience hierarchies in search processes involved in perceptual discovery. As with other 

aspects of perceptual learning, these effects may often be highly task specific: prior 

experience with and symbolic representation of a property may lead to greater likelihood of 

encoding that property or selecting it to check its relevance to a classification being learned. 

Although these conjectures are obviously ripe for further research, existing evidence seems 

consistent with them. Studies of concept formation in pigeons (e.g., Huber, 1999) do not 

indicate a clear limit on pickup of abstract relations. They do indicate that pigeons extract 

relations less readily than do humans but that under optimal conditions, pigeons seem to 
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classify based on abstract relations. These observations are consistent with the idea that 

making certain relations salient is helpful in abstract perceptual learning; in humans, 

language may contribute to making a relation salient.

It is also possible that language may allow relations that are recognized in tasks in one 

cognitive domain to be selected in another domain. Spelke (2003) has suggested that 

language can serve this kind of integrative or connective function: Core cognitive domains 

may develop prior to language, but their representations are often narrowly confined. 

Language may facilitate connections across domains. In guiding perceptual learning of high-

level relations, language may point the way to extraction of relations in one domain because 

these have been relevant and symbolically represented in another. Such phenomena that 

appear to involve abstract learning differences between human children and adults (e.g., 

Kendler & Kendler, 1961), as well as the observation that some relational learning tasks can 

be acquired only by humans and symbol-trained chimpanzees are consistent with this role of 

language.

Presupposed by these interpretations, however, is the idea that the relevant relations can be 

found in objects and events if made salient. In other words, the capability to encode relevant 

properties needs to be present. Such capabilities may indeed differ across species, such that 

in some species, no amount of directing of attention could lead to discovery of a certain 

relation. If evolution has overseen some progression in perceptual abilities to pick up 

abstract relations, that would certainly be relevant to understanding differences in 

intelligence across species. Clearer understanding of species’ differences in this regard 

would be very useful in considering this idea. Moreover, there is a fascinating chicken-and-

egg problem regarding symbolic language and abstract perceptual encoding: It is possible 

that evolutionary development of sensitivity to abstract stimulus relations contributed to the 

emergence of language. Although there are obviously many potential influences on the 

evolution of language, at minimum, some abstract perceptual learning capabilities are 

crucial. As we consider below in Section VI, a child’s ability to classify parts of the speech 

stream into grammatical categories involves complex cases of abstract perceptual learning, 

and these appear to have innate foundations (Hirsh-Pasek & Golinkoff, 1997).

V. The Scope of Perceptual Learning

It is apparent from our discussion that perceptual learning encompasses several information 

processing changes. These are linked by our general definition of perceptual learning as 

comprising improvement in the pickup of information. There appear to be different ways to 

improve: coming to select relevant features for some classification, discovering higher-order 

invariants to which the perceiver is initially insensitive, and becoming more fluent or 

automatic in information pickup.

It would be possible to classify these effects as deriving from different learning processes. 

As research progresses, it may turn out that there are a variety of mechanisms at work in 

these changes. Also, some characteristics of perceptual learning may be shared with other 

kinds of information processing. For instance, information extraction may become more 

automatic with practice, but so might familiar patterns of reasoning or inference.
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Still, there are overriding functional reasons for considering perceptual learning, broadly 

construed, as a coherent category in a taxonomy of learning. Not only do the perceptual 

learning changes we have considered involve improvement in the way information is 

acquired and occur under the same conditions, but they also appear to be deeply 

interconnected. Discovery and fluency effects, as Bryan & Harter illustrated long ago, work 

in synergistic and recursive fashion to produce a spiral of access to progressively higher-

level structure. This spiral of discovery → fluency → new discovery is likely responsible 

for many of the most impressive of human accomplishments. Also common to the family of 

perceptual learning effects is that they are not easily explained by other common notions in 

the taxonomy of learning.

Grouping phenomena together makes most sense if doing so helps to reveal general 

underlying principles. We believe this is the case with many perceptual learning phenomena, 

and in what follows we offer some analysis relevant to both that goal and to some current 

views about perceptual learning that suggest a much narrower scope.

The Current Modal View of Perceptual Learning

As we have considered, the recent surge of interest in perceptual learning has focused almost 

exclusively on basic sensory acuities. Many experiments reveal to the observer two stimulus 

displays, with instructions to the observer to judge, over thousands of trials, which of the 

two has been presented each time.

Such a focus may seem puzzling in terms of perceptual learning’s role in real-life learning 

tasks, few if any of which resemble this scheme. It is also historically aberrant. In Gibson’s 

classic (1969) review, there is consistent emphasis on extraction of invariance from variable 

instances but very few studies that conform to the more recent paradigm. The differences are 

not merely methodological, however; there is a contrast between the task content: shape, 

arrangement, and relational structure for many tasks in the earlier generation of research, 

contrasted with current work involving discrimination tasks such as Vernier acuity.

The recent focus is special but not coincidental. It rests on a plausible and coherent set of 

ideas. We will argue that the ideas are not correct, but their appeal is nonetheless easy to 

understand.

The primary organizing idea in recent work in perceptual learning is that perceptual learning 

can provide a window into plasticity in the brain. The sensory acuities found to be malleable 

through learning are also the functions currently best understood in terms of brain anatomy 

and physiology. For example, the first visual cortical area (V1) is known, from single-cell 

recording work in animals, to have a preponderance of cells sensitive to contrast at particular 

locations, orientations, and particular ranges of spatial frequencies (Hubel & Wiesel, 1968; 

DeValois & DeValois, 1988). The receptive fields for such units have been modeled as a 

Gabor filters – periodic (e.g., sinusoidal) functions of contrast, multiplied by a Gaussian 

window. Moreover, it is known that orientation sensitivity, in primates, is not present in this 

visual stream prior to V1. Thus, a perceptual learning task involving orientation sensitivity 

may use a pair of Gabor patches differing slightly in orientation, accompanied by an 

assumption that improvement in performance will reflect changes in mechanisms at this 
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early processing level. Indeed, some have argued that the definition of perceptual learning, 

or one especially important kind of perceptual learning, should be confined to changes at 

this level. For example, Fahle & Poggio (2002) defined perceptual learning as encompassing 

“parts of the learning process that are independent from conscious forms of learning and 

involve structural and/or functional changes in primary sensory cortices.”

Consistent with these ideas are some common phenomena from perceptual learning tasks 

involving basic sensory dimensions. It is often found that learning effects in perceptual 

learning tasks show limited transfer across changes in the stimulus or the location of 

presentation (e.g., the eye, hemifield, or retinal location use during learning). Limited 

transfer has routinely been interpreted as showing a low-level locus of learning. For 

example, an effect found during training on a certain location in one eye that does not 

transfer to the same position in the visual field on the other eye has been taken to indicate 

that the locus of learning must be at a level prior to that where binocular combination of 

inputs occurs (e.g., V1).

The final assumption in this perspective is that behavioral results involving perceptual 

learning in animals, that seem analogous to human results, can be directly linked to receptive 

field changes in primary sensory cortices using direct physiological measures (e.g., 

Recanzone et al, 1993). Taken together, one can see the coherence of these basic ideas about 

perceptual learning and early cortical change: behavioral results that involve basic sensory 

discriminations; transfer data (often, failure to transfer) that suggest a low-level locus of 

learning, and direct physiological evidence of neural change from animal experiments.

Critique of the Modal View

Despite its plausibility, there are reasons to question the currently prevailing orthodoxy 

about perceptual learning. As research has progressed, it has cast doubt on each element of 

the set of assumptions that justifies a low-level sensory emphasis. Conversely, we believe 

that evidence has begun to reveal more general principles of perceptual learning that unify 

tasks and results at different levels. Perceptual learning in basic sensory tasks and higher 

level tasks may be more closely related than anticipated. Discovering and elaborating 

general principles of perceptual learning may require abandoning the narrowest views of 

perceptual learning.

Specificity of learning does not implicate low-level mechanisms.

Recall that specificity of learning, or equivalently, lack of transfer of learning across 

stimulus conditions has been traditionally interpreted as a sign that the neural changes 

associated with the learning occur earlier on in visual processing. This is simply because 

neurons in the early visual system are known to encode visual stimuli in a manner that is 

specific to, for example, a position on the retina. The lack of transfer in perceptual learning 

tasks is not, however, a particularly robust effect. Across learning domains and for studies 

within particular domains, transfer results have been inconsistent (for a review, see Kellman, 

2002). More recently, Young, Li, Levi & Klein (2005) re-examined the idea that perceptual 

learning in a Vernier acuity task is specific to the eye trained. They pointed out that in 

previous studies, in which learning effects were found to be specific to the trained eye, the 
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observer’s untrained eye was covered by a patch. This condition may have favored learning 

to ignore the patch, which could produce an interfering visual input. When they performed 

the same experiment with a light diffuser over an open untrained eye, they found complete 

transfer of learning effects to the untrained eye. This kind of result suggests that the 

specificity of perceptual learning effects may reflect the task the experimenter has chosen 

(sometimes in unsuspected ways) rather than constraints on learning mechanisms.

Other research confirms that small task variations can lead to large differences in generality 

of transfer. For example, Liu (1999) found substantial perceptual learning effects in 

discrimination tasks both for motion directions differing by 3 deg (as previously studied by 

Ball & Sekuler, 1982) and for motion directions differing by 8 deg. When he tested for 

transfer, however, learning of the 3 deg discrimination showed little transfer to new 

orientations, but learning of an 8 deg discrimination transferred robustly. In the face of 

findings like these, defining perceptual learning by specificity of transfer would have 

paradoxical consequences (i.e., learning to discriminate motion directions differing by 3 deg 

would be perceptual learning, but learning to discriminate motion directions differing by 8 

deg would not be). Likewise, following the typical inferences from specificity of transfer, we 

would have to infer different cortical loci for these two very similar tasks. As we will 

suggest below, the variability in transfer results is consistent with selection models of 

perceptual learning, and such models avoid these counterintuitive consequences.

An attack on the typical logic of inferring a low-level locus from transfer was put forth by 

Mollon & Danilova (1996), who argued that the idea is simply a fallacy (c.f., Dosher & Lu, 

1998). Specificity of transfer need not reflect a low-level site of modifications in the nervous 

system; it is equally consistent with a selection notion: that more central processes select 

which outputs of relevant analyzers at lower levels are relevant to a particular task. In this 

view, not only does learning involve higher levels, but no changes at lower levels are 

required, and specificity in transfer mostly reflects the task the experimenter has chosen. 

This view is also more consistent with the large variability in transfer outcomes with 

relatively small variations in procedures and tasks.

Receptive fields in early visual areas do not show sufficient changes to account for 
perceptual learning effects.

The argument for low-level loci of learning in humans has been based on the specificity of 

perceptual learning effects. In light of both the logical issues and inconsistent results 

described above, there is little or no evidence that any perceptual learning results in humans 

involve changes in primary sensory cortices. Such a statement will surely sound like heresy 

to many researchers who have presumed they are studying such changes. They would most 

likely respond by pointing to animal research in which behavioral tasks and physiological 

changes can both be assessed. Some evidence has suggested such changes due to perceptual 

learning in primary auditory and somatosensory cortex. Yet, in vision, there is little evidence 

from animal research for modification of early areas; changes in receptive field structure or 

dynamics following perceptual learning have not been consistently observed (e.g. Crist, Li, 

& Gilbert, 2001; Schoups, Vogels, Qian, & Orban, 2001). Training that results in large 

behavioral changes, in terms of, e.g., discrimination improvement, may occur despite little 
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corresponding changes in the receptive fields of V1 and V2 cells (in monkey). Where 

changes have been found, the results have been subtle, and of too small a magnitude to 

account for the changes to behavior (Ghose, Yang, & Maunsell, 2002). More robust training-

induced modifications have been found at later stages of processing, e.g., cells in area V4 

(Yang & Maunsell, 2004). The greater complexity of the receptive fields of these cells 

(Pasupathy & Connor, 2001) makes characterization of the impact of these changes 

challenging. In any case, these changes are well beyond “primary sensory cortices,” and the 

observed changes in V4 could be consistent with the neural implementation of either 

receptive field change or selective reweighting models of perceptual learning.

Higher level variables are involved in perceptual learning.

A variety of findings indicate that, even in low-level tasks, higher level variables affect 

perceptual learning. Attention to particular stimulus attributes, having a task, and/or an 

internal reward signal upon finding a target seems important (Seitz & Watanabe, 2003; Shiu 

& Pashler, 1992), although under certain circumstances these variables may allow learning 

to occur for spatially and temporally coincident but task-irrelevant stimuli (see Seitz and 

Watanabe, 2005).

Ahissar & Hochstein (2004) suggested that perceptual learning always involves an interplay 

of higher and lower levels of processing. In their “reverse hierarchy” approach, learning is 

initiated through high level attention and task involvement. Learning descends to the lowest 

processing level at which task-relevant regularities exist. This approach thus involves 

discovery or selection, not just of specific analyzers at some level, but among possible levels 

of information and processing as well.

Perceptual Learning should not omit perception.

Although it is common to label early cortical changes as perceptual learning, and some have 

suggested or assumed that only such changes qualify as perceptual learning, this view 

generates a seldom-noticed paradox. Learning effects, if confined to primary sensory 

cortices, would likely not be perceptual learning. In vision, the earliest cortical areas (V1, 

V2) contain cells with receptive fields sensitive to oriented contrast in small regions, in 

specific spatial frequency ranges. These areas are unlikely to contain representations of what 

objects are in a scene, their shapes, sizes, or the 3D arrangements of objects and surfaces. 

Even a single piece of an abrupt luminance edge of an object against a background cannot be 

represented by any one such detector. Most perceptual descriptions are likely computed 

further along in the visual pathway, such as object shape in parietal regions and LOC 

(Kourtzi & Kanwisher, 2001) or spatial arrangement obtained from a synthesis of varying 

spatial cues, which may be registered in the caudal intraparietal sulcus (Tsutsui, Sakata, 

Naganuma, & Taira, 2002). Even a simple property like perceived object size is unlikely to 

be coded by cells in V1 or V2, whose responses, unlike perceived size, will change as the 

same object is viewed from different distances. We are only beginning to understand how the 

outputs of simple and complex cells in early cortical areas are transformed into 

representations of contours and surfaces with properties like color and transparency (e.g. 

Grossberg, 1997; see Neumann, Yazdanbakhsh, & Mingolla (2007) for a review of 

computational modeling efforts in this area). Perceptual learning effects important in real-
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world tasks (such as shape discrimination) often involve these higher-level properties (see 

Grossberg, 1999 for a discussion of computational modeling approaches to understanding 

learning in cerebral cortex).

Perceptual learning ≠ sensory plasticity.

Perhaps the problem in a notion of perceptual learning that omits most of perception is that 

we need to distinguish notions of perceptual learning and sensory plasticity. The issue of 

when and how cortical receptive fields can change is certainly an important topic in its own 

right. Such changes may occur in some perceptual learning tasks, and they may occur during 

early visual development, or due to deterioration when stimulation is excluded, and in other 

circumstances.

Yet one must wonder why changes, if confined to the earliest cortical areas, should be 

considered perceptual learning at all. Indeed, recent findings (Garrigan & Kellman, 2008) 

give reason for believing that the perceptual learning may actually operate only on 

interpreted perceptual representations. In our current understanding of visual processing, 

there is little reason to suppose that most, if any, such representations reside in the earliest 

cortical areas. Perceptual learning involving interpreted perceptual representations may well 

produce changes at the earliest sensory levels, but learning effects would unlikely be 

confined to such plasticity. There are also many important questions of sensory plasticity 

involving these early areas that do not necessarily involve learning effects, such as those 

relating to maturation and tuning of cortical units in infancy (Norcia & Tyler, 1985). We 

believe that perceptual learning and sensory plasticity label two important notions; they may 

often be related but they are not interchangeable.

Selection as a Unifying Principle in Perceptual Learning

In addition to the foregoing arguments against confining perceptual learning to sensory 

plasticity at the earliest cortical levels, it should already be clear that there is an important 

theoretical consideration against doing so. Earlier we described the case for modeling even 

low-level perceptual learning as selection. In her classic work on perceptual learning, Gibson 

saw selection as a unifying principle in higher level as well as low-level perceptual learning 

contexts. Whether one sees as more important the window into cortical plasticity opened by 

low-level perceptual learning or the role of perceptual learning in richer, real-world learning 

domains, restricting the label “perceptual learning” to one part of the landscape would miss 

an obvious general principle that unifies perceptual learning as a type of learning. The 

specific information and analyzers involved may no doubt be important for understanding 

particular cases of perceptual learning, but the overarching explanation of perceptual 

learning as involving task-driven discovery of relevant information for classifications should 

not be missed.

Receptive Field Change and Selection

A related insight is that even receptive field changes that could occur after learning may 

ultimately require a selection explanation as well. Imagine a cortical cell that becomes 

sensitive to a larger retinal area as a result of training. A more detailed account of this 

change, if it were to become available, would no doubt show that this cortical cell’s links 
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with retinal ganglion cells had changed. Ganglion cells gathering information from spatial 

regions that previously did not affect the cortical cell now would affect it. The changing of 

connections or weights with earlier processing levels is again a notion of selection or 

selective reweighting. Thus, even cases of receptive field change may involve selection, if 

viewed more finely. This does not imply, however, that all selection may be thought of as 

receptive field change. There are certainly levels in the nervous system at which decision 

processes utilize information from various inputs yet we would not be inclined to 

characterize these as having receptive fields in anything like the usual sense. Such decision 

processes may not be realized in terms of outputs of single neural units, and their inputs 

would not be maps on the receptive surfaces of sensory systems. More likely, decision 

processes at different levels can gain access to outputs of various perceptual processes, and 

the improvement in selectivity and fluency that emerges from practice need not invoke 

receptive field concepts.

Another important consideration is that receptive fields are relatively permanent (which is 

why the hypothesis of receptive field change through learning is so interesting in the first 

place). In contrast, reliance by decision processes on particular sets of analyzers may change 

from task to task. This impermanence of task-specific selection has been the key finding in 

some empirical findings that have led investigators to argue for selection models rather than 

receptive field change (Ahissar et al, 1998; Petrov, et al, 2005). In some cases, especially 

involving the lowest levels and perhaps particularly for senses other than vision (given 

current evidence), improvements in selectivity may well occur through receptive field 

change. It is a question of continuing interest if, when, and where, this occurs.

Perceptual Learning and Perceptual Constancy

Reframing perceptual learning in terms of selection, with access not restricted to the 

simplest sensory analyzers, raises an interesting question. What, if any, are the constraints on 

selection? Is information at any level of processing – from the earliest analyzers to the most 

complex perceptual representations – available to perceptual learning processes? As we have 

seen, some have suggested that only activity of analyzers at the earliest levels falls within the 

domain of perceptual learning. Paradoxically, it may actually be the case that the earliest 

analyzers are never the direct targets of learning processes. These ideas have recently 

emerged in studies relating perceptual learning to perceptual constancy.

Perceptual constancy refers to the fact that perceptual representations (and experience) 

involve stable properties of objects, not the sensory inputs used to derive those 

representations. For example, the perceived size of a person does not change as the person 

walks toward you or away from you. Such events do change the size of the projection of the 

person on your retinas. In this case, size constancy describes the fact that you perceive an 

unchanging physical size despite changes in the projective (retinal) size. Under common 

conditions, the projective size is (along with registered distance) an input into the 

computation that produces size constancy. Constancy processes produce perceptual 

representations that correspond to enduring physical properties of objects, despite changes in 

the sensory inputs (the proximal stimuli) used to compute perceptual representations. A deep 

reason why constancy processes are important is that we perceive by means of stimuli 
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received at the senses (energy), but ecologically, what we need to know about (primarily) is 

the structure of material objects, spatial arrangements, and events (Garrigan & Kellman, 

2008). Constancy processes enable us to deal with important and relatively stable material 

structures in the physical world which are made known to us by constantly fluctuating arrays 

of energy reaching our senses.

If constancy-based representations are important in our descriptions of the environment, 

might they also play a special role in learning? Garrigan & Kellman (2008) studied this 

question in series of experiments. Using established relations of perceptual constancy and 

sensory inputs (such as the use of retinal size in computing perceived size), they tested 

subjects in two conditions in each experiment. In each condition, subjects’ task was to 

discover the basis of a classification. On each trial, they were shown displays and asked to 

indicate whether or not the display fit in category X. The relevant properties were not 

described to subjects; they were given accuracy feedback only, and their task was to discover 

any stimulus properties that could lead to accurate classification. In one condition, in each of 

the basic experiments, subjects were shown a display in which either a perceptual 

(constancy-based) invariant or a sensory invariant could in principle be discovered and used 

to do the classification. In the case of size perception, the stimulus on each trial consisted of 

a pair of rectangles that were the same in retinal size and also in perceived size (because they 

were at both at the same distance from the observer). If perceptual learning processes can 

discover invariants at any level of processing, learners could succeed in this task either by 

extracting the perceptual regularity or the sensory one (the relation of retinal sizes). In a 

separate condition, displays could be successfully classified only by using the relation of 

retinal size. This condition was arranged by using identical stimuli as in the first condition, 

but using stereoscopic disparity to vary the apparent depth of the two displays. The question 

was whether a sensory invariant could be discovered if it did not correlate with a perceptual 

invariant. This question was asked in three different perceptual domains – perception of size, 

surface lightness, and motion. In every case, learning readily occurred when a perceptual 

invariant was available to be discovered. When only a sensory invariant was available, there 

was no evidence of learning, even after hundreds of trials. The results were especially 

revealing in that in each case, the sensory invariant is known to be an ingredient used in 

computation of the perceptual invariant. The visual system picks up the sensory information, 

but that information does not seem accessible to perceptual learning processes. A separate 

control using perceptual equivalence that was uncorrelated with sensory equivalence also 

showed robust learning effects. (This control indicated that a perceptual regularity alone was 

sufficient for learning, not a combination of a perceptual and sensory regularity.) Figure 4 

illustrates one of the experiments – a study of perceptual learning in surface lightness.

This result fits well with a model of perceptual learning that incorporates higher level, 

abstract representations, and suggests a strong constraint on perceptual learning. Perceptual 

learning is in fact perceptual. Information in early encodings that does not survive 

transformation to the percept is unavailable. This assessment inverts some popular wisdom. 

Far from being confined to the earliest analyzers, perceptual learning may not directly access 

early sensory analyzers at all.
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It is important to note that this view does not imply that neural changes associated with 

perceptual learning cannot occur in early cortical regions. It simply means that adjustments 

that arise from learning throughout the entire system work through constancy-based 

representations, a point related to the claim of Ahissar & Hochstein (2004) that lower level 

changes in perceptual learning are guided by higher levels.

Ecologically, it makes sense that learning processes access perceptual encodings, not the 

sensory inputs used to compute them. Red objects in white light might reflect mostly red 

light onto the retina, but red objects in blue light might reflect mostly blue light onto the 

retina. Discovering that the apple is red requires considerable processing, but that persisting 

property of apples is likely to be the kind of information useful in learning important 

regularities about the environment as well as in guiding thought and action. Perceptual 

learning utilizes distinctions at these more abstract levels because these levels capture 

behaviorally-relevant information rather than incidental details of viewing conditions. 

Without such constraint, learners might swamped search processes that lead to discovery in 

perceptual learning. Search processes that need to explore a large space of possible relations 

among the activity of photoreceptors on the retina may be intractable; search processes that 

consider structural properties of objects may be both tractable and adaptive. Perceptual 

learning involves selection, and available evidence suggests that selection depends on 

constancy-based, perceptual representations.

VI. Perceptual Learning and Instruction

If one consults the educational literature about the cognitive bases of human learning, one 

would find ample treatment of fact and concept learning, conceptual understanding, 

procedure learning, constructing explanations, thinking and reasoning. Except for an 

occasional mention of pattern recognition, perceptual learning would be starkly absent. Yet 

it is arguably one of the most, possibly the most, important component of human expertise.

If one looks instead at research, not on education, but on expertise, perceptual learning 

stands out. DeGroot (1965), himself a chess master, studied chess players, with the 

expectation that master level players considered more possible moves and countermoves or 

in some sense thought more deeply about strategy. Instead, he found that their superiority 

was shown mostly on the perceptual side. They had become able to extract meaningful 

patterns in larger chunks, with greater speed and less effort than less skilled players. De 

Groot suggested that this profile is a hallmark of human expertise in many domains:

We know that increasing experience and knowledge in a specific field (chess, for 

instance) has the effect that things (properties, etc.) which, at earlier stages, had to 

be abstracted, or even inferred are apt to be immediately perceived at later stages. 

To a rather large extent, abstraction is replaced by perception, but we do not know 

much about how this works, nor where the borderline lies. (de Groot, 1965, pp. 33–

34)

Such differences between experts and novices have since been found to be crucial in 

research on expertise in a variety of domains, such as science problem solving (Chi et al, 

1981; Simon, 2001), radiology (Kundel & Nodine, 1975; Lesgold, et al., 1988), electronics 
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(Egan and Schwartz, 1979), and mathematics (Robinson & Hayes, 1978). An influential 

review of learning and its relation to education (Bransford, Brown & Cocking, 2001) 

summed it up this way:

Experts are not simply “general problem solvers” who have learned a set of 

strategies that operate across all domains. The fact that experts are more likely than 

novices to recognize meaningful patterns of information applies in all domains, 

whether chess, electronics, mathematics, or classroom teaching. In deGroot’s 

(1965) words, a “given” problem situation is not really a given. Because of their 

ability to see patterns of meaningful information, experts begin problem solving at 

“a higher place” (deGroot, 1965). (Bransford, Brown & Cocking, 1999, pp. 48)

As was evident in our discussion of specific examples, perceptual learning serves in the 

development of expertise in multiple ways, such as automaticity and chunking in 

information pickup. Table 1 summarizes these changes, all of which have been demonstrated 

in studies of expert performance and experiments on perceptual learning.

Looking over the effects in Table 1, one is struck by the remoteness of these characteristics 

that drive expert performance from the usual products and goals of school (and university) 

learning. It is not the case that the facts, concepts, and procedures taught in school are 

unimportant. It is more that those foci alone leave out something important. How does 

hearing a lecture help a university student to do more parallel processing or pick up larger 

chunks of information at a glance? The contrast between the usual emphases in conventional 

instruction and the characteristic strengths of experts are relevant to understanding the 

potential role perceptual learning could play in instructional contexts and how it might best 

mesh with and enhance conventional methods.

Natural Kind Learning

Moving from experts to the other side of the continuum, it is interesting to consider that 

before a child goes to school, discovery processes in perceptual learning, including highly 

abstract ones, are very much in evidence. Imagine a young child going for a walk with her 

father. Upon seeing a dog, the child points, and the father says “That’s a dog.” Suppose this 

particular dog is a small, white, poodle. On some other day, the child sees another dog -- this 

one a large, black, Labrador retriever. Again, someone says “dog.” And so on. With each 

instance, something about a particular dog (along with the label “dog”) is encoded. As this 

process continues, and a number of instances (probably not a particularly large number) 

have been encountered, the child becomes able to look at a new, never before seen dog and 

say “dog.” This is the magical part, as each new dog will differ in various ways from any of 

the examples encountered earlier. Moreover, with practice, the child will correctly 

distinguish novel instances of dog, cat, squirrel, etc. from each other. A particular cat or 

squirrel may have properties that resemble some known dog; a black dog and a black cat are 

more similar in color than are a black and white dog. Despite similarities of instances in 

different classes and differences within classes, the learner somehow comes to extract 

properties that can be used to classify novel instances accurately. Such examples appear to 

be cases of abstract perceptual learning, as the most crucial information allowing assignment 

to the category very likely involves relational variables rather than the most concrete 
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features, such as color. A miniature, purple, plastic model of a dog wearing tennis shoes 

would still be recognized as a dog.

These properties underlying a classification can be highly complex and implicit. If a child, 

or even an adult, is asked to state a set of rules that would allow a novice to distinguish dogs, 

cats, and wolves, they cannot ordinarily do so. In contrast with much of school learning to 

come, it is striking that these feats of natural learning occur without the child ever being 

presented with a lecture on the distinguishing features of dogs or cats. Rather, structure is 

extracted from instances and category feedback. Such perceptual learning processes are 

crucial not only for developing understanding of the objects and events in the world; they 

also play a pivotal role in language acquisition, at multiple levels. Concepts like noun, verb, 

adverb, and preposition are taxing enough when taught explicitly in middle school. How is it 

that these abstract classes are extracted and used in language acquisition, allowing 

grammatical structures to be processed (e.g., Hirsh-Pasek & Golinkoff, 1997) and 

facilitating the learning of new words? At a different level, learning may be involved in the 

ability of the young language learner to detect invariance in the structure of speech signals 

across different speakers. Evidence suggests that the perceptual learning processes needed 

for these achievements, including clear cases of abstract perceptual learning, are present 

relatively early in infancy (Gomez & Gerken, 2000: Marcus et al, 1999; Saffran, Loman, & 

Robertson, 2000).

The Container Metaphor

Once in school, learning will be organized and guided by certain deep-seated assumptions 

about what learning is. Both formal and informal discussions of learning, both in educational 

and commercial training settings, most often consists of two categories: declarative and 

procedural learning. The former comprises facts and concepts that can be verbalized and the 

latter of sets of steps that can be executed. Bereiter & Scardamalia (1998) suggested that this 

pervasive, implicit view is a “folk psychology” notion of learning. They call it the container 
metaphor, summed up by saying that “Knowledge is most readily conceived of as specifiable 

objects in the mind, such as discrete facts, beliefs, ideas…” and learning “… involves 

retaining and retrieving such objects.” (Bereiter & Scardamalia, 1998, p. 487). As Figure 6 

shows, this view has also been shared by cartoonist Gary Larson.

We do not mean to suggest that perceptual learning is purposely neglected. Indeed, as we 

have suggested, one problem is that both learning scientists and educators have had little 

acquaintance with perceptual learning. The identification of teaching, learning, and knowing 

with the explicit is deep-seated. Facts and concepts that can be stated and explicit procedures 

– sequences of operations that can be enacted – are the mainstay of most activities we call 

educational. We believe the lack of focus on perceptual learning also derives from a lack of 

suitable techniques. How might we teach pattern recognition or structural intuition? Some 

perceptual learning surely occurs by considering examples in lectures or homework, but 

these activities target perceptual learning obliquely at best. It is often recognized that there 

are aspects of learning that extend beyond the classroom – the novice pilot, radiologist, 

chemist, or computer programmer may be told that fluency and the intuitive grasp of 

structure will come from practice or seasoning. A special obstacle for any other approach to 
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these aspects of learning is that they often involve unconscious processing. If not even the 

skilled expert can verbalize the information being used to do a task, how can a teacher 

convey this to students? Even when details can be expressed, hearing a description does not 

make the student a fluent extractor of information.

Technologies for Perceptual Learning

Research in recent years suggests that there are ways to address perceptual learning 

systematically in instructional settings. These can accelerate the growth of perceptual 

expertise. Indeed, the reader may have already noted the irony of educators lacking methods 

to address perceptual learning while researchers produce perceptual learning routinely in 

almost any laboratory task they select. Of course, there are differences between most 

laboratory tasks and richer educational domains, but equally surely there is significant 

potential to address perceptual learning in instruction.

A number of recent efforts have produced markedly successful outcomes using perceptual 

learning techniques. Kellman & Kaiser (1994) applied perceptual learning methods to pilot 

training, using what they called Perceptual Learning Modules (PLMs). In a Visual 

Navigation PLM, pilots learned navigational skills by mapping, on short, speeded trials, 

videotaped out-of-the-cockpit views onto locations shown on standard visual navigation 

(VFR sectional) charts. Remarkable improvements in accuracy and speed occurred in just an 

hour of training, even among experienced aviators. In a separate study of flight instrument 

interpretation, pilots classified aircraft attitude (e.g., climbing, turning) from an array of 

primary flight displays used by pilots to fly in instrument conditions. They found that under 

an hour of training allowed novices to process configurations more quickly and just as 

accurately as civil aviators who had on average 1000 hours of flight time (but who had not 

used the PLM). When experienced pilots used the PLM, they also showed substantial gains, 

paring 60% off the time needed to interpret instrument configurations.

Perceptual learning interventions to address speech and language difficulties have been 

reported to produce benefits (Merzenich, et al., 1996; Tallal, Merzenich, Miller, & Jenkins, 

1998). For example, Tallal et al. showed that auditory discrimination training in language 

learning using specially enhanced and extended speech signals improved both auditory 

discrimination performance and speech comprehension in language-impaired children.

Applications in medical and surgical training illustrate the value of perceptual learning in 

addressing dimensions of learning not encompassed by ordinary instruction. Guerlain et al 

(2004) applied PLM concepts to address issues of anatomic recognition in laparoscopic 

procedures. They found that a computer-based PLM approach patterned after the work of 

Kellman & Kaiser (1994) led to better performance than traditional approaches. The training 

group presented with variation in instances selected to encourage learning of underlying 

invariance later showed improvement on perceptual and procedural measures, whereas a 

control group who saw similar displays but without the structured PLM did not. Their data 

implicated perceptual learning as the source of the improvement, as neither group advanced 

on strategic or declarative knowledge tests.
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Perceptual learning technology is also being applied to high-level educational domains such 

as mathematics and science. Although these subjects involve a variety of cognitive 

processes, they rely substantially on pattern recognition and fluent processing of structure, 

as well as mapping across transformations (e.g., in algebra) and across multiple 

representations (e.g, graphs and equations). These aspects are not well-addressed by 

conventional instruction, and a variety of indicators suggest that they may be 

disproportionately responsible for students’ difficulties in learning (Kellman et al, in press). 

Although this research area is relatively new, findings indicate that even short PLM 

interventions can accelerate fluent use of structure, in contexts such as the mapping between 

graphs and equations (Silva & Kellman, 1999), apprehending molecular structure in 

chemistry (Wise et al., 2000), processing algebraic transformations, and understanding 

fractions and proportional reasoning (Kellman et al, in press).

Although a full description is beyond our scope here, it may be helpful to mention some 

elements of perceptual learning interventions. A key assumption is that information 

extraction advances when the learner makes classifications and (in most cases) receives 

feedback. Digital technology makes possible many short trials and appropriate variation in 

short periods of time, allowing the potential to accelerate perceptual learning relative to less 

frequent or systematic exposure to structures in a domain. Unlike conventional practice in 

solving problems, learners in PLMs discriminate patterns, compare structures, make 

classifications, or map structure across representations. In an Algebraic Transformations 

PLM, for example, learners saw a target equation on each trial and made a speeded choice 

indicating which of several alternative equations was a legal transformation of the target 

(Kellman et al, in press). Although learners never practiced solving equations in this learning 

intervention, two to three 40-minute sessions of this sort led to strong advances in fluency in 

algebra problem solving (specifically, an average decrease from about 28 sec to about 12 sec 

per problem). Another key element of PLMs is the novelty of instances. Learning to process 

structure that defines a category, as opposed to labels for particular memorized instances, 

requires that most learning items (and transfer items) be novel. Here again, digital 

technology – making possible the storage or generation of large numbers of novel instances 

– is an especially good fit for this approach to learning.

There are many other issues in structuring learning in PLMs – issues of sequencing, 

feedback, variation of positive and negative instances of categories, mixing of learning tasks, 

integration of perceptual learning activities with conventional instruction, and so on. 

Moreover, significant research remains to be done regarding how to optimize these 

interventions and combine them with instruction. It is already clear, however, that perceptual 

learning interventions offer great promise in addressing neglected dimensions of learning 

and overcoming common difficulties in learning. If these possibilities are realized, they will 

comprise a far-reaching consequence of basic scientific efforts to bring to light and 

understand perceptual learning, both as an important variety of learning and as one that 

interacts with and supports other forms of learning and cognition.
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Figure 1. 
Practice-induced improvements in visual search (Karni & Sagi, 1993). All data are from a 

single subject. Top: On each session (spaced 1–3 days apart), subjects showed significant 

improvement in the amount of exposure time (SOA) necessary to discriminate between two 

targets presented among distrators. Separate curves represent performance during different 

sessions. The leftward shift of the curves with practice indicates that performance of the task 

required progressively shorter presentations to achieve a given accuracy level. Between 

sessions, performance remained relatively constant, and was unchanged 32 months after the 

final training session. Bottom: Exposure time (SOA) necessary to reach threshold 

performance (~80% correct) as a function of training session.
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Figure 2. 
Stimuli used in unitization experiment by Goldstone (2000). Each top contour is composed 

of 5 contour segments (labeled A-E). Categorization training in which a consistent 

arrangement (e.g., ABCDE) was discriminated from items differing by one component led 

to performance that indicated formation of a new perceptual unit or discovery of higher-

order shape invariants (See text.)
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Figure 3. 
Practice effects in telegraphic speech recognition (Morse Code). Subject performance 

increases with practice, then levels off for some time, with little apparent improvement with 

continued practice. During this time, letter recognition is becoming automatic. Automatic 

letter recognition frees up attentional resources for becoming sensitive to word structure, 

accounting for a second negatively accelerated learning curve (top line). Recognizing 

individual words without context (middle line) or individual letters that do not constitute 

words (bottom line), is always more difficult, and shows no indication of multiple learning 

stages.
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Figure 4. 
Extraction of abstract invariants. All of these figures may be categorized as “squares”, but 

none would activate a largely overlapping population of cells in visual cortex. What is the 

same about all of these figures is an abstract relation. Whatever is used to define a side, the 

sides are approximately equal. Specific concrete encodings from which this relation is 

extracted are incidental to squareness.
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Figure 5. 
Perceptual learning depends on perceptual constancy. Pairs of squares were shown on each 

trial, and the observer’s task was to discover which ones were members of some category 

(see text). Perceived lightness depends on ratios of the local luminance (within a square) to 

its surround (Wallach, 1948). Bottom, center: When the invariant determining the 

classification was identical lightness of the two squares (accomplished by having the same 

local luminance for each and placing both on the same background), learning readily 

occurred. Acquisition curves are shown form 5 observers (bottom right). Top, center: When 

the identical local luminance squares were shown on a variable backgrounds, it caused 

differences in perceived lightness. In this condition, only the local luminances of the squares 

(a sensory invariant, decorrelated from perceived lightness) could be used to learn the 

classification. As in the other experiments involving size and motion, learning did not occur 

for any observer under this condition. These results suggest that perceptual learning works 

through constancy-based perceptual representations. (After Garrigan & Kellman, 2008).
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Figure 6. 
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Table 1.

NOVICE EXPERT

DISCOVERY Effects

SELECTIVITY: Attention to irrelevant and
relevant information

Selective pickup of relevant
information/Filtering

UNITS: Simple features “Chunks”/
Higher-order relations

FLUENCY Effects

SEARCH TYPE: Serial processing More parallel processing

ATTENTIONAL LOAD: High Low

SPEED: Slow Fast
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