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Abstract

Motivation: Gene expression data represents a unique challenge in predictive model building, be-

cause of the small number of samples (n) compared with the huge amount of features (p). This

‘n � p’ property has hampered application of deep learning techniques for disease outcome classi-

fication. Sparse learning by incorporating external gene network information could be a potential

solution to this issue. Still, the problem is very challenging because (i) there are tens of thousands

of features and only hundreds of training samples, (ii) the scale-free structure of the gene network

is unfriendly to the setup of convolutional neural networks.

Results: To address these issues and build a robust classification model, we propose the Graph-

Embedded Deep Feedforward Networks (GEDFN), to integrate external relational information of

features into the deep neural network architecture. The method is able to achieve sparse connection

between network layers to prevent overfitting. To validate the method’s capability, we conducted both

simulation experiments and real data analysis using a breast invasive carcinoma RNA-seq dataset and

a kidney renal clear cell carcinoma RNA-seq dataset from The Cancer Genome Atlas. The resulting

high classification accuracy and easily interpretable feature selection results suggest the method is a

useful addition to the current graph-guided classification models and feature selection procedures.

Availability and implementation: The method is available at https://github.com/yunchuankong/

GEDFN.

Contact: tianwei.yu@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, more and more studies attempt to link clinical out-

comes, such as cancer and other diseases, with gene expression or

other types of profiling data. It is of great interest to develop new

computational methods to predict disease outcomes based on profil-

ing datasets that contain tens of thousands of variables. The major

challenges in these data lie in the heterogeneity of the samples, and

the sample size being much smaller than the number of predictors

(genes), i.e. the n� p issue, as well as the complex correlation struc-

ture between the predictors. Thus the prediction task has been for-

mulated as a classification problem combined with selection of

predictors, solved by modern machine learning algorithms such as

regression based methods (Algamal and Lee, 2015; Liang et al.,

2013), support vector machines (Vanitha et al., 2015), random forests

(Cai et al., 2015; Kursa, 2014) and neural networks (Chen et al.,

2014). While these methods are aimed at achieving accurate classifica-

tion performance, major efforts have also been put on selecting sig-

nificant genes that effectively contribute to the prediction (Cai et al.,

2015; Kursa, 2014). However, feature selection is based on fitted pre-

dictive models and is conducted after parameter estimation, which

causes the selection to rely on the classification methods rather than

the structure of the feature space itself. Beside building robust
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predictive models, the feature selection also serves another important

purpose—the functionality of the selected features (genes) can help

unravel the underlying biological mechanisms of the disease outcome.

Given the nature of the data, i.e. functionally associated genes

tend to be statistically dependent and contribute to the biological

outcome in a synergistic manner, a branch of gene expression classi-

fication research has been focused on integrating the relations be-

tween genes with classification methods, which helps in terms of

both classification performance as well as learning the structure of

feature space. A critical data source to achieve this goal has been

gene networks. A gene network is a graph-structured dataset with

genes as the graph vertices and their functional relations as graph

edges. The functional relations are largely curated from existing bio-

logical knowledge (Chowdhury and Sarkar, 2015; Szklarczyk and

Jensen, 2015). Each vertex in the network corresponds to a predict-

or in the classification model. Thus, it is expected that the gene net-

work can provide useful information for a learning process where

genes serve as predictors. Motivated by this fact, certain procedures

have been developed where gene networks are employed to conduct

feature selection prior to classification (Chuang et al., 2007; Li and

Li, 2008; Wang et al., 2007; Wei and Pan, 2008). Moreover, meth-

ods that integrate gene network information directly into classifiers

have also been developed. For example, Dutkowski and Ideker

(2011) propose the random forest-based method, where the feature

sub-sampling is guided by graph search on gene networks when con-

structing decision trees. Lavi et al. (2012) and Zhu et al. (2009)

modify the objective function of the support vector machine with

penalty terms defined according to pairwise distances between genes

in the network. Similarly, Kim et al. (2013) develops logistic regres-

sion based classifier using regularization, where again a relational

penalty term is introduced in the loss function. The authors of these

methods have demonstrated that embedding expression data into

gene network results in both better classification performance and

more interpretable selected feature sets.

With the clear evidence that gene networks can lead to novel var-

iants of traditional classifiers, we are motivated to incorporate gene

networks with deep feedforward networks (DFN), which is closely

related to the state-of-the-art technique deep learning (LeCun et al.,

2015). Although nowadays deep learning has been constantly shown

to be one of the most powerful tools in classification, its application

in bioinformatics is limited (Min et al., 2017). This is due to many

reasons including the n� p issue, the large heterogeneity in cell

populations and clinical subject populations, as well as inconsistent

data characteristics across different laboratories, resulting in diffi-

culties merging datasets. Consequently, the relatively small number

of samples compared with the large number of features in a gene ex-

pression dataset obstructs the use of deep learning techniques, where

the training process usually requires a large amount of samples such

as in image classification (Russakovsky et al., 2015). Therefore,

there is a need to modify deep learning models for disease outcome

classification using gene expression data, which naturally leads us to

the development a variant of deep learning models specifically fit-

ting the practical situation with the help of gene networks.

Incorporating gene networks as relational information in the fea-

ture space into DFN classifiers is a natural option to achieve sparse

learning with less parameters compared with the usual DFN.

However, to the best of our knowledge, few existing work has been

done on this track. Bruna et al. (2014) and Henaff et al. (2015)

started the direction of sparse deep neural networks (DNNs) for

graph-structured data. The authors developed hierarchical locally

connected network architectures with newly defined convolution

operations on graph-structured data. The methods have novel math-

ematical formulation; however, the applications are yet to be gener-

alized. In both of the two papers, by using the two benchmark

datasets MINST (LeCun et al., 1998) and ImageNet (Russakovsky

et al., 2015), respectively, the authors have treated 2D grid images

as a special form of graph-structured data in their experiments. This

is based on the fact that an image can be regarded as a graph in

which each pixel is a vertex connected with four neighbors in the

four directions. However, graph-structured data can be much more

complex in general, as the degree of each vertex can vary widely,

and the edges do not have orientations as in image data. For a gene

network, the degree of vertices is power-law distributed as the net-

work is scale-free (Kolaczyk, 2009). In this case, convolution opera-

tions are not easy to define. In addition, with tens of thousands of

vertices in the graph, applying multiple convolution operations

results in huge number of parameters, which easily leads to over-

fitting given the small number of training samples. By taking an al-

ternative approach of modifying a usual DFN, our newly proposed

graph-embedded DFN can serve as a convenient tool to fill the gap.

It avoids over-fitting in the n� p scenario, as well as achieves good

feature selection results using the structure of the feature space.

The article is organized as follows: Section 2 reviews usual deep

feedforward networks (DFNs) and illustrates our graph-embedded

architecture. Section 3.1 compares the performance of our method

with other approaches using synthetic datasets, followed by the real

applications of two RNA-seq datasets in Section 3.2. Finally, con-

clusions are presented in Section 4.

2 Materials and methods

2.1 Deep feedforward networks
A DFN ( or DNN, multilayer perceptron) with l hidden layers has a

standard architecture

Pr yjX; hð Þ ¼ f ZoutWout þ boutð Þ

Zout ¼ r ZlWl þ blð Þ

. . .

Zkþ1 ¼ r ZkWk þ bkð Þ

. . .

Z1 ¼ r XWin þ binð Þ;

where X 2 Rn�p is the input data matrix with n samples and p

features, y 2 Rn is the outcome vector containing classification labels,

h denotes all the parameters in the model, Zout and Zk; k ¼ 1; . . . ; l

�1 are hidden neurons with corresponding weight matrices

Wout; Wk bias vectors bout; bk. The dimensions of Z and W depend

on the number of hidden neurons hin and hk; k ¼ 1; . . . ; l, as well as

the input dimension p and the number of classes hout for

classification problems. In this paper, we mainly focus on binary clas-

sification problems hence the elements of y simply take binary values

and hout � 2. r �ð Þ is the activation function such as sigmoid, hyper-

bolic tangent (tanh) or rectifiers. f �ð Þ is the softmax function convert-

ing values of the output layer into probability prediction i.e.

pi ¼ f li1ð Þ ¼ eli1

eli0 þ eli1
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where

pi :¼ Pr yi ¼ 1jxið Þ

li0 :¼ z
ðoutÞ
i

h iT
w
ðoutÞ
0 þ b

ðoutÞ
0

li1 :¼ z
ðoutÞ
i

h iT
w
ðoutÞ
1 þ b

ðoutÞ
1 ;

for binary classification where i ¼ 1; . . . ; n.

The parameters to be estimated in this model are all the weights

and biases. For a training dataset given true labels, the model is

trained using a stochastic gradient decent (SGD) based algorithm

(Goodfellow et al., 2016) by minimizing the cross-entropy loss

function

L hð Þ ¼ �1

n

Xn

i¼1

n
yi log bpi

� �
þ 1� yið Þ log 1� bpi

� �o
;

where again h denotes all the model parameters, and bpi is the fitted

value of pi. More details about DFN can be found in Goodfellow

et al. (2016).

2.2 Graph-embedded DFNs
Our newly proposed DNN model is based on two main assump-

tions. The first assumption is that neighboring features on a known

scale-free feature network or feature graph (Since in this paper we

interchangeably discuss feature networks and neural networks, to

avoid confusion, the equivalent term ‘graph’ is used to refer to the

feature network from now on, while ‘networks’ naturally refer to

neural networks.) tend to be statistically dependent. The second as-

sumption is that only a small number of features are true predictors

for the outcome, and the true predictors tend to form cliques in the

feature graph. These assumptions have been commonly used and

justified in previous works reviewed in Section 1.

To incorporate the known feature graph information to DNN,

we propose the graph-embedded deep feedforward network

(GEDFN) model. The key idea is that, instead of letting the input

layer and the first hidden layers to be fully connected, we embed the

feature graph in the first hidden layer so that a fixed informative

sparse connection can be achieved.

Let G ¼ V;Eð Þ be a known graph of p features, with V the col-

lection of p vertices and E the collection of all edges connecting ver-

tices. A common representation of a graph is the corresponding

adjacency matrix A. Given a graph G with p vertices, the adjacency

A is a p � p matrix with

Aij ¼
1; if Vi and Vj are connected ; 8i; j ¼ 1; . . . ; p

0; otherwise:

(

In our case A is symmetric since the graph is undirected. Also, we re-

quire Aii ¼ 1 meaning each vertex is regarded to connecting itself.

Now to mathematically formulate our idea, we construct the

DNN such that the dimension of the first hidden layer (hin) is the

same as the original input i.e. hin ¼ p, hence Win has a dimension of

p � p. Between the input layer X and the first hidden layer Z1, in-

stead of fully connecting the two layers with Z1 ¼ r XWin þ binð Þ,
we have

Z1 ¼ r X Win � Að Þ þ binð Þ

where the operation � is the Hadamard (element-wise) product.

Thus, the connections between the first two layers of the feed-

forward network are ‘filtered’ by the feature graph adjacency ma-

trix. Through the one-to-one R : p! p transformation, all features

have their corresponding hidden neurons in the first hidden layer. A

feature can only feed information to hidden neurons that correspond

to features connecting to it in the feature graph.

Specifically, let xi ¼ xi1; . . . ;xip

� �T
; i ¼ 1; . . . ; n be any instance

(one row) of the input matrix X, in the usual DFN, the first hidden

layer of this instance is calculated as

z
1ð Þ

i ¼ r
Xp

j¼1

xijw
inð Þ

1j þ b
inð Þ

1 ; . . . ;
Xp

j¼1

xijw
inð Þ

hinj þ b
inð Þ

hin

" #T
0@ 1A;

where z
1ð Þ

i is the i-th row of Z1, and w
inð Þ

kj ; b
inð Þ

k ; k ¼ 1; . . . ;hin are the

weight and bias for this layer. Now in our model, hin ¼ p and each

w
inð Þ

kj is multiplied by an indicator function i.e.

z
ð1Þ
i ¼r

��Xp

j¼1

xijw
ðinÞ
1j IðA1j¼1Þþb

ðinÞ
1 ;...;

Xp

j¼1

xijw
ðinÞ
pj IðApj¼1Þþb

ðinÞ
p

�T�
:

Therefore, the feature graph helps achieve sparsity for the connec-

tion between the input layer and the first hidden layer.

2.3 Evaluation of feature importance
Beside improving classification, it is also of great interest to find fea-

tures that significantly contribute to the classification, as they can

reveal the underlying biological mechanisms. Therefore, for

GEDFN, we also develop a feature ranking method according to a

relative importance score. The idea is analogous to the connection

weights (CWs) method introduced by Olden and Jackson (2002).

Extended from CW, we propose the graph connection weights

(GCWs) method, which emphasizes the significance of the feature

graph in our newly proposed neural network architecture.

The main idea of GCW is that, the contribution of a specific vari-

able is directly reflected by the magnitude of all the weights that dir-

ectly associated with the corresponding hidden neuron in the graph-

embedded layer (the first hidden layer). Summing over the absolute

values of the directly associated weights gives the relative import-

ance of the specific feature, i.e.

sj ¼ cj

Xp

k¼1

jw inð Þ
kj I Akj ¼ 1

� �
j þ
Xh1

m¼1

jw 1ð Þ
jm j; (1)

cj ¼ min c=
Xp

k¼1

I Akj ¼ 1
� �

;1

 !
; j ¼ 1; . . . ; p; (2)

where sj is the importance score for feature j, w inð Þ denotes weights

between the input and first hidden layers, and w 1ð Þ denotes weights

between the first hidden layer and the second hidden layer. A con-

stant c is imposed to penalize feature vertices with too many connec-

tions, so that they will not be overly influential. In subsequent

experiments, we take c ¼ 50.

Note that the importance score consists of two parts according

to Equation (1). The left term summarizes the importance of a fea-

ture according to the connection on the feature graph, coherent with

the property of the graph-embedded layer. The right term then sum-

marizes the contribution of the feature according to the connection

to the hidden neurons in the next fully-connected layer. Input data

are required to be Z-score transformed (the original value minus the

mean across all samples and then divided by the standard deviation)

before entered into the model, and this will guarantee all variables

are of the same scale so that the magnitude of weights are compar-

able. After training GEDFN, the importance scores for all the
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variables can be calculated using trained weights, which leads to a

ranked feature list.

2.4 Detailed model settings
For the choice of activation functions in GEDFN, the rectified linear

unit (ReLU) (Nair and Hinton, 2010) with the form (in scalar case)

rReLU xð Þ ¼ max x; 0ð Þ

is employed. This activation has an advantage over sigmoid and tanh

as it can avoid the vanishing gradient problem (Hochreiter et al.,

2001) during training using SGD. To train the model, we choose the

Adam optimizer (Kingma and Ba, 2014), which is the most widely

used variant of traditional gradient descent algorithms in deep learn-

ing. Also, we use the mini-batch training strategy by which the opti-

mizer randomly trains a small proportion of the samples in each

iteration. Details about the Adam optimizer and mini-batch training

can be found in Goodfellow et al. (2016) and Kingma and Ba (2014).

The classification performance of a DNN model is associated

with many hyper-parameters, including architecture-related parame-

ters such as the number of layers and the number of hidden neurons

in each layer, regularization-related parameters such as the dropout

proportion, and model training-related parameters such as the learn-

ing rate and the batch size. These hyper-parameters can be fine-

tuned using advanced hyper-parameter training algorithm such as

Bayesian Optimization (Mockus, 2012), however, as the hyper-

parameters are not of primary interest in our work, in later sections,

we simply tune them using grid search in a feasible hyper-parameter

space. A visualization of our tuned GEDFN model for simulation

and real data experiments is shown in Figure 1. More details of

hyper-parameter tuning can be found in Supplementary Section S1.

3 Results and discussion

3.1 Simulation experiments
We conducted extensive simulation experiments to mimic disease

outcome classification using gene expression and network data, and

explored the performance of our new method in comparison with

the usual DFN and other proven methods. Robustness was also

tested by simulating datasets that did not fully satisfy the main

assumptions. The method was applied to examine whether it could

still achieve a reasonable performance.

3.1.1 Synthetic data generation

For a given number of features p, we employed the preferential at-

tachment algorithm proposed by Barabási and Albert (1999) to gen-

erate a scale-free feature graph. The p � p distance matrix D

recording pairwise distances among all vertices were then calculated.

Next, we derived the covariance matrix by transforming the distan-

ces between verticies R by letting

Rij ¼ 0:7Dij ; i; j ¼ 1; . . . ; p:

Here by convention the diagonal elements of D are all zeros mean-

ing the distance between a vertex to itself is zero.

After simulating the feature graph and obtaining the covariance

matrix of features, we generate n multivariate Gaussian samples as

the input matrix X ¼ x1; . . . ;xnð ÞT i.e.

xi � N 0;Rð Þ; i ¼ 1; . . . n;

where n� p for imitating gene expression data. Using this setup,

vertices that are several steps away could naturally become

negatively correlated when we sample the expression values from

multivariate normal distribution using R as the variance–covariance

matrix. Supplementary Figure S1 shows sample plots of the pairwise

feature correlation distributions for the simulated data.

To generate outcome variables, we first select a subset of features

to be the ‘true’ predictors. Following our assumptions mentioned in

Section 2.2, we intend to select cliques in the feature graph. Among

vertices with relatively high degrees, part of them is randomly

selected as “cores”, and part of the neighboring vertices of cores are

also selected. Denoting the number of true predictors as p0, we sam-

ple a set of parameters b ¼ b1; . . . ; bp0

� 	T
and an intercept b0 with-

in a certain range. In our experiments, we first uniformly sample b’s

from (0.1, 0.2), and randomly turn some of the parameters into

negative, so that we accommodate both positive and negative coeffi-

cients. Finally, the outcome variable y is generated through a gener-

alized linear model framework

Prðyi ¼ 1jxiÞ ¼ g�1ðxi
Tbþ b0Þ

yi ¼ IðPrðyi ¼ 1jxiÞ > tÞ; i ¼ 1; . . . n;

where t is a threshold and g �ð Þ is the link function. We consider two

cases of g�1 �ð Þin our experiments, one is the sigmoid function,

which is equivalent to the binary softmax and monotone

g�1 xð Þ ¼ 1

1þ ex

and the other is a weighted tanh plus quadratic function, which is

non-monotone

g�1 xð Þ ¼ 0:7/ tan h xð Þð Þ þ 0:3/ x2
� �

;

where / �ð Þ is the min_max function scaling the input to [0, 1].

Following the above procedure, corresponding to the two cases

of inverse link functions, we simulate two sets of synthetic datasets

Fig. 1. Network architecture of the GEDFN model for experiments in Sections

3.1 and 3.2
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with 5000 features and 400 samples. We compare our method with

the usual DFN, the feature graph-embedded classification method

network-guided forest (NGF) (Dutkowski and Ideker, 2011) men-

tioned in Section 1, as well as the traditional logistic regression with

lasso (LRL) (Tibshirani, 1996). In gene expression data, the number

of true predictors account for only a small proportion of the fea-

tures. Taking this aspect into consideration, we examine different

numbers, i.e. 40, 80, 120, 160 and 200, of true predictors, corre-

sponding to 2, 4, 6, 8 and 10 cores among all the high-degree verti-

ces in the feature graph. However, in reality, the true predictors may

not be perfectly distributed in the feature graph as cliques. Instead,

some of the true predictors, which we call ‘singletons’, can be quite

scattered. To create this possible circumstance, we simulate three

series of datasets with singleton proportions 0, 50 and 100% among

all the true predictors. Therefore, we investigate three situations

where all true predictors are in cliques, half of the true predictors

are singletons, and all of the true predictors are scattered in the

graph, respectively.

3.1.2 Simulation results and discussion

In our simulation studies, as shown in Figure 1, the GEDFN had

three hidden layers, where the first hidden layer was the graph adja-

cency embedded layer. Thus the dimension of its output is the same

as the input, namely 5 000. The second and third hidden layers had

64 and 16 hidden neurons, respectively, which are the same for the

usual DFN. The number of the first layer hidden neurons in the

usual DFN, 1024 neurons, was selected using grid search.

For each of the data generation settings, ten independent datasets

were generated, and the GEDFN, DFN, NGF and LRL methods

were applied. For each simulated dataset, we randomly split the

dataset into training and testing sets at a 4:1 ratio. The models were

trained using the training dataset, and used to predict the class prob-

abilities of the testing dataset. To evaluate the classification results,

receiver operating characteristic (ROC) curve was generated using

the predicted class probabilities and the true class membership of

the testing dataset, and the area under the curve (AUC) was calcu-

lated. The final testing results were then averaged across the 10

datasets.

Figure 2 shows the results of the case with the sigmoid inverse

link function. The error bars denote intervals of estimated mean

AUC values plus/minus their standard errors. Corresponding to the

case that singleton proportion is 0%, Figure 2a shows GEDFN and

LRL outperformed the other two methods. As the number of true

predictors increased, all of the methods performed better as there

were more signals in the feature set. As the singleton proportion

increased to 0.5 (Fig. 2b), GEDFN was the best among the

four though the difference between GEDFN and LRL was not

big. In Figure 2c, when the singleton proportion was increased to 1,

all of the methods performed worse, but GEDFN performed

better than the others overall. The close results of GEDFN and LRL

were expected, as in the sigmoid case LRL was in fact the true

model.

As for feature selection, GEDFN uses Equation (1) to rank fea-

tures. The feature ranking method for the usual DFN was similar to

the one for GEDFN, except that for DFN each variable’s importance

was given only by the second term in Equation (1) that was to con-

sider only the weights connecting the input layer and the first hidden

layer. For NGF, the variable importance calculation based on cumu-

lative reduction of Gini impurity in random forests (Breiman, 2001)

could be directly applied. Therefore, knowing the true predictors for

simulated data, we were able to compare feature selection results for

different methods by computing and comparing the AUC of the

precision-recall curves, which were constructed using the feature

ranking of the models and the 0/1 vector indicating the true predict-

or status of each feature. Figure 2d–f show the average precision-

recall AUC (error bars: the intervals of mean AUC plus/minus one

standard error) for each simulation setting of the sigmoid case. We

found that DFN was not able to effectively rank features, resulting

in precision-recall AUC <0.05 for all the datasets, and thus they

were not included in the plots. From Figure 2d–f, one can conclude

that GEDFN ranked features more effectively than NGF.

LRL did not rank features but directly gave the selected feature

subset based on cross-validation. To compare feature selection be-

tween GEDFN and LRL, for each dataset, we fixed the precision of

GEDFN to be the same as LRL, and then compared their recall val-

ues. The recall plots (error bars: the intervals of mean recall plus/

minus one standard error) for different simulation settings are

shown in Figure 2g–i. Again, it is evident that GEDFN achieved bet-

ter feature selection results.

Simulation results for the case with the weighted tanh plus quad-

ratic inverse link function are shown in Figure 3. From the first row

of Figure 3, all the methods’ AUC decreased compared with their

counterparts in the case of sigmoid inverse link, as the non-

monotone function brought more difficulty to classification.

However, GEDFN again outperformed the other methods in gen-

eral, and the difference between GEDFN and LRL was enlarged

compared with the sigmoid function case since the non-monotone

inverse link was more challenging, and LRL was no longer the true

model in this case. The second row and third row of Figure 3 indi-

cate GEDFN’s better feature selection than NGF and LRL across all

simulation settings in this case. DFN was again proved not to have

good feature selection capability through the experiment, with

precision-recall AUC no more than 0.04.

The above simulation experiment results showed nice perform-

ance of GEDFN in both classification accuracy and feature selection

in both the sigmoid case and the tanh plus quadratic case. The

method was robust across different number of true predictors and

different proportions of singletons in feature graphs. To further test

the robustness of GEDFN, we considered cases that the known fea-

ture graph was completely misspecified, i.e. the graph structure

bears misleading information with regard to feature correlation and

true predictor location. This extreme situation is unlikely in applica-

tions. We employed the synthetic datasets used above with singleton

proportion 50%, destroyed the true feature graphs, and re-

constructed random feature graphs using the preferential attachment

algorithm. The comparison of classification and feature selection be-

tween the GEDFN with correct feature graph and the GEDFN with

misspecified graphs is shown in Supplementary Figure S2. From the

results, misspecified feature graphs negatively affected GEDFN

regarding both classification and feature selection. For classification,

GEDFN was robust enough to obtain acceptable accuracies. In con-

trast, feature selection was more influenced, which was expected as

the feature ranking mechanism of GEDFN relied on the feature

graph connections.

Another concern about the robustness of GEDFN is the reprodu-

cibility of feature selection. For a fixed dataset, we were interested

in whether a relatively stable set of important features would be

selected across different times of model fitting. To explore this, we

randomly chose a synthetic dataset with 40 true predictors, 50%

singleton and sigmoid inverse link, and experimented GEDFN fea-

ture selection repeatedly for 10 times. Ten ranked feature lists were

obtained, and the top 40 ranked variables were selected for each
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experiment. Among the ten sets of 40 selected features, 19 features

were repeatedly selected as top 40 over seven times, and they cov-

ered 40% of the 40 true predictors. Also, 70% of the union of the

10 sets of top 40 features turned out to be relevant for prediction.

Here ‘relevant’ means a feature was either a true predictor, or a

neighbor of a true predictor in the feature graph, since in our simula-

tion settings, neighbors of true predictors can be useful in classifica-

tion even if they were not chosen as true predictors themselves. This

small specific experiment indicated the relative stable performance

of GEDFN feature selection.

3.2 Real data applications
3.2.1 Breast invasive carcinoma data

We applied our GEDFN method to the Cancer Genome Atlas

(TCGA) breast cancer (BRCA) RNA-seq dataset (Koboldt et al.,

2012). The dataset consisted of a gene expression matrix with

20 532 genes of 707 cancer patients, as well as the clinical data con-

taining various disease status measurements. The gene network

came from the HINT database (Das and Yu, 2012). We were inter-

ested in the relation between gene expression and a molecular sub-

type of breast cancer—the tumor’s estrogen receptor (ER) status.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Plots of the classification and feature selection comparison for the case with the sigmoid inverse link function. Singleton proportions: left column 0%, mid-

dle column 50%, right column 100%. First row: AUC of ROC for classification; second row: AUC of precision-recall for feature selection; third row: recall plots

given fixed precision from LRL. Error bars represent the estimated mean quantity plus/minus the standard error
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ER is expressed in more than 2/3 of breast tumors, and plays a critic-

al role in tumor growth (Sorlie et al., 2003). Elucidating the relation

between gene expression pattern and ER status can shed light on

the subtypes of breast cancer and their specific regulations.

After screening genes that were not involved in the gene network,

a total of 9 211 genes were used as the final feature set in our classi-

fication. For each gene, the expression value was Z-score

transformed.

Using the HINT network architecture, we tested the four meth-

ods GEDFN, DFN, NGF and LRL on the BRCA data with 10

repeated experiments respectively. The computation time of

GEDFN was around 3 min each time on a workstation with dual

Xeon E5-2660 processors, 256 Gb RAM, and a single GTX Titan

Xp GPU. The summary of test-set classification accuracies is seen in

Table 1. From the classification results, all the methods achieved ex-

cellent AUC scores, and we concluded that the dataset contained

strong signals for ER status. Thus, for this dataset, the improvement

of incorporating feature graph regarding classification was limited,

as traditional methods already pushed the performance to the upper

bound.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Plots of the classification and feature selection comparison for the case with the weighted tanh plus quadratic inverse link function. Singleton proportions:

left column 0%, middle column 50%, right column 100%. First row: AUC of ROC for classification; second row: AUC of precision-recall for feature selection; third

row: recall plots given fixed precision from LRL. Error bars represent the estimated mean quantity plus/minus the standard error
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However, GEDFN exhibited advantages over other methods in

terms of feature selection. To analyze the feature selection results for

this dataset, we first averaged the importance scores across the ten

repeated model trainings from GEDFN and NGF. DFN was proved

not able to achieve good feature selection results in Section 3.1.2

and thus was excluded from this analysis. For LRL, the features

selected over the ten times were quite stable with only one or two

different variables, hence we took the union of the 10 selected fea-

ture sets as the feature selection result for LRL. In the end, selected

features from LRL and the top 1% ranked features from GEDFN

and NGF were compared. They contained 89, 92 and 92 features,

respectively.

We invested the functional consistency of the selected features,

as reflected by how close the selected features were in the original

feature graph. On the feature graph, which was based on protein–

protein interaction (Das and Yu, 2012), functionally related genes

tend to be closer in distance. For each method, we extracted the sub-

graph of the selected features from the entire feature graph, and

examined the connection of the sub-graph. A better feature selection

method was expected to choose features that fall into cliques of the

overall graph, resulting in fewer connected components in the

selected sub-graph. Table 2 shows the results of sub-graph analysis.

The first row is the number of connected components for each sub-

graph. The second row is the within-component average distances in

the sub-graph. The third row is the average distances in the entire

feature graph. From Table 2, one can see that features selected by

GEDFN formed more closely connected sub-graphs (seen in Fig. 4),

while NGF resulted in more scattered sub-graphs with 4 connected

components. Features selected by LRL had no graph structure at all,

with 89 features forming 80 connected components, meaning most

of which were unconnected. The average distance in the entire fea-

ture graph for GEDFN was smaller than that for NGF, indicating

the closer relationship among genes selected by GEDFN. Although

the within-component average distance for LRL is the smallest, the

large amount of connected components made this statistic meaning-

less for LRL.

Functional analysis of the genes selected by GEDFN was con-

ducted by testing for enrichment of the gene ongoloty (GO) biologic-

al processes using GOstats (Falcon and Gentleman, 2007). The

results can be found in Table 3. Fifteen of the 92 selected genes be-

long to the autophagy process, which was the most significant GO

term. In addition, ‘regulation of apoptotic signaling pathway’ and

‘ubiquitin-dependent protein catabolic process’ were also among the

top terms. Breast cancer cells that express ERa have a higher auto-

phagic activity than cells that express ER-b and ER-cells (Felzen

et al., 2015). It has been documented that the unfolded protein

response and autophagy play a role in the development of anti-

estrogen therapy resistance in ERþ breast cancer (Cook and Clarke,

2014).

The second most significant term was ‘negative regulation of

cell cycle’. ERa regulates the cell cycle by regulating the S and G2/

M phases in a ligand-dependent fashion (JavanMoghadam et al.,

2016). Several of the top terms were signal transduction process. It

has been long established that there are cross-talks between BMP

and estrogen signaling, as well as between growth factor receptor

pathways and estrogen signaling (Osborne et al., 2005). BMPs are

repressed by estrogen through ER signaling (Yamamoto et al.,

2002). NF-jB is a crucial player in cancer initiation and progres-

sion. Direct binding to NF-jB is documented for p53 and ER

(Hoesel and Schmid, 2013). It exhibits differential function in ER-

and ERþ hormone-independent breast cancer cells (Gionet et al.,

2009).

The remaining top GO terms were related to stress response.

Breast cancer cells adapt to reduced oxygen concentrations by

increasing levels of hypoxia-inducible factors. The increase of such

Table 1. Classification results for BRCA data

Methods GEDFN DFN NGF LRL

Mean AUC 0.945 0.938 0.922 0.940

SD 0.005 0.013 0.012 0.008

Table 2. Selected feature sub-graph analysis for BRCA data

Methods GEDFN NGF LRL

No. of connected components 3 4 80

Within-component average distance 3.181 3.169 1.700

Average distance 2.263 2.393 3.822

Fig. 4. Feature sub-graph selected by GEDFN for BRCA data

Table 3. Top GO biological processes for the sub-graph selected by

GEDFN (BRCA data)

GOBPID P-value Term

GO: 0006914 5.02E-07 Autophagy

GO: 0045786 1.16E-05 Negative regulation of cell cycle

GO: 0030509 1.27E-05 BMP signaling pathway

GO: 2001233 1.74E-05 Regulation of apoptotic signaling pathway

GO: 0006511 1.78E-05 Ubiquitin-dependent protein

catabolic process

GO: 0071363 3.01E-05 Cellular response to growth factor stimulus

GO: 0038061 5.56E-05 NIK/NF-kappaB signaling

GO: 0097576 5.97E-05 Vacuole fusion

GO: 0071456 6.68E-05 Cellular response to hypoxia

GO: 2001020 1.69E-04 Regulation of response to DNA damage

stimulus

Note: Manual pruning of partially overlapping GO terms was conducted.
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factors causes higher risk of metastasis (Gilkes and Semenza, 2013).

Hypoxia inducible factors can influence the expression of ER in

breast cancer cells (Wolff et al., 2017). Estrogen changes the DNA

damage response by regulating proteins including ATM, ATR,

CHK1, BRCA1 and p53 (Caldon, 2014). Thus it is expected that

DNA damage response is closely related to ER status. The full table

containing all GO terms for the functional analysis can be found in

Supplementary Table S1.

Finally, we analyzed the 69 genes that were only selected by

GEDFN but not the other methods. The top five GO terms of this

feature set are listed in Table 4. Clearly these functions agree very

well with the biological processes based on all the selected genes

listed in Table 3.

3.2.2 Kidney renal clear cell carcinoma data

We also tested GEDFN on the kidney renal clear cell carcinoma

(KIRC) RNA-seq dataset from TCGA (Network et al., 2013). The

dataset contained the gene expression matrix with 20 502 genes

from 537 subjects, as well as the clinical data including survival in-

formation. The gene network again came from the HINT database.

For KIRC, We tried to study the relation between gene expression

and the five-year survival outcome, which was a much more difficult

task compared with cancer subtypes. After screening genes that

were not involved in the gene network, a total of 8630 genes were

used as the final feature set in our classification. For each gene, the

expression value was again Z-score transformed.

As in Section 3.2.1, we again tested the four methods GEDFN,

DFN, NGF and LRL on the KIRC data with ten repeated experi-

ments, respectively. The computation time of GEDFN was around

2.5min each time on the same workstation as for BRCA data.

Classification results are summarized in Table 5. Given the 5-year

survival outcome variable was much more challenging to predict,

the AUC scores were much lower for all the methods. NGF was not

able to classify instances at all with AUC of ROC near 0.5. At the

same time, GEDFN performed substantially better than the other

three methods. Therefore, the KIRC data demonstrate that incorpo-

rating feature graph would improve classification accuracy for

DNN models.

Due to the poor classification of NGF, it was unnecessary to

examine its feature selection for KIRC. Similar to the BRCA results

in Section 3.2.1, LRL selected scattered variables on the feature

graph with few connections between them. For GEDFN, we

obtained 86 top 1% important features that fall into 3 connected

components, with an average within-component distance of 3.111,

and an average distance in the entire feature graph of 2.257. In total

30 of the 86 genes overlap with the top genes in the breast cancer

study, which was not a surprise given both datasets are based on

tumor tissues.

The sub-graph of top 1% of genes selected by GEDFN is shown

in Figure 5. GO enrichment analysis was conducted for the 86 genes,

and the top 10 GO terms are shown in Table 6. The top GO terms

were predominantly regulatory and signal transduction processes,

several of which were well-known for their association with tumor

development. However their role in survival was previously not

clear. A key regulator in the oncogenesis of renal cell carcinoma

inhibits apoptosis through apoptosis signaling pathway, which was

the top GO term (Banumathy and Cairns, 2010). The second GO

term, regulation of binding is a relatively broad term. The selected

genes associated with this term fell mostly into protein and DNA

binding processes. The 17 selected genes that were in this process in-

clude known oncogenes JUN (Jones et al., 2016) and TFIP11 (Tang

et al., 2015), tumor suppressors CRMP1 (Cai et al., 2017)

Table 4. GO enrichment analysis for features selected by GEDFN

only (BRCA data)

GOBPID P-value Term

GO: 2001233 4.81E-06 Regulation of apoptotic signaling pathway

GO: 0006511 1.12E-05 Ubiquitin-dependent protein catabolic process

GO: 0030509 2.39E-05 BMP signaling pathway

GO: 0071363 1.24E-04 Cellular response to growth factor stimulus

GO: 0045786 1.89E-04 Negative regulation of cell cycle

Note: Manual pruning of partially overlapping GO terms was conducted.

Table 5. Classification results for KIRC data

Methods GEDFN DFN NGF LRL

Mean AUC 0.743 0.643 0.521 0.698

SD 0.047 0.038 0.012 0.003

Fig. 5. Feature sub-graph selected by GEDFN for KIRC data

Table 6. Top GO biological processes for the sub-graph selected by

GEDFN (KIRC data)

GOBPID P-value Term

GO: 2001233 7.10E-10 Regulation of apoptotic signaling pathway

GO: 0051098 1.14E-09 Regulation of binding

GO: 0071363 1.27E-09 Cellular response to growth factor stimulus

GO: 0007178 1.48E-07 Transmembrane receptor protein

Serine/threonine kinase signaling pathway

GO: 1903827 2.27E-07 Regulation of cellular protein localization

GO: 0042176 5.72E-07 Regulation of protein catabolic process

GO: 0007507 1.66E-06 Heart development

GO: 0008285 1.72E-06 Negative regulation of cell proliferation

GO: 0048589 3.07E-06 Developmental growth

GO: 0007183 3.52E-06 SMAD protein complex assembly

Note: Manual pruning of partially overlapping GO terms was conducted.
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and LDOC1 (Ambrosio et al., 2017), target of tumorcide

Manumycin-A PPP1CA (Carey et al., 2015), three SMAD family

proteins SMAD2/SMAD3/SMAD4 that are involved in multiple can-

cers (Samanta and Datta, 2012), as well as several genes involved in

various other cancers, e.g. PIN1 (Cheng et al., 2016), MDF1 (Li

et al., 2017), AES (Sarma and Yaseen, 2011), MAPK8 (Recio-Boiles

et al., 2016), CTNNB1 (Na et al., 2017), KDM1A (Ambrosio et al.,

2017) and SUMO1 (Jin et al., 2017).

The term ‘cellular response to growth factor stimulus’ includes

the epidermal growth factor receptor (EGFR) pathway, and BMP

signaling pathway. Both are related to the development of renal cell

cancer (Edeline et al., 2010; Zhang et al., 2016). Increased EGFR

expression occurs in some renal cell carcinoma patients with an un-

favorable histologic phenotype (Minner et al., 2012). Many genes in

the ‘heart development’ and ‘developmental growth’ processes are

also part of the response to growth factor stimulus, causing those

terms to be significant.

The serine/threonine kinase signaling pathway includes SMAD

and mTOR signal transduction, both of which are involved in renal

cell cancer development (Edeline et al., 2010). Both cell proliferation

regulation and ubiquitin-dependent protein catabolism are com-

monly affected pathways in multiple cancers. Specifically, the

ubiquitin-dependent protein catabolic process is impacted by a key

genetic defect of clear cell kidney cancer in the VHL tumor suppres-

sor gene, which is part of a multiprotein E3 ubiquitin ligase (Corn,

2007). The full table containing all GO terms for the functional ana-

lysis can be found in Supplementary Table S2.

Overall, with the KIRC data, GEDFN was able to achieve better

prediction, and select genes that were easily interpretable. The

results pointed to several important pathways, the behavior of

which may predispose patients to certain survival outcomes.

4 Conclusion

We presented a new DFN classifier embedding feature graph infor-

mation. It achieves sparse connected neural networks by constrain-

ing connections between the input layer and the first hidden layer

according to the feature graph. Simulation experiments have shown

its relatively higher classification accuracy and better feature

selection ability compared with existing methods, and the real data

applications demonstrated the utility of the new model in both clas-

sification and the selection of biologically relevant features.
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