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Abstract

Motivation: Genetic variation that disrupts gene function by altering gene splicing between individ-

uals can substantially influence traits and disease. In those cases, accurately predicting the effects

of genetic variation on splicing can be highly valuable for investigating the mechanisms underlying

those traits and diseases. While methods have been developed to generate high quality computa-

tional predictions of gene structures in reference genomes, the same methods perform poorly

when used to predict the potentially deleterious effects of genetic changes that alter gene splicing

between individuals. Underlying that discrepancy in predictive ability are the common assump-

tions by reference gene finding algorithms that genes are conserved, well-formed and produce

functional proteins.

Results: We describe a probabilistic approach for predicting recent changes to gene structure that

may or may not conserve function. The model is applicable to both coding and non-coding genes,

and can be trained on existing gene annotations without requiring curated examples of aberrant

splicing. We apply this model to the problem of predicting altered splicing patterns in the genomes

of individual humans, and we demonstrate that performing gene-structure prediction without rely-

ing on conserved coding features is feasible. The model predicts an unexpected abundance of var-

iants that create de novo splice sites, an observation supported by both simulations and empirical

data from RNA-seq experiments. While these de novo splice variants are commonly misinterpreted

by other tools as coding or non-coding variants of little or no effect, we find that in some cases

they can have large effects on splicing activity and protein products and we propose that they may

commonly act as cryptic factors in disease.

Availability and implementation: The software is available from geneprediction.org/SGRF.
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1 Introduction

Much work has gone into the development of sophisticated methods

for whole-gene gene-structure prediction, as documented in the ex-

tensive literature on gene finding (e.g. Allen and Salzberg, 2005;

Burge and Karlin, 1997; Guigo et al., 1992; Korf et al., 2001;

Lukashin and Borodovsky, 1998; Meyer and Durbin, 2004; Pachter

et al., 2002; Stanke et al., 2006; reviewed in Majoros, 2007). These

methods jointly model entire sequences and their whole-gene splic-

ing patterns, typically via hidden Markov models (HMMs) or condi-

tional random fields (CRFs). However, traditional methods have

focused exclusively on annotation of reference genomes, in which

genes are assumed to be well-formed and to have conserved func-

tion. The growing importance of resequencing studies and personal-

ized genomics has created a need for tools that can accurately

annotate personal genomes and the genomes of individual animal

and plant breeds. As the focus in these studies is typically on identi-

fying genetic differences that may have functional consequences, the

assumptions made by traditional gene-finding models are violated

(Supplementary Fig. S1).

In eukaryotes, messenger RNAs are commonly spliced prior to

nuclear export and translation to remove intronic sequences that do

not encode amino acids. Failure to properly remove introns can re-

sult in large changes to the resulting polypeptide or failure to pro-

duce a functional protein, either of which can be deleterious to the

organism. Similarly, splicing errors can result in loss of existing

function or gain of new function, either of which may be deleterious.

In humans, 95% of protein-coding genes contain introns that re-

quire splicing, and 95% of those spliced genes can be alternatively

spliced to produce multiple distinct isoforms (Pan et al., 2008).

Though splicing errors commonly occur in many genes at a low

rate in healthy individuals (Pickrell et al., 2010; Stepankiw et al.,

2015), genetic variants that directly interrupt normal splicing signals

can dramatically increase the production of aberrant splice forms [e.g.

(Buratti et al., 2007; Královicová et al., 2005)]. While these can be

deleterious, in many cases they result in small changes that appear to

be benign. Examples include alternative splicing patterns that cause

synonymous or conservative amino acid changes, or the addition or

removal of a single amino acid. As an additional challenge, multiple

variants in the same haplotype can act non-independently, so that

methods that interpret the effect of each variant in isolation can pro-

duce incorrect predictions (Majoros et al., 2017).

Computational methods are therefore needed that can predict

the joint effect of any combination of variants present together in a

haplotype on resulting splicing patterns and protein structure.

Previous approaches to predicting aberrant splicing have focused on

each single-nucleotide polymorphism (SNP) individually and report

the predicted effect on a single splice site or exon (e.g. Mort et al.,

2014; Woolfe et al., 2010; Xiong et al., 2015). There is thus a need

for whole-gene models that can integrate the effects of multiple var-

iants in a haplotype and interpret the resulting splicing patterns as to

their likely effect on the encoded protein as a whole (Guigo and

Valcárel, 2015). Ideally, such models should be applicable to both

SNPs and multi-nucleotide variants, as insertions and deletions can

have large impacts on splicing signals and reading frames. It will

also be ideal to develop methods that can be retrained for any spe-

cies for which an annotated reference genome is available rather

than requiring large training sets of confirmed aberrant splicing

cases or splicing variants implicated in disease (e.g. Mort et al.,

2014; Woolfe et al., 2010).

Here, we describe a novel method for annotating personal

genomes that explicitly accounts for combinations of genetic

variants and does not assume that genes are conserved or functional.

The proposed model does not utilize translation reading frames

or codon statistics, and is thus applicable to both coding and non-

coding genes. Traditional ab initio gene finders focus primarily on

signals within coding sequence, in particular codon biases. It has

been noted that coding sequences within eukaryotic protein-coding

genes contain other signals in addition to codons (Itzkovitz et al.,

2010). In particular, signals that promote splicing and exon inclu-

sion often overlap coding signals, either in-frame or out-of-frame

(Woolfe et al., 2010; Zhang et al., 2008). These signals are referred

to as splicing enhancers and are believed to serve primarily as bind-

ing sites for RNA-binding factors such as SR proteins. Splicing en-

hancer motifs can be found arbitrarily deep within exons (Woolfe

et al., 2010), suggesting that SR proteins bind all along the exon.

This scaffolding of splicing factors across the exon body is believed

to mediate the process of exon definition (Berget, 1995; Robberson

et al., 1990), whereby U1 and U2 snRNPs associated with the ends

of the exon are brought into close spatial proximity and which is ne-

cessary for the exon to be included in the mature transcript

(Schneider et al., 2010). Meanwhile, hnRNPs are believed to bind

primarily within introns, marking them for exclusion from the ma-

ture transcript. Together, these enhancing and silencing signals

allow the cell to discriminate exonic from intronic sequence (Zhang

et al., 2008).

A number of feature sets comprising scored nucleotide hexamers

or octamers have been proposed to capture exon-definition signals

(Erkelenz et al., 2014; Stadler et al., 2006; Zhang et al., 2005;

Zhang and Chasin, 2004; Zhang et al., 2008). Most recently, a set

of hexamer weights determined via massively parallel splicing re-

porter assays were used to evaluate individual SNPs in human exons

for their potential to induce skipping of individual exons (Rosenberg

et al., 2015). To our knowledge, such exon-definition features have

not previously been incorporated into a whole-gene model of gene

structure. To the extent that such features capture exon definition

propensities, doing so should be informative for predicting splicing

patterns of whole transcripts.

By utilizing these signals instead of codon statistics, the model

we propose is applicable to predicting changes to gene structures in

non-coding genes, in untranslated regions of coding genes and in

coding regions that are altered by variants that disrupt the reading

frame. Because the model can predict alterations to the reading

frame, it can detect changes that may be deleterious. As such, the

model is applicable to identifying differences in gene structures be-

tween individuals or strains of the same species, in which such dif-

ferences may reflect gain or loss of function that has yet to be

eliminated by natural selection but which may be of interest to

breeders or clinicians. In contrast, traditional comparative gene-

finding models (e.g. Majoros et al., 2005; Meyer and Durbin, 2004;

Pachter et al., 2002) compare multiple reference genomes of distinct

species, and assume that gene structures are conserved. Finally, be-

cause the model we propose can be trained on annotated exons and

introns in a reference genome rather than relying on large numbers

of curated examples of aberrant splicing, it can be retrained easily

on any non-human species for which an annotated reference genome

is available, a major advantage.

2 Materials and methods

2.1 Splice graph random field
Reference gene-structure prediction methods (reviewed in Majoros,

2007) are based on probabilistic graphical models such as HMMs or
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CRFs. Whereas HMMs model the joint probability P(/, S), for se-

quence S and state path /, CRFs directly model the posterior prob-

ability P(/ j S), where / is considered a labeling of the sequence S:

P /jSð Þ ¼ 1
P

/
0 e
P

clique c
Uc /

0
c ;Sð Þ e

P
clique c

Uc /c ;Sð Þ

The potential functions Uc are applied to the cliques c in a depend-

ency graph (Sutton and McCallum, 2006). One advantage of CRFs

over HMMs is that arbitrary features such as empirical hexamer

weights can be incorporated into the U functions.

We propose a CRF for gene structures in which each vertex in

the field denotes a putative splice site and each edge denotes a puta-

tive exon or intron (Fig. 1A). We refer to this model as a splice graph

random field (SGRF). Labels are chosen from {0, 1}, with 0 denoting

omission and 1 denoting inclusion of the splice site in the predicted

gene structure. Cliques in the SGRF consist of singletons and pairs

of vertices directly connected via a single edge. Clique potential

functions (Fig. 1B) evaluate to non-zero values only when all labels

in the clique are 1, so that splice sites not included in the prediction

do not contribute to its score.

SGRFs are constructed in a highly constrained manner, as fol-

lows. For a given splice isoform annotated on the reference genome,

we project exon co-ordinates to the genome of an individual or

strain for prediction in that individual. For each projected splice site,

a vertex is created and linked to the preceding vertex, resulting in a

linear-chain SGRF having exactly one path that corresponds to the

projected gene structure. However, if any splice site is disrupted in

the alternate sequence, its vertex is removed from the SGRF and al-

ternate splice sites of the same type (i.e. donor or acceptor) are iden-

tified via a signal sensor (Supplementary Material) in the vicinity of

the disrupted site. These alternate splice sites are linked into the

SGRF using edges of the appropriate type (i.e. exon or intron). In

addition, any genetic variant that could potentially create a de novo

splice site (Fig. 1C) that does not exist in the reference is also added

to the SGRF and linked via appropriate edges to the nearest anno-

tated vertices already in the SGRF. In this way, the SGRF represents

exactly the reference annotation when that annotation can be pro-

jected perfectly onto the alternate sequence. Only when a splice site

is disrupted, or when a genetic variant creates a new putative splice

site, is the SGRF expanded to include more potential paths. We call

this procedure constrained splice-graph construction. Decoding with

an SGRF can be accomplished efficiently using dynamic program-

ming. We use N-best decoding to find the N highest-scoring predic-

tions, where N can be set by the user. For the experiments described

here we used N¼10.

The SGRF model is distributed as part of our ACE/

ACEþ software (Majoros et al., 2017). Inputs to the system consist

of a set of FASTA files containing the reference genome, a GTF file

containing reference annotations and a phased VCF file containing

genetic variants for one or more individuals. The system recon-

structs haplotype sequences based on the reference genome and var-

iants in the VCF file, maps annotations onto those haplotypes,

applies the SGRF to predict changes in gene structure and then inter-

prets those changes as to possible loss of function (Supplementary

Fig. S6).

2.2 SGRF features and parameter estimation
We refer to the potential functions for singleton cliques, specifically

individual splice sites, as signal sensors. We refer to pair cliques,

which we generate for exons and introns, as content sensors.

For content sensors we use a linear combination Xb of hexamer

weights b with hexamer counts X in the interval spanned by the cli-

que (not including splice sites at the ends of the interval), where b

and X are 4096-dimensional vectors corresponding to the 4096 pos-

sible hexamers. Any collection of hexamer weights can thus be used

as an SGRF content sensor. Both coding and non-coding genes can

be used for training; in the case of coding genes, hexamer counts are

extracted from all reading frames on the sense strand. For signal sen-

sors, we score a fixed window spanning the putative splice site with

a small number of flanking positions on both sides (Supplementary

Material). Features are indicators (0 or 1) for whether each possible

nucleotide (A, C, G, T) is present at each position.

Training of CRFs can be accomplished via conditional maximum

likelihood (CML), which globally optimizes all model parameters

jointly by maximizing P(/ j S). Because CML can be computational-

ly burdensome, we instead use piecewise training (Sutton and

McCallum, 2005) with the ‘factor-as-piece’ approximation (Sutton,

2008). As such, piecewise training for the SGRF consists of estimat-

ing parameters of each potential function UAG, UGT, Uexon and

Uintron separately. Because each of these functions are linear combi-

nations of hexamer counts or nucleotide indicators, and because

standard logistic regression is equivalent to CML for a single-vertex

CRF with a linear-combination potential function (Sutton and

McCallum, 2005), we use logistic regression to separately estimate

all parameters of each potential function individually. For pair cli-

ques, we binarize the problem into classification of exons versus

introns in order to apply logistic regression. The procedure is similar

to that of Domke (2014), except that we employ only a single iter-

ation of logistic regression and eliminate the belief propagation step

due to time efficiency concerns. We call this simplified procedure

piecewise logistic. For the experiments described here we used elas-

tic net (regularized) logistic regression to favor sparse parameteriza-

tions (Supplementary Material). For the experiments on human

sequences we trained the content sensors on 10 000 pairs of exons

and introns annotated in GENCODE version 19 (Harrow et al.,

2012). Signal sensors were trained on 5000 donor splice sites and

5000 acceptor splice sites annotated in GENCODE v19. Score

thresholds for signal sensors were selected to admit 99% of training

splice sites.

Fig. 1. (A) A SGRF. Vertices denote splice sites, and edges denote exons and

introns. A path from TSS to TES outlines a single gene structure. Labels 0 and

1 denote omission or inclusion, respectively, of a vertex on the selected path.

(B) Cliques and their potential functions. SGRFs have only singleton and pair

cliques. Potential functions for cliques labeled with any 0 do not contribute to

the score, since they do not participate in the selected path. (C) Cryptic splice

sites are unannotated splice sites near an annotated splice site. Disrupted

splice sites exist in the reference but not in the alternate sequence. De novo

splice sites exist in the alternate sequence but not in the reference
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2.3 Computational validation
We tested the predictive accuracy of the SGRF on 150 human

genomes from the Thousand Genomes project (The Thousand

Genomes Project Consortium, 2015) for which paired RNA-seq

data from lymphoblastoid cell lines were available (Lappalainen

et al., 2013). For each individual and each gene in GENCODE v19,

phased variants were used to construct explicit haplotype sequences

for the gene, as previously described (Majoros et al., 2017).

Insertion/deletion variants were used to infer an alignment between

the reference sequence and the personal genome. For each annotated

isoform of each gene, the isoform was projected onto the personal

genomic sequence using the inferred alignment. The SGRF was then

applied to produce predicted splice forms in the personal genome.

We used the RNA-seq data to quantify support for predicted novel

splice junctions not occurring in any annotated isoform of a gene.

Transcripts not expressed in LCLs at an FPKM of at least three, or

in which NMD is likely, were omitted from the analysis to avoid

overestimating false positives (see Supplementary Material for add-

itional details).

Receiver-operating characteristic (ROC) curves were constructed

to enable comparison of prediction accuracy between three different

content sensors: (i) piecewise logistic applied to 10 000 human exon-

intron pairs; (ii) piecewise logistic applied to 10 000 exon-intron

pairs from Arabidopsis thaliana, as annotated in the Araport 11 re-

lease (Cheng et al., 2017) and (iii) hexamer weights estimated previ-

ously by Rosenberg et al. (2015) by fitting a sigmoid function to

exon inclusion levels resulting from a massively parallel minigene

experiment in human HEK293 cells.

To investigate whether the piecewise logistic training procedure

is hampering predictive accuracy by not training all parameters

jointly, we incorporated an additional parameter rcontent/signal into

the model, which weights the relative contributions of content sen-

sors versus signal sensors. We performed a sensitivity analysis by

applying the modified model to Thousand Genomes individual

HG00096 with different values (0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 3,

4, 5, 8, 10) for rcontent/signal. A substantial improvement in predictive

accuracy for values of rcontent/signal < 1 would indicate that the con-

tent sensors are overpowering the signal sensors, and that accuracy

might be improved by global training of all parameters jointly.

3 Results

3.1 Prediction accuracy on 150 human genomes
Area under the ROC curve (AUC) values for the SGRF with differ-

ent content sensors indicate that on average an AUC of approxi-

mately 0.75 is achievable using either experimentally determined or

bioinformatically inferred features (Fig. 2A and B). The logistic

model trained on human annotations achieved the highest AUC

(0.75) followed closely by the model trained on splicing minigene

outputs (0.72). The logistic model trained on Arabidopsis performed

worst (0.51), indicating that training for the target organism is ne-

cessary in order to learn organism-specific exon definition features.

The median difference between the logistic human model and the

minigene model was positive and significant (Wilcoxon signed-rank

test: V¼43489, P¼2�10�44; Fig. 2C), indicating that training on

a new organism can be done effectively using logistic regression

applied to annotated exons and introns and that minigene experi-

ments are not necessary for learning SGRF parameters on a new or-

ganism. Logistic regression training took approximately 12 h on a

single CPU.

Logistic weights for human data were similar across training

runs (Supplementary Fig. S2). Modifying rcontent/signal away from its

default value of 1 did not appreciably improve prediction accuracy

on individual HG00096 (Supplementary Fig. S3), indicating that

content sensor scores are not overpowering signal sensor scores to

the detriment of predictive accuracy. The precipitous drop in AUC

as rcontent/signal approached zero indicates that splice-site scores alone

are inadequate for predicting splicing changes, consistent with previ-

ous suggestions that splice sites lack sufficient information content

to allow their discrimination without genomic context information

(Lim and Burge, 2001). Results of classifying 5000 annotated versus

5000 decoy human splice sites omitted from the training set indicate

that both the logistic signal sensors and PWMs achieved high classi-

fication accuracy for donor splice sites (AUC¼0.984 for logistic

sensor, AUC¼0.977 for PWM; Supplementary Fig. S4A) and for ac-

ceptor splice sites (AUC¼0.965 for both sensors; Supplementary

Fig. S4B).

When the logistic human content sensor was used to perform dir-

ect classification of whole exons versus whole introns of matched

lengths and with splice sites removed (Supplementary Material), AUC

was higher when presented with coding exons than with non-coding

exons (0.89 versus 0.79; Fig. 2D), indicating that while logistic regres-

sion successfully learned exon definition features that enabled the

model to recognize non-coding exons with moderate accuracy, it may

also be inadvertently learning some features of the coding segments

present in the training exons. Classification of binarized minigene

splicing results (Supplementary Material) using the human logistic

model resulted in a similar AUC (0.77) to that of classifying lincRNA

exons (0.79; Fig. 2D). Positively scoring hexamers under the human

logistic model were enriched deep into non-coding exons relative to

introns (Fig. 2E), indicating that the features learned were not due

solely to sequence biases proximal to splice sites.

3.2 Logistic and splicing minigene features reflect

known hnRNP but not SR protein motifs
As reported in Rosenberg et al. (2015) for the experimentally deter-

mined minigene features, G-rich hexamers in the human logistic

Fig. 2. (A) ROC curves for the SGRF with three different content sensors. TP

and FP rates were computed based on spliced RNA-seq reads from LCL cells.

(B) Area under ROC curves shown in panel A. (C) Difference between logistic

model AUC and minigene model AUC. (D) ROC for classification of coding

exons versus introns (red), for lincRNA exons versus introns (blue) and for

minigene exons with high versus low inclusion rates (green), using the logis-

tic human model for classification. (E) Density of positively-scored hexamers

under the human logistic model, at relative positions in non-coding lincRNA

exons
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model were enriched for negative scores (Supplementary Fig. S5),

consistent with G-richness of sequences preferred by some hnRNPs

(Huelga et al., 2012; Mauger et al., 2008; Rahman et al., 2015).

While elastic net regularization produced a sparse model containing

1966 of the 4096 possible hexamers, all 19 hexamers containing 5

or more Gs were selected by elastic net for inclusion in the model

and assigned negative scores. Consensus binding motifs for hnRNPs

obtained from Huelga et al. (2012) were likewise enriched for hav-

ing negative scores under the human logistic model (Wilcoxon

V¼329, P¼3.9�10�9), as well as under the minigene model

(Wilcoxon V¼1763, P¼0.0002), consistent with our expectations

of depleted hnRNP binding in exons. While scrambled versions of

consensus motifs are also commonly enriched for negative scores

under both models (logistic model: P<0.05 in 469/1000 scrambled

motif sets; minigene model: P<0.05 in 506/1000 scrambled motif

sets), hnRNPs have been characterized as having degenerate binding

motifs with low sequence specificity (Huelga et al., 2012; Singh and

Valcárcel, 2005). As each consensus motif represents only the single

most strongly-bound sequence for a factor, enrichment of some

scrambled versions of these degenerate motifs might represent

weaker binding that nevertheless supports exon definition. The most

strongly negatively scoring hnRNP motif under the human logistic

model was for hnRNP H, which is known to bind to poly(G)

sequences (Mauger et al., 2008; Rahman et al., 2015) and has been

implicated in aberrant splicing (Paul et al., 2006).

SR protein motifs obtained from Long and Caceres (2009) were

not significantly biased in their scores under either the logistic model

(Wilcoxon V¼6101, P¼0.08) or the minigene model (Wilcoxon

V¼17713, P¼0.14). The sparse logistic model included substan-

tially more negative features than positive features (1126 versus

840), suggesting that accurate discrimination of exons from introns

relies more on features depleted from exons (e.g. hnRNP binding

sites) than on features enriched in them (e.g. SR protein binding

sites).

Classification of exons versus length-matched introns (with

splice sites removed) using densities of known SR or hnRNP motifs

produced very low AUC values (hnRNP motifs: 0.62; SR protein

motifs: 0.60) that were not substantially higher than random classi-

fication (0.56), indicating that both the experimentally determined

features of Rosenberg et al. (2015) and the sparse logistic features

learned from human annotations represent sequence preferences not

entirely explained by known SR protein or hnRNP consensus

motifs.

3.3 De novo splice sites are prevalent, have a wide

range of effects and are misclassified by existing tools
Predictions of the SGRF with human logistic features were highly

enriched for novel isoforms utilizing de novo splice sites present in

the alternate sequence but absent from the reference genome, as

compared to variants disrupting existing splice sites (predictions

with posterior probability>0.9: 3165 de novo splice sites/750 dis-

rupted sites¼ enrichment of 4.2�). Predictions supported by spliced

RNA-seq reads were similarly enriched relative to numbers of dis-

rupted splice sites (Fig. 3A). De novo splice sites are distinct from

cryptic splice sites, in that cryptic sites exist in the reference genome

(and typically also the alternate sequence), whereas de novo splice

sites exist in the alternate sequence but not in the reference

(Fig. 1C). Simulation of a simple mutation process based on

context-dependent substitution (Supplementary Material) also pro-

duced a large bias of de novo sites over disrupted sites (Fig. 3A). The

enrichment was greatest (125.5�) when requiring only that de novo

splice sites have a canonical 2 bp consensus, and least (8.8�) when

requiring that de novo sites score above threshold under the logistic

splice-site model and occur in a favorable exon definition context

(Supplementary Material). Moreover, each individual in the

Thousand Genomes sample had on average 126 predicted de novo

splice sites supported by spliced RNA-seq reads in LCLs, indicating

that de novo splice sites are widespread and commonly utilized by

the spliceosome.

We found evidence that de novo splice sites are capable of having

large effects on splicing ratios and on encoded proteins. As subjects

in the Thousand Genomes project are reported to be healthy, we ex-

pect natural selection to result in a strong bias for these de novo

splice sites to have small effects. Consistent with this expectation,

most de novo splice sites appear to experience at most moderate util-

ization in these cells (Fig. 3B). Nevertheless, some de novo splice

sites in this dataset are highly utilized (Fig. 4), consistent with exam-

ples of de novo splice sites with high utilization documented in aber-

rant splicing databases (Buratti et al., 2007; Královicová et al.,

2005). Furthermore, while non-NMD de novo splice sites exhibited

the expected bias toward having small impacts on encoded proteins,

62% of RNA-supported de novo splice sites were predicted to trig-

ger NMD and some non-NMD de novo splice sites supported by

RNA-seq are predicted to result in large protein changes (Fig. 3B).

A number of de novo splice sites have been implicated in disease,

as evidenced by entries in the DBASS database (Buratti et al., 2007;

Královicová et al., 2005). Examples include breast cancer, cystic

fibrosis, hemophilia, muscular dystrophy, alpha- and beta-

thallasemia, hypothyroidism, phenylketonuria and others. These

disease-related variants are documented as having a range of effects.

For example, mutation E1þ135C>T in the HBA2 (hemoglobin

alpha sub-unit 2) gene is implicated in alpha-thalassemia, and is

described as having 100% splicing utilization (Harteveld et al., 2004),

Fig. 3. (A) Log2 (number of de novo splice sites/number of disrupted splice

sites) in mutation simulations (brown: requiring only a 2 bp consensus for de

novo splice sites; blue: requiring sufficiently high score under splice-site

model for de novo splice sites; green: requiring sufficiently high score under

the splice-site model and favorable exon definition context for de novo splice

sites), and in predictions supported by RNA-seq (red). Numbers above bars

are raw (non-log2) ratios. (B) Estimates of relative splicing activity (red) and

protein change (blue) due to de novo splice sites supported by RNA-seq. (C)

Frequencies of dbSNP classifications of variants predicted to create de novo

splice sites and supported by spliced RNA-seq reads. (D) Frequencies of VEP

classifications of variants creating de novo splice sites supported by RNA-seq
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whereas IVS17a-26A>G in the CFTR (cystic fibrosis transmembrane

conductance regulator) gene, implicated in cystic fibrosis, is described

as resulting in leaky splicing and a mild form of the disease (Beck

et al., 1999). De novo splice sites can thus present a wide range of

effects in the clinical setting. On a sample of four disease-causing

de novo splice sites listed in DBASS, the SGRF predicted substantial

usage of all four sites by the spliceosome, albeit with a range of pos-

terior probabilities (Fig. 4).

Despite their known role in a number of diseases, de novo splice

sites are commonly misinterpreted as non-coding, synonymous, or

missense mutations. For the 3289 Thousand Genomes variants pre-

dicted by the SGRF to result in de novo splice sites and that were

supported by spliced RNA-seq reads in LCLs, dbSNP (Sherry et al.,

2001) predicted only 0.9% to be involved in splicing (Fig. 3C).

Similary, Ensembl’s VEP tool (McLaren et al., 2016) predicted only

3.9% to be involved in splicing (Fig. 3D).

4 Discussion

In this work, we investigated the use of a model in which features

that reflect exon definition potential are used instead of coding sig-

nals, thus avoiding the assumptions imposed by previous methods.

Our results on 150 human genomes indicate that exon definition

features can be automatically learned via machine-learning methods

applied to annotated training genes, and that those learned features

can be used to discriminate splicing changes that are supported by

RNA-seq. Our use of standard regularized logistic regression and re-

liance only on annotated exons and introns for training, as opposed

to curated examples of aberrant splicing, renders this approach

broadly applicable to other organisms, such as breeds of economic-

ally important animals and plants.

While most computational gene prediction in the 1980s focused

on finding individual exons based on their codon usage statistics,

the sequencing of large chromosome segments by the human gen-

ome project circa 2000 (Lander et al., 2001; Venter et al., 2001), to-

gether with bioinformatic advances such as the application of

grammar models and dynamic programming to DNA sequence,

enabled the development of methods that could efficiently and ac-

curately predict whole gene structures in the late 1990s (Burge and

Karlin, 1997; Kulp et al., 1996). These whole-gene structure annota-

tions in turn enabled downstream analyses of genome-wide protein

coding properties and the identification of gene families and func-

tional annotation via protein similarity. As such, these bioinformatic

advances had a measurable impact on our understanding of

genomics.

The strong codon signals imposed on coding segments by natural

selection enabled these methods to accurately chain exons together

into multi-exon transcripts, by enforcing the constraint that transla-

tion reading frames must be contiguous and consistent across exons.

The assumption of intact reading frames enables highly accurate

prediction of genes in reference genomes, where it is natural to as-

sume that most genes are well-formed, evolutionarily conserved and

functional. For personal genomes, the assumption of contiguous

reading frames matching organism-specific codon biases can result

in incorrect predictions for genes that have been disrupted by genetic

variants altering the reading frame, splicing patterns, or both. As the

goal of personal genomics is to identify functional variants that may

be implicated in disease, these biases are problematic.

Our observation that de novo splice sites appear to be readily

created via simple mutation, that each individual has numerous such

sites supported by spliced RNA-seq reads and that such sites have

the potential to have a wide range of effects both in splicing utiliza-

tion and in resulting changes to amino acid sequences, indicates that

this is an important class of variants. That these variants are com-

monly misinterpreted by popular tools as not impacting splicing

indicates that there is a pressing need for the development of new

models that can accurately identify these variants, particularly as

many de novo splice sites have been implicated in disease

(Královicová et al., 2005; Buratti et al., 2007). Given the prevalence

of de novo splice variants in individual human genomes and the dif-

ficulty that existing tools have in identifying them as such, it is con-

ceivable that this class of cryptic variants may account for a sizeable

fraction of unexplained disease cases.

The method we have proposed does not fully solve the problem

of identifying modified splicing patterns in individual genomes, as

there is much room for improvement above the 0.75 AUC reported

here. Indeed, as our model currently relies on reference annotations,

we expect that ab initio prediction of splicing patterns based on

exon definition features represents an important challenge for the

future, as the ability to perform such ab initio prediction may be

seen as a yardstick for our current understanding of the complex

biology of splicing. There are a number of possible avenues for seek-

ing greater predictive accuracy.

First, the challenge of learning exon definition features from

training examples that are enriched for coding exons, without being

biased toward coding features, is an unavoidable problem given that

most annotated genes available for training are coding genes. While

training only on out-of-frame hexamers might seem an obvious

solution, preliminary experiments indicated that the use of only out-

of-frame hexamers during training did not improve prediction ac-

curacy. Furthermore, it may be expected that di-codon patterns in

reading frames impose biases even on out-of-frame hexamers,

and conversely that exon definition features may occur in-frame.

Fig. 4. (A) Example of a de novo splice site that results in greater splicing ac-

tivity than at the annotated splice site. Variant rs202069778 in haplotype 2 of

Thousand Genomes individual HG00118 creates a new acceptor splice site

that retains the original reading frame in the MAP4K1 gene, resulting in eight

amino acids being excluded from the encoded protein; TopHat2 aligns more

spliced reads to this site than to the annotated site in this haplotype. This vari-

ant has a global MAF of 0.0002 in Thousand Genomes phase three samples,

indicating it is possibly deleterious. (B) ACEþpredictions on a sample of four

disease mutations documented in DBASS as creating de novo splice sites.

Reference and alternate sequences are labeled ref and alt, respectively.

Scores are posterior probabilities under the random field model, and indicate

the predicted relative usage of the site by the spliceosome. The annotated

splice site is in black; the de novo site is in red. The mutation is underlined
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One possible solution is to modify the regression problem so as to

simultaneously learn both coding and exon definition features using

separate parameters, so that coding biases can be minimized in the

learned exon definition parameters.

The use of massively parallel splicing minigene experiments to

ascertain empirical hexamer weights is another solution, as the use

of randomized exonic sequence mitigates biases due to natural selec-

tion on functional content. However, this solution is laborious, and

other biases may remain, such as that due to NMD when the

randomized exon is coding, or due to secondary structures specific

to the minigene (Rosenberg et al., 2015). Nevertheless, features need

to be learned anew for each new species, as our results using

Arabidopsis features to predict splicing in humans indicate and as is

also seen in traditional gene-finding with coding features (Korf,

2004). An important consideration for future work is the rate at

which exon definition features change over evolutionary time, and

the degree to which the methods outlined here are applicable to line-

ages with greater divergence (for example, between human and

Neanderthal). While we expect that rate to be somewhat con-

strained by pleiotropic considerations, the Arabidopsis results dem-

onstrate that these features are not conserved across distant

timespans.

The use of collections of hexamer weights to represent exon def-

inition potential has become popular in recent years. However, these

hexamer models make strong assumptions about the independence

of features residing near or far from each other in linear sequence

space. It is known that SR proteins extensively interact, and that SR

proteins compete with both other SR proteins and with hnRNPs for

binding sites in mRNAs (Pandit et al., 2013; Rahman et al., 2015),

and likewise that hnRNPs can interact in positive or negative ways

(Huelga et al., 2012). Other examples of interactions between splic-

ing regulators have been documented (reviewed in Ke and Chasin,

2011). It has also been demonstrated that splicing decisions can be

influenced by epigenetic effects such as nucleosome positioning and

histone modifications (reviewed in Zhou et al., 2014), and by bind-

ing of specific transcription factors at promoters and possibly even

at distal enhancers (reviewed in Kornblihtt et al., 2013).

The above facts indicate that there is much room for incorpor-

ation of features beyond simple hexamer weights. Such improve-

ments could be incorporated into the SGRF via modification of the

U functions. Assuming the constrained graph construction process

remains unchanged, modifications to the U functions will not nega-

tively impact decoding efficiency, as the graph will remain sparse.

Modifications to the training process may however be necessary,

particularly if new features integrate information across larger inter-

vals or consider combinatoric interactions. While piecewise training

via simple logistic regression worked well for the initial model

described here, for an expanded model with wider dependencies, an

iterative method such as the one proposed by Domke (2014) that

combines logistic regression with belief propagation may be

required.

Our use of reference annotations as training examples results in

a model that does not reflect splicing regulatory differences between

cell types. As alternative splicing is often regulated in a cell-type spe-

cific manner, it can be expected that aberrant splicing will also ex-

hibit cell-type specific patterns. Such cell-type-specific effects have

been modeled previously, though not in a whole-gene model that

can accommodate multiple variants jointly (Xiong et al., 2015). One

possible means of addressing this is to train separate SGRF models

on transcripts found to be expressed in individual cell types via

RNA-seq data, such as that published by the GTex project (Melé

et al., 2015).

Our inability to link positively-scoring hexamers in either the lo-

gistic model or the minigene model published by Rosenberg et al.

(2015) to known SR protein motifs could be explained by a number

of possibilities. Some SR proteins and hnRNPs have been character-

ized as participating in both specific and non-specific binding, and

may rely on co-factors for specific binding (Singh and Valcárcel,

2005). It has also been shown that individual SR proteins can have

both a positive and a negative effect on exon definition in different

contexts, as can hnRNPs (Huelga et al., 2012; Pandit et al., 2013;

Singh and Valcárcel, 2005). The fact that densities of known SR pro-

tein motifs or of known hnRNP motifs did not produce strong clas-

sification accuracy in the experiments described here supports the

notion that while these molecules have been demonstrated to play

important roles in splicing, predicting their specific effects via simple

consensus motif counts may not be feasible in general. That both the

logistic model and the minigene model were able to achieve much

higher classification accuracy suggests that these models are detect-

ing features relevant to exon definition, though at present it is not

known with certainty what biological significance individual hex-

amers in these models have. Novel experimental work will likely be

required to ascertain whether these features represent unknown

binding motifs for known SR proteins or hnRNPs, or possibly for

unknown splicing factors or co-factors.

Funding

W.H.M. and T.E.R. were supported by grants from the National Institutes of

Health [R01 DK099820 and R01 DK097534]. M.S.C. was supported by a

Post-doctoral Research Fellowship in Biology from the National Science

Foundation [PRFB-1523793]. W.H.M., C.H. and M.Y were supported by

grants from the National Science Foundation [EAGER IOS-1561337 and

IOS-1126998].

Conflict of Interest: none declared.

References

Allen,J.E. and Salzberg,S.L. (2005) JIGSAW: integration of multiple sources of

evidence for gene prediction. Bioinformatics, 21, 3596–3603.

Beck,S. et al. (1999) Cystic fibrosis patients with the 3272-26A–>G mutation

have mild disease, leaky alternative mRNA splicing, and CFTR protein at

the cell membrane. Hum. Mutat., 14, 133–144.

Berget,S.M. (1995) Exon recognition in vertebrate splicing. J. Biol. Chem.,

270, 2411–2414.

Buratti,E. et al. (2007) Aberrant 5’ splice sites in human disease genes: muta-

tion pattern, nucleotide structure and comparison of computational tools

that predict their utilization. Nucleic Acids Res., 35, 4250–4256.

Burge,C. and Karlin,S. (1997) Prediction of complete gene structures in human

genomic DNA. J. Mol. Biol., 268, 78–94.

Cheng,C.-Y. et al. (2017) Araport 11: a complete reannotation of the

Arabidopsis thaliana reference genome. Plant J., 89, 789–804.

Domke,J. (2014) Training structured predictors through iterated logistic re-

gression. In: Advanced Structured Prediction, MIT Press, Cambridge, MA,

USA.

Erkelenz,S. et al. (2014) Genomic HEXploring allows landscaping of novel

potential splicing regulatory elements. Nucleic Acids Res., 42,

10681–10697.

Guigo,R. et al. (1992) Prediction of gene structure. J. Mol. Biol., 226,

141–157.
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