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Abstract

Motivation: Biclustering algorithms are commonly used for gene expression data analysis.

However, accurate identification of meaningful structures is very challenging and state-of-the-art

methods are incapable of discovering with high accuracy different patterns of high biological

relevance.

Results: In this paper, a novel biclustering algorithm based on evolutionary computation, a sub-

field of artificial intelligence, is introduced. The method called EBIC aims to detect order-preserving

patterns in complex data. EBIC is capable of discovering multiple complex patterns with unprece-

dented accuracy in real gene expression datasets. It is also one of the very few biclustering meth-

ods designed for parallel environments with multiple graphics processing units. We demonstrate

that EBIC greatly outperforms state-of-the-art biclustering methods, in terms of recovery and rele-

vance, on both synthetic and genetic datasets. EBIC also yields results over 12 times faster than the

most accurate reference algorithms.

Availability and implementation: EBIC source code is available on GitHub at https://github.com/

EpistasisLab/ebic.

Contact: patryk.orzechowski@gmail.com or jhmoore@upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Discovering meaningful patterns in complex and noisy data, especially

biological one, is a challenge. Traditional clustering approaches such

as k-means or hierarchical clustering are expected to group similar

objects together and to separate dissimilar objects into distinctive

groups. These methods assume that all object features contribute to

the classification result, which renders clustering a valuable technique

for global similarity detection. Clustering does not, however, succeed

when only some subset of features is important to a specific cluster.

The inability to capture local patterns is one of the main reasons

for the advent of biclustering techniques, where biclusters—subsets

of rows and columns—are sought. Both rows and columns subsets

may contain elements that are not necessarily adjacent to each other,

thus differentiating biclustering from other problems of pattern

matching (e.g. image recognition), making also the task unsuitable

for deep learning (Ching et al., 2017).

Biclustering has its roots in data partitioning into sub-groups of

approximately constant values (Morgan and Sonquist, 1963) and

simultaneously clustering rows and columns of a matrix (Hartigan,

1972); this was later called biclustering (Mirkin, 1996). For the last

two decades biclustering has been applied to multiple domains,

including biomedicine, genomics (especially gene expression ana-

lysis), text-mining, marketing, dimensionality reduction and others

(Busygin et al., 2008; Dolnicar et al., 2012).
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Designing biclustering algorithms involves many challenges.

First, although over fifty biclustering algorithms have been proposed

(much more when derivatives are considered), no method has pro-

ven capable of detecting––with sufficient accuracy––six major types

of patterns that are commonly present in gene expression data.

Most biclustering algorithms find only one or a few of these patterns

(Eren et al., 2013; Madeira and Oliveira, 2004; Padilha and

Campello, 2017; Pontes et al., 2015a; Wang et al., 2016): column-

constant, row-constant, shift (i.e. additive coherent), scale (i.e.

multiplicative coherent), shift and scale (i.e. simultaneous coherent)

and order-preserving. Detection of order-preserving patterns is espe-

cially important, because it may be considered a generalization of

the five other patterns (Ben-Dor et al., 2003; Eren et al., 2013;

Wang et al., 2016).

Second, many biclustering algorithms are unable to detect nega-

tive correlations or capture approximate patterns. Moreover, biclus-

tering algorithms fail to properly separate partially overlapping

biclusters. The performance of these algorithms on overlapping

problems usually drops dramatically with increasing levels of over-

lap (Wang et al., 2016).

A third drawback of current biclustering methods is their limited

success assessing which biclusters are the most relevant. Multiple

measures for assessing quality of biclusters have been used so far

(Orzechowski, 2013; Pontes et al., 2015b). Some algorithms yield

only a single bicluster at a time, rendering their application cumber-

some (Pontes et al., 2015a). Other methods output a high number of

biclusters [e.g. BiMax (Preli�c et al., 2006) and PBBA (Orzechowski

and Boryczko, 2016b)]. This usually produces many overlaps and

degrades the overall performance of the algorithm (Eren et al.,

2013).

Providing the proper balance between local and global context

within the data is also difficult. The methods that model global rela-

tions are typically able to deliver only a limited number of results

[e.g. Plaid (Lazzeroni and Owen, 2002), FABIA (Hochreiter et al.,

2010) and ISA (Bergmann et al., 2003)], or tend to exhibit decreased

accuracy with each result [e.g. CC (Cheng and Church, 2000)]. On

the other hand, algorithms that focus on local similarities are suscep-

tible to losing global reference [e.g. Bimax, PBBA, or UniBic (Wang

et al., 2016)]. For example, UniBic, which sorts pairs of values and

column indices of each row in order to identify the longest common

subsequences, is able to detect the longest order-preserving pattern

between each pair of rows, ir-respective of the order of columns, but

it fails to capture narrow biclusters containing only a few rows and

multiple columns.

As the biclustering problem is NP-hard, designing an efficient

and accurate parallel biclustering algorithm remains a challenge.

Most of the reference biclustering algorithms are purely sequential.

The reason for this is that the methods either require intensive com-

putations, which limit their application to datasets of smaller size,

or are fast but at the cost of lower accuracy.

2 Materials and methods

In this paper, a novel biclustering algorithm called EBIC is intro-

duced, which overcomes the above shortcomings. The algorithm

is based on evolutionary computation, a sub-field of Artificial

Intelligence (AI). It is likely the first biclustering algorithm capable

of detecting all aforementioned types of meaningful patterns with

very high accuracy. EBIC is also one of very few parallel biclustering

methods. We show that the proposed algorithm outperforms the

most established methods in the field with respect to accuracy and

relevance on both synthetic and real genomic datasets. An open-

source, multi-graphics processing unit (GPU), parallel implementa-

tion of the algorithm is also provided.

The algorithm is designed for environments with at least a single

GPU and requires the installation of CUDA. The algorithm was

developed in Cþþ11 with OpenMP, with CUDA used for

parallelization.

2.1 Motivation
The design of the algorithm is motivated by the following observa-

tion. Given the input matrix A ¼ faijg, where i stands for rows and

j for columns, consider counting the number of rows with the prop-

erty that the value in column p is smaller than the value in column q,

i.e. #fk : akp < akqg. If the values in the dataset are generated ran-

domly with univariate distribution, half of the rows on average are

expected to have this property and half are not. Addition of another

column r to the series, such that values in this columns are larger

than the values in column q, i.e. #fk : akp < akq < akrg, should re-

sult in another reduction of the number of rows by half. Thus, for

data without any signal, each addition of a column to the series

reduces the number of concordant rows by half. On the other hand,

if the distribution of the data is not uniform and there exists a mono-

tonic relationship between rows in some subset of conditions, any

addition of the pattern-specific column won’t eliminate the rows

belonging to this pattern. Thus, the algorithm attempts to intelli-

gently manipulate multiple series of columns and assigns higher

scores to those series in which column additions do not result in

total reduction of the rows.

The quality of each bicluster is determined by a function (called

fitness), which takes into consideration the number of columns and,

exponentially, the number of rows that follow the monotonically

increasing trend represented by each series of columns. The design

of the fitness function promotes incorporation of new columns to

biclusters, provided there are a sufficient number of rows matching

the trend Equation (1).

f Bð Þ ¼
2min jIj�r;0ð Þ � jJj � log2 max jIj � 1; 0ð Þð Þ & if jIj > 1

0 & if jIj � 1 ;

(
(1)

where r is the expected minimal number of rows that should be

included within a bicluster B ¼ I; Jð Þ, with its rows and columns

denoted as I and J, respectively.

EBIC uses a different representation compared with other

evolutionary-based biclustering methods (Ayadi et al., 2012; Divina

and Aguilar-Ruiz, 2006; Mitra and Banka, 2006). Instead of model-

ing a bicluster as a tuple with a set of rows and a set of columns,

biclusters in EBIC are represented by a series of column indices. The

quality of a given series is calculated based on the number of rows

that match the monotonous rules present within the series of col-

umns. The modification of column series is performed using an AI-

based technique known as genetic programming (GP; Koza, 1992;

Poli et al., 2008b). Series of columns are expanded only when the

rule they impose is matched by sufficient number of rows.

EBIC belongs to the family of hybrid biclustering approaches

(Orzechowski and Boryczko, 2016a) and features several techniques

commonly used in evolutionary algorithms. The development of

biclusters is driven by simple genetic operations: (i) four different

types of mutations––insertion of a new column to the series

(Fig. 1a), deletion of one of the columns from the series (Fig. 1b),

swap of two columns within the series (Fig. 1c) and substitution of a

column within the series (Fig. 1d) and (ii) crossover (Fig. 1e). The

individuals that are set to undergo genetic operations are determined
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using tournament selection. To obtain a diverse set of solutions, a

variant of a technique called crowding is used, which limits the

probability of selecting those individuals that share columns with

those already added to the new generation (Sareni and Krahenbuhl,

1998). More specifically, the fitness of individuals that take part in a

tournament is decreased by the homogeneous penalty of 1:2#, where

# corresponds to the average penalty of using each of the columns

separately. The explanation for this value of the parameter is pro-

vided in Supplementary Material. The described penalty enhances

additions to the population individuals with underrepresented col-

umns, what highly increases the diversity in population.

Individuals whose overall fitness is the highest are stored in the

top-rank list, which is updated only if a newly found individual does

not substantially overlap with an individual in the list. During the

construction of a new population a variant of a tabu list is used,

which forbids calculation of the previous biclusters (Glover, 1989,

1990). Elitism is used to clone a group of the best individuals found

so far, so that the population is still able to search around local mini-

ma (Poli et al., 2008a). To limit the communication overhead, a

Compressed Biclusters Format (CBF) is proposed for storing biclus-

ters (Fig. 2). The format was motivated by Compressed Row

Storage, a popular representation of sparse matrices.

2.2 EBIC algorithm
The basic concept of EBIC––a parallel biclustering algorithm based

on AI––is presented in Figure 3. The dataset is split into equal

chunks of data and distributed across multiple GPUs. A population

of different series of columns is generated on the CPU, stored in CBF

format and broadcast to multiple GPUs. Each GPU counts the num-

ber of rows which match the given series. The results are summar-

ized on each GPU and sent back to the CPU in order to calculate

fitness, which is used later to assess bicluster quality.

Step 1: Initialization

Set up GPUs, divide the dataset proportionally by rows depending

on the number of GPUs, and distribute the data across multiple

GPUs. Generate initial population, calculate fitness on GPUs.

Initialize top-rank list by sequentially adding unique (non-overlap-

ping) series of columns with the highest fitness according to

Equation (1).

Step 2: Elitism

Reproduce 1/4 of the best biclusters from the top-rank list, add them

to the new population. Update penalties for using each column

(each column addition to the population increases the penalty for

using this column).

Step 3: Prepare population of biclusters

Until the population reaches its required size, try to generate unique

solutions (i.e. that haven’t been previously analyzed). Select each

new individual using tournament selection. Thus, select a solution

randomly from the previous population and adjust its quality by

applying the penalty for similarity with the previously accepted solu-

tions. The penalty vartheta is calculated by averaging penalties

incurred by selecting each column separately over the number of col-

umns within the series. The final penalty is calculated using the

value of 1:2#. After selecting individuals, perform genetic operations

(crossover and mutation). If the solution is novel (i.e. does not be-

long to the tabu list) add it to the population and the tabu list, and

update penalties for using the solution’s columns. Store the popula-

tion in CBF. If the solution was previously analyzed, increase the

number of tabu-list hits. If this number is greater than the size of

population, finish calculations and go to Step 6 in order to report

the previously found best patterns.

Step 4: Calculate quality of biclusters in parallel

Dispatch the new population (i.e. sets of column series) to each of

the GPUs. Determine how many rows match each of the series of

columns. Collect the results from multiple GPUs and determine the

fitness of each bicluster according to Equation (1).

Step 5: Update top-rank list

Sort the population according to fitness. Try to add new individuals

to the top-rank list by checking if they do not substantially overlap

with records with higher fitness. If a bicluster is added, remove from

the top-rank list all records that have lower fitness and substantially

overlap with the bicluster. After all individuals in the population are

checked, remove from the top-rank list the records that have the

lowest fitness, until the required size of the top-rank list is reached.

If the maximal number of iterations is not accomplished, go back to

Step 2.

Fig. 1. Genetic operations in EBIC: (a) insertion mutation, (b) deletion muta-

tion, (c) swap mutation, (d) substitution mutation and (e) crossover

Fig. 2. Compressed Bicluster Format (CBF) uses two arrays. The first array

determines the starting positions of each of the biclusters, while the second

one holds indexes of columns of biclusters. In this example, the population

consists of three biclusters (individuals): (1, 4, 2), (4, 2) and (2, 3, 5, 1, 4), which

start at indices 0, 3 and 5, respectively

Fig. 3. Overview of EBIC. After dispatching chunks of the input data to

multiple GPUs, biclusters––represented by multiple series of columns and

stored in CBF format––are broadcast to GPUs. Each GPU calculates the

number of how many rows of the chunk match the series imposed by the

columns. This is used to determine fitness of each bicluster and generate a

new set of biclusters
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Step 6: Prepare biclusters

Determine in parallel on each GPU the indices of rows that match

each of the series of columns in the top-rank list.

Step 7: Expansion of biclusters

Expand the biclusters that have approximate and negative trends.

Output the required number of biclusters (or all biclusters from the

top-rank list).

2.3 Pattern discovery on synthetic datasets
The performance of EBIC was evaluated on the benchmark of syn-

thetic datasets from (Wang et al., 2016) and compared to top biclus-

tering methods: UniBic (Wang et al., 2016), OPSM (Ben-Dor et al.,

2003), QUBIC (Li et al., 2009), ISA (Bergmann et al., 2003), FABIA

(Hochreiter et al., 2010), CPB (Bozda�g et al., 2009) and BicSPAM

(Henriques and Madeira, 2014), as well as a newly published GPU-

accelerated biclustering algorithm called Condition-dependent

Correlation Sub-group (CCS; Bhattacharya and Cui, 2017). The lat-

ter hasn’t been benchmarked yet on the established collection of

datasets, neither synthetic nor genomic.

The test suite that was used to benchmark the algorithms con-

tains three very popular biclustering problems: pattern discovery,

biclusters overlap and narrow biclusters detection. Recovery and

relevance scores were determined using the Jaccard index (Jaccard,

1901) from the BiBench package (Eren et al., 2013), specifically

Equations (2) and (3):

Recovery ¼
X

e2expected

maxf2found
je \ f j
je [ f j (2)

Relevance ¼
X

f2found

maxe2expected
je \ f j
je [ f j (3)

The first set of problems verifies the ability of the algorithm to

identify six different data patterns, including trend-preserving,

column-constant, row-constant, shift, scale and shift-scale. The tests

assess how accurately a biclustering algorithm detects three

biclusters of size 15 x 15 implanted within a matrix of size 150 x

100, four biclusters of size 20 x 20 implanted within a matrix of size

200 x 150 and five biclusters of size 25 x 25 implanted within a ma-

trix of size 300 x 200. Each problem consists of five different data-

sets for each of six patterns––which constitute 90 unit tests in total.

The tests on overlapping patterns measure the ability of the algo-

rithms to detect five biclusters of size 20 x 20 implanted within the

matrix of size 200 x 150 that overlapped with each other by 0 x 0,

3 x 3, 6 x 6 and 9 x 9 elements––20 tests in total (Wang et al.,

2016). Narrow biclusters are biclusters with 100 rows and 10–30

columns implanted within a large matrix of size 1000 x 100–9 tests in

total. The tests determine whether biclustering methods are capable of

discovering patterns that feature multiple rows but only a small

number of columns (Wang et al., 2016). To show independence of the

results, our method was run 10 times on all problems. Each time, a dif-

ferent seed served to initialize a pseudo-random number generator,

which was used to initialize the population in the first iteration.

2.4 Enrichment analysis on genomic datasets
The effectiveness of pattern discovery with EBIC was further eval-

uated on real-world gene expression datasets. For this purpose,

BiBench software and a benchmark of genetic datasets from Eren

et al. (Eren et al., 2013) were used. Details of the gene datasets used

for the study are presented in Table 1. The same procedures of data

acquisition, pre-processing and analysis were followed. Thus, data-

sets were downloaded using GEOquery (Davis and Meltzer, 2007)

and pre-processed using PCA imputation (Stacklies et al., 2007).

After completing biclustering, a gene enrichment analysis of each

bicluster was performed using the R package GOstats (Falcon and

Gentleman, 2007). Biclusters were considered significantly enriched

if any of the P-values associated with a given GO term were lower

than 0.05 after Benjamini–Hochberg correction (Benjamini and

Hochberg, 1995). Assessment of the results was based on the pro-

portion of enriched biclusters to all biclusters reported. Each algo-

rithm was allowed to return no more than 100 biclusters per

dataset. The number of biclusters found and the proportion of sig-

nificantly enriched results were compared to the study by (Wang

et al., 2016) and are presented in Table 2. EBIC was tested with two

overlap ratios, 0.5 and 0.75.

3 Results

The performance of EBIC was tested on both synthetic as well as

real gene expression datasets. Synthetic benchmark from Wang

et al. (Wang et al., 2016) is available at https://sourceforge.net/proj

ects/unibic/files/data_result.zip. For biological validation, a well-

established benchmark from Eren et al. was used (Eren et al., 2013)

with eight genetic datasets. The collection of datasets and the results

of EBIC on both synthetic and genetic datasets could be found in

Supplementary Material.

3.1 Pattern discovery on synthetic datasets
For synthetic datasets EBIC was set to stop either after 20 000 itera-

tions or when the number of tabu-list hits exceeded the size of the

population. All parameters were set to their defaults. Columns of

biclusters were allowed to overlap no more than 0.5, and the block-

size for the CUDA kernel was set to 64. This took a reasonable

amount of computation time (1–25 min on Intel Core i7-6950X

CPU with GeForce GTX 1070 GPU). Comparison of the accuracy

of EBIC with selected biclustering methods in terms of recovery and

relevance is presented in Figure 4. CCS did not manage to return

Table 1. Description of GDS datasets

Dataset Genes Samples Description

GDS181 12 626 84 Large-scale analysis of the human Transcriptome

GDS589 8799 122 Multiple normal tissue gene expression across strains

GDS1406 12 488 87 Brain regions of various inbred strains

GDS1451 8799 94 Toxicants effect on liver: pooled and individual sample comparison

GDS1490 12 488 150 Neural tissue profiling

GDS2520 12 625 44 Head and neck squamous cell carcinoma

GDS3715 12 626 110 Insulin effect on skeletal muscle

GDS3716 22 283 42 Breast cancer: histologically normal breast epithelium
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any result for trend-preserving, and row- and column-constant pat-

terns, thus the method was excluded from the comparison. The CCS

algorithm managed to present partial solutions for shift-, scale- and

shift-scale patterns only.

The average recovery and relevance scores of EBIC are better

than those reported by any of the previous methods. This difference

is especially visible in order-preserving and shift-scale problems,

which are considered to be the most biologically meaningful

(Wang et al., 2016). EBIC managed to detect all patterns perfectly

for trend-preserving patterns, while other methods reached 70% on

average. The average relevance and recovery rate for shift-scale pat-

terns were also much higher. As for scale and shift-scale patterns,

EBIC attained high recovery/relevance scores across all tests

(95.2%/85.5% for scale- and 94.2%/84.5% for shift-scale patterns),

although scores for the worst-case scenarios were comparable to

other methods (75.1%/37.8% and 72.0%/46.7%, respectively).

EBIC may be the first biclustering algorithm capable of detecting all

aforementioned patterns with over 90% average recovery and rele-

vance (Pontes et al., 2015a). The recovery/relevance scores from

multiple runs of the algorithm initialized with different random

numbers did not differ statistically.

EBIC was also tested on the datasets provided by Bhattacharya

et al. (Bhattacharya and Cui, 2017) and detected biclusters with re-

covery and relevance scores over 95%, whereas CCS reported those

scores to vary from approximately 20% to nearly 90%.

3.1.1 Overlapping biclusters

The second set of tests compares the deterioration of the accuracy of

biclustering algorithms in detecting trend-preserving biclusters that

overlap with each other. This set of problems contains tests of three

biclusters of size 20 x 20 that overlap with each other by 0 x 0, 3 x 3,

6 x 6 and 9 x 9 within a matrix of size 200 x 150. Each problem is

represented by 5 dataset variants, resulting in up to 20 tests in total

(Wang et al., 2016). The effect of the overlap on the recovery and

relevance of different algorithms is presented in Figure 5.

Table 2. Significantly enriched biclusters (i.e., with at least one GO

term enriched with P¼ 0.05 level after correction for multiple tests)

found across all GDS datasets (best result in bold)

Algorithm Found Enriched

EBIC, 0.75 589 323 (54.8%)

EBIC, 0.5 145 76 (52.4%)

CCS 691 303 (43.8%)

UniBic 151 62 (41.1%)

OPSM 163 48 (29.5%)

QUBIC 91 34 (37.4%)

ISA 217 71 (32.7%)

FABIA 80 22 (27.5%)

CPB 96 34 (35.4%)

Notes: Two overlap thresholds of EBIC are considered: 0.5 and 0.75.

The scores of the algorithms other than EBIC and CCS are quoted from

(Wang et al., 2016).

Fig. 4. Comparison of the performance of biclustering algorithms on different types of patterns. Scores of the algorithms other than EBIC and CCS are quoted

from (Wang et al., 2016)
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All biclustering methods tend to deteriorate if implanted biclus-

ters start to significantly overlap with each other (Wang et al.,

2016). The performance of EBIC also decreased when the higher

level of overlap was considered, but the decrease was small. The al-

gorithm was still able to maintain recovery and relevance scores

close to 90% on the average. The second-best method was UniBic,

which deteriorated from around 90% for non-overlapping biclusters

down to 60% recovery and 85% relevance for the most overlapping

structures.

3.1.2 Narrow biclusters

The last phase of our benchmark considers the detection of narrow

biclusters comprising 100 rows and 10/20/30 columns, which were

implanted within the matrix of size 1000 x 100. Each scenario con-

tains three variants, resulting in up to nine tests in total. The results

are presented in Figure 6.

In contrast to all other algorithms, EBIC managed much better

in this task and discovered almost perfectly all implanted structures.

For the narrowest biclusters, our algorithm was approximately

twice as good as the second method dedicated to finding narrow

biclusters (BicSPAM). UniBic was reported to have low accuracy in

detecting narrow biclusters within the dataset. CCS did not manage

to return any bicluster for every dataset in this test.

3.1.3 Noise sensitivity

Noise sensitivity analysis of EBIC may be found in Supplementary

Material. Tuning of EBIC parameters allows the method to be rea-

sonably resistant to up to N 0; 0:25ð Þ of normally distributed noise.

3.1.4 Summary

Our general conclusion is that EBIC is not only capable of detecting

different types of patterns, but also different sizes of patterns (i.e.

wide or narrow patterns) with very high accuracy.

Fig. 5. Comparison of the performance of biclustering algorithms in scenarios with different levels of biclusters’ overlap. Scores of the algorithms other than EBIC

and CCS are quoted from (Wang et al., 2016)

Fig. 6. Comparison of biclustering-algorithm performance in scenarios with narrow biclusters. The reference results are quoted from Wang et al. (Wang et al., 2016)
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3.2 Enrichment analysis on genomic datasets
For the genetic datasets, it was observed that the proportion of

enriched biclusters obtained after approximately 5000 iterations

highly depended on the dataset (Supplementary Material). Further

iterations either improved or worsened the proportion. EBIC was

run for 5000 iterations, columns were allowed to overlap by 50% or

75%. The results of enrichment analyses are presented in Table 2.

Some memory management issues were encountered with CCS

(both the sequential and parallel versions). The algorithm was unable

to detect biclusters in some of the genomic datasets and terminated

prematurely with an error. After fixing a bug, the algorithm, even in

parallel mode, proved to be extremely slow. Although the dataset was

of reasonable size it took over 8 days of computation (on

CPUþGPUs) to yield results for the most challenging genomic data-

sets (GDS 1451). In contrast EBIC needed less than 3 min to yield

higher number of significantly enriched biclusters for this dataset.

EBIC generated the highest percentage of enriched biclusters.

EBIC with a more restrictive overlap ratio (0.5) generated a higher

percentage of significantly enriched biclusters (52.4%) in comparison

to any other method. The second best was CCS (43.5%), which on

the other hand generated much more significantly enriched biclusters.

EBIC with less restrictive overlap (0.75) outperformed all the methods

included in our study, both in terms of the number and percentage of

significantly enriched biclusters. EBIC generated 20 significantly

enriched biclusters more than the second-best method (323 versus 303

by CCS). More importantly, EBIC managed to find nearly 11% more

significantly enriched biclusters. This result is noticeable, considering

that the difference between the second- and third-best methods was

only 2.7%. In addition, the biclusters returned did not overlap sub-

stantially, from less than 4% up to 31%, depending on the dataset.

The datasets as well as the results of biological validation of EBIC and

CCS are available in Supplementary Material.

We reinspected the results of the two best methods (EBIC-0.75

and CCS) after applying a filtering proposed by Prelic et al. (Preli�c

et al., 2006) and implemented in Eren et al. (Eren et al., 2013). The

procedure removed biclusters that overlap with the others by over

25%. After filtering, 296 out of 589 biclusters for EBIC remained,

out of which 122 were found to be significantly enriched (41.2%).

For CCS, 332 out of 619 remained and only 113 were marked as sig-

nificantly enriched (34.0%). We eschewed testing the other meth-

ods, as their number of significantly enriched biclusters before the

filtering procedure was even applied was lower than the one for

EBIC or CCS after applying the procedure.

3.3 Scalability of the algorithm
In order to assess the scalability of the methods, 5 datasets with 100

columns and different numbers of rows ranging between 5000 and

25000 were generated. Times were averaged based on five runs of

the methods on each of the datasets with their default parameters.

The algorithms were allowed to yield up to 100 biclusters. All tests

were performed on a machine with an Intel CoreTM i7-6950X CPU

and 64GB of RAM. Comparison of run times in logarithmic scale is

presented in Figure 7. Starting with 10 000 rows, EBIC began to run

faster than both CCS and UniBic, the most precise methods so far.

For problems with 25 000 rows, EBIC was over 12 times faster than

UniBic and over 20 times faster than CCS. With increasing data size,

the running times of EBIC have started to be comparable with ones

from OPSM and ISA. The actual performance of EBIC for larger

datasets on multiple GPUs requires further investigation.

A complexity analysis of EBIC can be found in Supplementary

Material.

4 Discussion

EBIC is one of the very few parallel biclustering methods dedicated

for multi-GPU environments. In comparison with state-of-the-art

algorithms EBIC exhibited a number of advantages: (i) EBIC outper-

formed the state-of-the-art biclustering algorithms on established

synthetic datasets. EBIC was the only algorithm to discover each of

six types of major genetic patterns in synthetic datasets with over

95% average accuracy and the only one to maintain over 90% ac-

curacy on narrow and overlapping biclusters. (ii) EBIC found over

11% more significantly enriched biclusters than the second-best

method (CCS) on a benchmark of eight genomic datasets (over 7%

more after removing overlapping biclusters). (iii) EBIC yielded far

more significantly enriched biclusters than any of the methods (even

after removing overlapping biclusters). (iv) EBIC proved to be over

12 times faster than any of the most accurate methods (CCS or

UniBic) on the largest datasets.

We would like to formulate the requirements for the next-

generation of biclustering methods. Such algorithms are expected to

meet the following criteria: (i) be capable of discovering the six

major types of biclusters discussed above with high accuracy (over

75% on average); (ii) be capable of handling overlapping, narrow

and approximate patterns with similar accuracy; (iii) provide mean-

ingful solutions for both synthetic and real datasets; (iv) be scalable.

In contrast to other methods described in this paper, EBIC with its

average accuracy exceeding 90% certainly meets these requirements

and could be called a next-generation biclustering method.

EBIC has certain limitations. First, the closer the overlap thresh-

old to 0, EBIC may no longer be able to capture different series that

are present within the same columns. Instead, this series of columns

which is represented by the largest number of rows will incorporate

all other permutations. The reason for this is construction of

top-rank list. For performance purposes, the list uses intersection

of columns as the merging criterion, what makes the actual order of

columns within the series irrelevant. A full overlap of biclusters

within the top-rank list is possible, but discouraged. Secondly, appli-

cation of EBIC to datasets that have fewer than 20 columns is dis-

couraged. In this case, an exhaustive search guarantees discovery of

all meaningful patterns in a much shorter time. Thirdly, the overlap

degree of biclusters for a dataset requires verification. Tuning the

parameters of the method may decrease the level of overlaps. A

more restrictive overlap threshold (0.5) allows the algorithm to de-

tect fewer biclusters with less overlapping columns, while a less re-

strictive overlap threshold (0.75) returns more biclusters at the cost

of their overlap. The degree of biclusters’ overlap cannot be directly

controlled in EBIC.

Fig. 7. Comparison of running time of the algorithms on datasets with 100 col-

umns and varying numbers of rows
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The guidelines for the exact number of iterations to run EBIC, as

well as the optimal level of overlap on biclusters in the top-list, need

to be empirically defined. EBIC scores do not seem to improve with

every iteration. The accuracy of pattern detection generally

improves over time for synthetic datasets, but this did not hold

for real genomic datasets. The highest proportion of significantly

enriched biclusters oscillated or even slightly deteriorated for real-

world genetic datasets after 100 iterations. For all genomic datasets,

EBIC was stopped after 5000 iterations, as it seemed to be a reason-

able compromise between the percentage of enriched results and run

time. Additional study on the influence of the size of the input ma-

trix on the number of required iterations is needed.

Our initial tests using larger volumes of data indicate that the al-

gorithm supports datasets of up to 60k rows per GPU. Full scalabil-

ity of EBIC and preparing the algorithm for big data challenges

requires more work.

5 Conclusions

EBIC is anticipated to become a reference method for future studies

in biclustering. EBIC may also prove beneficial in other domains be-

yond genomics. The method may improve pattern detection in mul-

tiple other fields (e.g. medicine, applied informatics, economics,

biology, or chemistry) in which biclustering has been previously suc-

cessfully applied. Extensive AI method development is necessary to

fully realize the potential of AI for solving the most challenging big

data problems.
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