
Improving the stability of cardiac mechanical simulations

Sander Land and Steven A. Niederer
Biomedical Engineering Department, King’s College London, London SE17EH, UK

Pablo Lamata and
Biomedical Engineering Department, King’s College London, London SE17EH, UK; Department 
of Computer Science, University of Oxford, Oxford OX13QD, UK

Nicolas P. Smith
Biomedical Engineering Department, King’s College London, London SE17EH, UK; Department 
of Engineering, The University of Auckland, Auckland, New Zealand

Abstract

In the field of cardiac modelling, the mechanical action of the heart is often simulated using finite 

element methods. These simulations are becoming increasingly challenging as the computational 

domain is customized to a patient’s anatomy, within which large heterogeneous tension gradients 

are generated via biophysical cell models which drive simulations of the cardiac pump cycle. The 

convergence of nonlinear solvers in simulations of large deformation mechanics depends on many 

factors. When extreme stress or irregular deformations are modelled, commonly used numerical 

methods can often fail to find a solution, which can prevent investigation of interesting parameter 

variations or use of models in a clinical context with high standards for robustness. This article 

outlines a novel numerical method that is straightforward to implement and which significantly 

improves the stability of these simulations. The method involves adding a compressibility penalty 

to the standard incompressible formulation of large deformation mechanics. We compare the 

method’s performance when used with both a direct discretization of the equations for 

incompressible solid mechanics, as well as the formulation based on an isochoric/deviatoric split 

of the deformation gradient. The addition of this penalty decreases the tendency for solutions to 

deviate from the incompressibility constraint, and significantly improves the ability of the Newton 

solver to find a solution. Additionally our method maintains the expected order of convergence 

under mesh refinement, has nearly identical solutions for the pressure-volume relations, and 

stabilizes the solver to allow challenging simulations of both diastolic and systolic function on 

personalized patient geometries.
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I Introduction

Finite element methods are increasingly used to study the mechanics of the heart. Studies in 

this area range from detailed electromechanical simulations with the goal of improving our 

understanding of physiology [1], [2], [3], genetically modified animals [4], [5], disease [6], 

[7], [8], and clinical intervention [9]. As the range of applications for these models is 

expanding, robustness of simulations over a large number of different cardiac geometries 

and physiological perturbations is becoming increasingly important.

A problem that frequently arises in solving these large deformation mechanics problems is 

that the nonlinear solution processes do not guarantee convergence to a solution of the set of 

governing equations [10]. As the number of degrees of freedom in these problems is 

typically in the tens to hundreds of thousands, it is difficult to uniquely identify the cause of 

such solver nonconvergence in a given context. These convergence problems can prevent 

researchers from investigating the effect of a large range of perturbations to the heart, as the 

more extreme (and often more interesting) variations are less likely to be solved. 

Furthermore, the convergence behavior of a solver for a biophysically detailed simulation of 

cardiac mechanics is sensitive to many other factors, including the computational mesh, 

choice of spatial or temporal numerical discretization, model parameters, boundary 

conditions, and many aspects of the numerical solver such as the matrix solver and line 

search algorithm.

Solver convergence issues have become even more relevant in the context of personalizing 

cardiac geometries for mechanical simulations [6], [11], where image processing and mesh 

fitting procedures now significantly influence the ability of a nonlinear solver to find a 

solution to the computational model. In particular, matching the patient’s anatomy more 

accurately has been shown to result in a more challenging computational problem, and 

achieving a good balance between accuracy and solver stability is a difficult problem. 

Furthermore, although mesh quality metrics can be maximized during mesh generation, they 

can not be robustly used to determine the solver performance [10]. Robust solver 

convergence when using these models is also important in the context of the parameter 

estimation required to further personalize these cardiac models [12], as the methods used to 

run the estimation procedures assume the simulations can be evaluated for a wide range of 

parameters.

There are a large number of numerical schemes that have been proposed for the numerical 

solution of the solid mechanics equations in the past fifty years. Many of these schemes are 

designed to overcome the difficulties of modelling incompressible materials. Two common 

approaches are the use of penalty methods and Lagrange multiplier methods. Penalty 

methods approximate fully incompressible materials as nearly incompressible, penalizing 

changes in volume causing with a large increase in strain energy. The compressibility of the 

material decreases as the penalty term is increased, but the resulting system of equations 

becomes numerically more difficult to solve. Several numerical schemes have been devised 

to alleviate these problems, including updating schemes based on augmented Lagrangians. 

For more information on these schemes and other method based on specific finite element 

implementations see e.g. [13], [14], [15] and references therein. A technique which can be 
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applied in both nearly- and fully incompressible modelling, are schemes based on a 

multiplicative split of the deformation gradient into isochoric and deviatoric components, 

which can be traced back to early work of Flory [16]. Within these schemes, and indeed for 

the material itself, the stress response is assumed to depend only on the isochoric (i.e. 

volume-preserving) part of the deformation. Although in the formulation of fully 

incompressible solid mechanics, there is no volume change in the exact solution, this 

assumption affects the numerical solution process, making it generally more likely to 

converge to a solution [17]. These methods have also been used in cardiac modelling, 

primarily in the context of simulating diastolic inflation of the ventricles [18], [19], For a 

more detailed review of these methods and their theoretical foundation based on the Hu-

Washizu principle, see e.g. [20], [21], [17]. Although this isochoric/deviatoric formulation is 

known to be particularly robust [17], a direct discretization of the equations for solid 

mechanics, without using an alternative stabilizing formulation, remains the most common 

approach in cardiac modelling [22], [23], [24], [25], [26], [27], [28], [29]. The fact that with 

very few exceptions [30], this includes nearly all detailed whole-cycle electromechanical 

models suggests that the implementation challenge of using these schemes, combined with 

the uncertainties of their effectiveness in solving whole-cycle cardiac simulations, may 

represent a significant hurdle to their adoption.

Given the lack of application of these more advanced schemes to complex cardiac 

simulation, and the apparent implementation barriers, the objectives of this paper are 

twofold. Firstly, we investigate the performance of the direct and isochoric/deviatoric 

formulations of the solid mechanics equations for a range of problems in cardiac mechanics, 

including both extreme inflation and simulations of the cardiac cycle. Secondly, we present 

an alternative scheme which is both simple and practical, and which significantly improves 

the stability and accuracy of cardiac simulations. This adjustment is straightforward to 

implement in a code using the direct finite element discretization of the solid mechanics 

equations, and calculation of the term has a negligible additional computational cost. The 

scheme can be applied to both the direct and isochoric/deviatoric formulations, and we 

compare the effect of this scheme on both methods. Below we present the mathematical 

background of our proposed novel numerical scheme. We then perform a detailed analysis 

on a simple test problem, to show the convergence under mesh refinement of the different 

numerical schemes. Finally, we analyze the stability and computational performance of the 

different methods on a range of practical problems of personalized cardiac models of human 

patients.

II Methods and Results

Cardiac tissue is typically modelled as an incompressible material [22], [24], [9], [26]. 

Although cardiac cells do not change volume over the course of a beat, estimates of tissue 

volume change during the cardiac cycle range from 2 – 15% [31]. As these volume changes 

are driven by changes in perfusion, we approximate cardiac tissue as a fully incompressible 

material, in the absence of a perfusion component in our model. In large deformation 

mechanics, the governing equations are given by:
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∀i : ∑
N

d
dXN

∑
M

FiMTMN = 0 (1)

Where F is the deformation gradient (Fi j =
dxi
dX j

), and coordinates in the undeformed and 

deformed configuration are denoted by X and x respectively. In equation 1, T is the second 

Piola-Kirchhoff stress, given by the derivative of the strain energy function W:

T = 2dW
dC = dW

dE (2)

Where E = 1
2 C−I , C = FTF are the Lagrangian and right Cauchy-Green strain tensors 

respectively. For the purpose of demonstration we will use the exponential strain-energy 

function proposed by Guccione et al. [32] throughout this manuscript:

Wg E =
C1
2 eQ − 1 where

Q = C2Eff
2 + C3 Ess

2 + Enn
2 + 2Esn

2 + 2C4 Efs
2 + Efn

2
(3)

Where f, s, n have the conventional definition of ‘fiber direction’, ‘sheet direction’ and 

‘normal direction’ in local tissue microstructure coordinates for cardiac simulations [33].

There are two main approaches to incompressibility in cardiac mechanics: the Lagrange 

multiplier method, and the penalty method. These are given by the strain energy functions:

W lagrange = Wg E − p J − 1 with constraint J = 1 (4)

Wpenalty = Wg E + κ
2 J − 1 2 (5)

Where p is the hydrostatic pressure and J = det F. In addition, we investigate an alternative 

discretization, as used by Göktepe et al. and Wang et al. among others [34], [18], [19]. This 

scheme defines the isochoric component of the deformation gradient as F = J−1/3F, along 

with isochoric strain tensors C, E, and uses these to define a strain energy function 

independent of changes in volume:

W iso = Wg E − p J − 1 with constraint J = 1 (6)
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Analogous variations of penalty methods (equation 5) also exists, but are susceptible to non-

physical behaviour [35] and will not be considered here. We focus on the often adopted 

choice in cardiac mechanics where equation 1 is solved using tricubic Lagrange elements 

and the constraint J = 1 is solved using trilinear elements where applicable [22], [4]. 

Specifically, the weak form of the incompressibility constraint J = 1 in terms of basis 

functions ϕj is:

∀ j∫
X

J − 1 ϕ j dV = 0 (7)

In analyzing situations where the Newton solver does not converge to a solution, we 

observed that the local change in volume J can be significantly different from unity while 

still obeying equation 7, and observed non-physical trial solutions where J < 0. Based on this 

observation, we introduce two novel schemes, based on adding a compressibility penalty (as 

in equation 5) to the Lagrange multiplier schemes.

W lagrange
stab = Wg E − p J − 1 + κ

2 J − 1 2 (8)

W iso
stab = Wg E − p J − 1 + κ

2 J − 1 2 (9)

Where the incompressibility constraint J = 1 applies in both schemes. The deformation (and 

thus J) is represented by higher order finite elements, while p is represented by trilinear 

elements. Thus, the addition of a higher order incompressibility penalty term means that the 

deformation is expected to more accurately obey the incompressibility constraint. In 

addition, the strain energy in equation 8 is similar to that used in augmented Lagrange 

schemes [15], which iteratively update p at each Gauss point and use sub-iterations to 

achieve incompressibility. However, these schemes do not solve the incompressibility 

constraint J = 1 directly, but instead represent a variation of the strain energy in equation 5. 

The electronic supplement includes derivations of the Piola-Kirchhoff stress tensors for the 

schemes we compare, as well as mathematical details.

As discussed in the introduction, there are many other numerical schemes for solid 

mechanics. In this paper, we limit our investigation to methods that are commonly used in 

cardiac mechanics and our proposed novel variations on them, i.e. the five strain energy 

functions given in this section. We also limit the investigation of the penalty method to κ = 

1000 kPa, which limits the difference in volume to approximately 10% compared to fully 

incompressible schemes in the physiological range of pressure and stiffness. The following 

sections show the effect of these different numerical methods on the convergence under 

mesh refinement and solver stability of mechanical simulations.
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A Tests on a cylinder problem

In this section we present an analysis of the convergence behaviour under mesh refinement 

of the five different schemes described in the previous section (the direct and isochoric/

deviatoric schemes, both with and without the additional stabilizing term, and a penalty 

method). For this purpose, we consider a simple test problem by inflating a thin cylinder of 

radius 30 mm and thickness 3 mm to typical end diastolic pressure of Pcav = 1 kPa. This test 

problem allows us to unambiguously analyze differences between the various computational 

schemes, without the complicating factors inherited from methods used in fitting the 

computational domain to physiological data, while still retaining some of the properties of 

the deformations seen in simulations of cardiac mechanics. The symmetry of the problem 

also makes it more tractable, as mesh refinement in two dimensions is sufficient to study 

convergence. For simplicity we define the material to be isotropic by using C2 = C3 = C4 to 

eliminate the dependence on the fiber direction, specifically we use C1 = 1 kPa, C2 = C3 = 

C4 = 5 to approximately double volume at the inflation pressure. We use a small load 

increment to maximize the change of convergence for the first solver steps, incrementing 

pressure by 0.01 kPa each step.

For this problem we consider the following three error metrics. Firstly, we consider the mean 

error in the deformation in Cartesian coordinates:

ErrX = mean
x ∈ A

xconv − x (10)

Where x is the node position, and the set of points A to be compared are all the nodes in the 

least refined mesh, including nodes internal to elements. We use a further refined solution 

with 128 × 8 elements to determine the converged solution xconv. Secondly, we consider the 

error as measured by the total strain energy (in Joules):

ErrE = ∫ W dV − ∫ Wconv dV (11)

Thirdly, we consider the error in solving the incompressibility constraint, per unit volume, 

which measures how well the solution found obeys the incompressibility constraint:

ErrI = ∫
mesh

det F−1 2 dV /∫
mesh

dV (12)

For the stabilization terms we initially set the compressibility penalty parameter to κ = 5 

Pcav. The dependence of κ on cavity pressure compensates well for the tendency for the 

solution to show greater deviation from the theoretically incompressible cases in larger 

deformations due to greater cavity pressures being applied. We will consider the choice of κ 
in more detail later in this paper. Figure 2 shows convergence under mesh refinement for all 

four numerical schemes on the meshes shown in Figure 1. These plots show that the 
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proposed stabilization preserves the solution in terms of pressure-volume relationship and 

has identical convergence behaviour compared to standard methods, while giving a more 

accurate solution for the incompressibility constraint. Table I shows differences between the 

methods are on the order of 10−6 mm, with similar differences resulting from using the 

isochoric/deviatoric discretization over the direct discretization, as resulting from the 

introduction of a stabilizing term. Additional benchmark problems confirming the lack of 

locking across different schemes are shown in the electronic supplement.

B Investigating nonconvergence of the Newton solver

As outlined in the methods section, the addition of a compressibility penalty to the stress 

tensor was motivated by the observation of a negative det F in the Newton iteration process. 

However, we have found that mesh refinement can result in a the incompressibility equation 

being solved more accurately, yet still resulting in a negative det F in the Newton search 

direction and non-convergence of the solver, at nearly identical pressures. In this section we 

investigate a number of alternative explanations for solver non-convergence, including 

numerical roundoff, the choice of initial solution, and the properties of the Jacobian at the 

point of solver non-convergence. We use the 4 × 1 mesh for efficiency reasons, as all 

problems show similar behaviour. We define the vector of unknowns as x in solving the 

system of equations ‖r(x)‖ < Nrreltol where N is the number of nodes and our default rreltol = 

10−9. For this choice of tolerance, inflation pressure is 48 kPa for the direct discretization, 

increasing to > 100 kPa when adding a stabilization term.

Firstly, we test whether loss of numerical precision may prevent the residual r from 

decreasing sufficiently. Increasing rreltol also results in non-convergence of the Newton 

solver, with an identical inflation pressure for rreltol = 10−6 and surprisingly a lower inflation 

pressure of 35 kPa for rreltol = 10−3. However, decreasing rreltol to e.g. 10−12 results in earlier 

failure (< 2 kPa) in both the non-stabilized and stabilized method. This shows that the solver 

convergence problems are not caused purely by numerical roundoff for our typical choice of 

rreltol = 10−9, but reflect a more fundamental problem. More detailed results for the 

dependence of solver convergence on this tolerance as well as mesh refinement and 

discretization method are shown in the electronic supplement.

Secondly, we tested the hypothesis that the choice of initial solution is the typical cause of 

solver non-convergence. Running with the direct discretization to the point of non-

convergence, and using the last iteration as a starting point for the stabilized method (κ = 1 

kPa) results in convergence for that load increment. Trying to re-solve the same load 

increment without stabilization, using the solution found with the stabilized method, once 

again results in non-convergence, even though the initial guess for the solution is close to the 

one being sought. Similarly, switching back at a later load increment results in non-

convergence. Thus, it appears unlikely that finding a better initial solution is a practical 

solution for solver nonconvergence.

Finally, we have tested the properties of the nonlinear system throughout the simulation by 

analyzing the eigenvalues of the Jacobian matrix. The Jacobian matrix is typically positive 

definite, i.e. all eigenvalues are positive, and a loss of this property is associated with 

instability, as the Jacobian matrix becomes (nearly) singular every time an eigenvalue 
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crosses from positive to negative. This presence of a near-zero eigenvalue in the Jacobian 

matrix A leads a large solver step Δx = A−1r, with trial solutions that are generally non-

physical. Small eigenvalues can also also lead to a large condition number (largest 

eigenvalue/smallest eigenvalue) which is associated with loss of numerical precision. To test 

the connection between the eigenvalues and solver stability in practice, we have explicitly 

determined the eigenvalues of the Jacobian matrix each time the Jacobian matrix is 

calculated, to investigate which discretization schemes show negative eigenvalues. Figure II-

B shows the minimal eigenvalues throughout the solution process for the different 

discretization schemes. These results show that for the direct discretization, zero crossings 

appear after 26.5 kPa inflation, with a risk for eigenvalues close to zero and subsequent 

solver nonconvergence. These zero crossings also explain the irregular dependence on load 

increment and convergence tolerance resulting in inflation pressures between 35-48 kPa, and 

the fact that use of a smaller load increment can result in a lower inflation pressure. For the 

stabilized method, as well as the isochoric/deviatoric approach and the penalty method, no 

zero crossings appear, and solver performance is more consistent. However, for higher 

pressures the Newton solver eventually fails, possibly due to the high condition number (≈ 
109), which is associated with loss of numerical precision. The isochoric/deviatoric 

discretization shows especially high condition numbers, resulting in earlier failure for this 

particular problem. The penalty method shows increased stability at higher pressures, with 

the first load increments being most difficult to solve in practice, but eventually fails at 790 

kPa inflation.

Testing the dependence of solver convergence on the load increment (from 0.01 to 1 kPa) 

and choice of Newton solver (modified or not) confirms these observations. The direct 

discretization shows less predictable results, as explained by the chance of solver failure at 

each zero crossing of an eigenvalue, whereas the other methods are far more consistent. 

Furthermore, increasing the load increment makes the penalty method fail more often. 

Detailed results for these simulations are presented in the electronic supplement.

In conclusion, solver non-convergence when using the direct discretization appears to be 

related to a nearly singular Jacobian, which is associated with local extrema, saddle points, 

and bifurcations. The extra compressibility penalty term tends to prevent the Jacobian from 

becoming singular, thus improving convergence of the nonlinear solver. The improvement 

we are reporting may be related to improving the ellipticity and convexity of the strain 

energy function, conditions which are important for preventing unnatural deformations. 

Specifically, the deformation block of the Jacobian being positive definite is implied by the 

‘strong ellipticity’ condition. Although the Guccione law has been shown to be locally 

convex for any positive parameters [36], it is not strongly elliptic for anisotropic three-

dimensional problems. Specifically, this important property can be violated under certain 

types of deformations involving fiber compression in exponential strain energy laws [37] and 

when active contraction is added [25].

C Personalized biventricular simulations

Our second test case relates to one of the primary motivation for the stability improvement: 

allowing researchers to more robustly simulate mechanics on personalized patient 
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geometries. For this purpose, we have created twenty personalized biventricular cardiac 

meshes (shown in Figure 4) which represent an accurate fit to a varied set of patient 

anatomies. The meshes were generated using our mesh personalization tool [38] which was 

recently made available as a web service [39].

As a test for numerical stability, each of these twenty ventricles is inflated to a left-

ventricular pressure of Pcav = 100 kPa, while maintaining right-ventricular pressure at 1
3  of 

the left ventricular pressure. For comparison, typical left-ventricular end-diastolic pressures 

are around 1 kPa [40]. As in the previous section, we initially test three different settings for 

κ for the stabilized method, as in the cylinder problem. We use the constitutive parameters 

C1 = 4 kPa, C2 = 10, C3 = 5, C4 = 2.5 based on typical volume changes at end-diastolic 

pressures. We set the fiber direction ranging from −60 degrees at the epicardium to +80 

degrees at the endocardium.

Table II shows the results for these test runs, indicating the number of simulations which 

inflate to typical end-diastolic pressure, and those that succeed to extreme inflation of 100 

kPa. As in the cylinder test, we use κ = 5 Pcav. Using the direct method, none of the meshes 

reach extreme inflation. After adding the stabilization term with κ = 5 Pcav, 18/20 cases 

reach 100 kPa, while the other two meshes still fail to reach 1 kPa inflation. Using the 

isochoric/deviatoric discretization, solver convergence is much improved, and only one case 

remains problematic. This is the same case that shows worst-case behaviour in all methods, 

which suggests that generation of the computational mesh is still an important factor 

regardless of the numerical scheme used. Nevertheless, the addition of the stabilization term 

in the isochoric/deviatoric discretization roughly triples the inflation pressure for this case.

Comparing the solutions for the incompressible schemes reveals that differences are small. 

The left-ventricular cavity volume when adding the stabilization term is approximately 

0.02% lower compared to the direct method without stabilization. Differences with the 

isochoric/deviatoric discretization are larger, with volume almost 0.2% higher without a 

stabilization term, and 0.13% higher with this term included. The penalty method shows 

larger differences in volume which are very load dependent. Although small at < 5 kPa, 

solutions diverge to a volume of approximately 50% higher than fully incompressible 

schemes at 100 kPa.

Finally, these twenty cases also give us the opportunity to look at the effects of the free 

parameter κ in more detail. So far we have only used the setting κ = 5 Pcav, which was found 

to work well in practice. To explore the choice of stabilization parameter in more detail and 

determine its effects on stability and computational cost, we run all 20 biventricular cases 

with κ = κc + κp Pcav. Variations in both the constant factor κc and the pressure-dependent 

factor κp are tested, using the values 0, 1, 5, 25, 125 for a total of 1000 simulations. Results 

for inflation to 1 kPa are shown in Figure 5. Most cases show a similar pattern, where the 

computational cost increases significantly for higher κc, and less so for increasing values of 

κp. A few especially challenging cases fail to solve except when using a large stabilization 

term or using the deviatoric/isochoric formulation.
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D Whole-cycle biventricular simulations

In this section we present simulations of the full cardiac cycle on the same twenty 

biventricular patient geometries. Simulating a contracting heart adds a wider range of 

deformations to our tests, and thus will better distinguish the practical performance of the 

different numerical methods. The whole-cycle model with phase transitions is solved 

monolithically with the solid mechanics equations, as in our previous work [3]. Three-

element windkessel parameters for the ejection phase were prescribed as R = 1.06 mmHg 

s/ml, C = 1.9 mmHg s/ml, Z = 0.062 ml/mmHg based on Westerhof et al. [41], with right-

ventricular parameters set to R′ = R/3, Z′ = Z/3, C′ = 3C based on typical pressure 

differences between the ventricles. For active tension Ta we use the model from Niederer et 

al. [8] based on work by Kerckhoffs et al. [42], given by

Fiso = max 0, tanh a6 − λ − a7 (13)

Ftwitch =
tanh2 t /tr tanh2 te − t /td t < te
0 t ≥ te

(14)

te = b λ − ld (15)

tr = tr0 + a4 1 − Fiso (16)

Ta = T0FisoFtwitch (17)

T′ = T + TaffT (18)

Where tr0 = 80 ms, a4 = 650 ms, td = 90 ms, b = 1 ms, ld = −500, a6 = 6, a7 = 0.7, T0 = 180 

kPa, and f is a unit vector in the fibre direction. The stress tensor T′ including active tension 

is used instead of T in Equation 1. As is usual, λ represents the local change in length in the 

fibre direction, given by λ = Ff = 2Eff + 1 .

We tested two different electrical activation patterns: firstly, a more physiological 

homogeneous activation, and secondly, a heterogeneous activation pattern which starts at the 

basal part of the septum and spreads homogeneously with a conduction velocity of 0.75 

mm/ms, representative of pathological cases such as left bundle branch block. Results are 
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shown in Table III. Notably, unlike in passive inflation tests, the isochoric/deviatoric 

formulation performs much worse than the direct discretization in these cases without 

additional stabilization. The ejection and isovolumetric relaxation phase appears especially 

difficult to solve using this numerical method. For both formulations, the pressure-dependent 

penalty, although shown to be effective for achieving high computational performance, 

shows its limitations in this challenging test case. Specifically, in isovolumetric relaxation, 

the decreasing pressure will result in a decreasing penalty, which we hypothesised is the 

cause for their large number of failed simulations in IVR. This inspired a further test in 

which the parameter κ can not decrease, resulting in a total of 95% of successful simulations 

for both activation patterns.

III Discussion

In this paper we have presented, to our knowledge, the first report of the performance of the 

different available numerical schemes on detailed simulations of the entire cardiac cycle. 

This analysis revealed the limited performance of several existing numerical methods for the 

simulation of more challenging heterogeneous cardiac simulations. In addition, we have 

proposed alternative ‘stabilized’ schemes which are straightforward to implement and 

significantly increases the stability of simulations during extreme inflation, ejection, and 

isovolumetric relaxation in personalized cardiac geometries.

When analyzing the effects of the proposed methods using an idealized cylinder inflation 

test, we showed that our stabilized method improves the accuracy of solving the 

incompressibility constraint while converging as expected for deformation and volume 

measurements. In our test of biventricular mesh inflation, maximal inflation pressure was 6.6 

kPa across all meshes when applying the commonly used direct discretization, When adding 

the stabilization term or using the deviatoric/isochoric formulation, at least 90% of the cases 

inflate to extreme pressures of 100 kPa. This is a significant improvement over the previous 

results reported by Lamata et al. [10] using the same kind of cardiac meshes, and shows the 

complex interaction between mesh quality and the choice of numerical methods.

Unlike its good performance in diastolic inflation, the isochoric/deviatoric formulation 

shows relatively poor performance in running whole-cycle models on personalized patient 

geometries. As our proposed stabilized method performs better on these simulations, and is 

competitive with the isochoric/deviatoric formulation for extreme inflation, it may be a good 

choice with a lower implementation barrier for modifying an existing finite element 

implementation to be more stable. However, the proposed stabilization can also be easily 

added to an implementation using the isochoric/deviatoric discretization, and this 

combination gives the best results in both diastolic inflation tests, and completing whole 

cycles.

From the range of tests shown for the effects of the extra parameter κ we can derive some 

practical guidelines for the choice of stabilization term. Although the stabilization term does 

not add significant computational cost by itself, a high penalty term can in practice lead to 

slower convergence of the nonlinear solver. To limit this effect, we recommend using a 

penalty with a constant factor of 1-5 kPa and a pressure-dependent factor of 1-25.

Land et al. Page 11

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2018 October 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



As mentioned previously, although the observation of negative det F in the Newton iteration 

process was the main inspiration for the stabilized method, the connection between this 

problem and solver stability remains to be fully elucidated. We identified the main cause of 

solver non-convergence to be a near-singular Jacobian leading to exploration of nonphysical 

and self-intersecting trial solutions, and numerical overflow of the stress tensor. The 

contribution of the cubic order deformation to the incompressibility constraint is likely to 

regularize the deformation, and may help to prevent local extremes in stress and strain. 

Underlying these erratic failure of the Newton solver for more extreme deformations is the 

loss of ellipticity for the direct discretization, while more consistent failure at extreme 

deformations is correlated with loss of numerical precision due to high condition numbers.

In this study we focussed our attention on our preferred application of cardiac mechanics. 

Our focus on this particular application may have introduced a number of limitations. 

Firstly, we have used the Guccione constitutive law in our test problems as it is relevant to 

our research and is similar to most other constitutive laws used in cardiac mechanics [43], as 

they have similar exponential strain energy functions. If the nonconvergence is indeed 

related to a loss of ellipticity, different types of constitutive laws may not require the 

stabilized method. This makes our method more suitable for biological materials with 

complex anisotropic properties. Indeed, limited tests using a Neo-Hookean law showed that 

very extreme and non-physical deformations are required before the solver fails. However, 

as shown by Pathmanathan et al. [25], any strain energy function will lose strong ellipticity 

when sufficient active tension is added. The results shown in this paper when solving a full 

cardiac cycle with the isochoric/deviatoric formulation, shows that although this method has 

been analyzed in detail for passive mechanics, the addition of active tension introduces 

unique challenges which have not been sufficiently investigated. Another aspect of stability 

is the possibility for snap-through solutions, in which one pressure yields multiple possible 

solutions for the deformation. These issues can be addressed by the use of arc-length 

methods [20]. However, for our constitutive laws such phenomena are not expected because 

total strain energy grows exponentially in strain while external work grows proportional to 

surface area. Indeed, our solutions show no indication of sudden jumps in volume or solver-

independent points of failure.

In conclusion, in this study we have proposed a new formulation of incompressible large 

deformation mechanics. The method can improve the stability of simulations while 

maintaining computational efficiency.
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Fig. 1. Meshes used for the cylinder problem.
Since the problem is perfectly symmetric, we only refine the mesh circumferentially and 

radially as shown in panel (a), indicating the level of refinement as ‘number of elements 

circumferentially × number of elements radially’.
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Fig. 2. Convergence results for the cylinder problem.
Our refinement study shows fourth-order convergence for deformation (Panel A, Equation 

10), and shows second-order convergence for the incompressibility constraint (Panel B, 

Equation 12). Panel B also shows that our proposed method can significantly reduce error in 

solving this equation. Results for all methods are compared to a refined solution computed 

with the same method, while table I shows differences between methods for these refined 

solutions. Panels C shows error in total strain energy convergence, while Panel D confirms 

convergence to identical total strain energy for all fully incompressible schemes.
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Fig. 3. Eigenvalue analysis on the cylinder problem.
Panel A shows the minimum absolute eigenvalue decreasing for higher pressures, leading to 

very high condition numbers (Panel B). For the direct discretization without stabilization, 

the erratic values are caused by eigenvalues crossing zero (Panel C), which does not happen 

in the stabilized methods or isochoric/deviatoric approach.
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Fig. 4. Biventricular meshes used for our test case.
Twenty 144 element personalized geometries generated from MRI data of patients.
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Fig. 5. Influence of the penalty term on stability and computational cost.
These plots show average performance over 20 cases for varying constant factor κc and 

pressure dependent factor κp, where κ = κc + κp Pcav. The number in the middle of the 

squares shows the average number of Jacobians required in successful simulations only. 

Letters in parenthesis indicate the meshes which failed to reach 1 kPa in these settings, and 

only include a,b,d as all other cases succeeded in all settings. Panel (a) shows these results 

for the direct discretization, and panel (b) for the deviatoric/isochoric formulation. Note that 

the choice of 1 kPa pressure implies solutions to the deformation on top-left to bottom-right 

diagonals of identical κc + κp are completely identical, while total computational cost shown 

here can differ significantly.
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Table I
Differences in deformation for the different numerical method.

Results show mean differences in deformation between the different methods, as measured by the mean 

difference between nodes in the most highly refined mesh (128 circumferential elements), measured in mm. 

Table entries at the top are abbreviations for the different numerical methods as indicated in parenthesis at the 

start of each row. As the penalty method has a different exact solution, differences with this scheme are 

significantly larger, leading to identical entries in the last column at this level of precision.

Method D DS I IS P

Direct discretization (D) - 6.8 · 10−7 1.9 · 10−6 1.8 · 10−6 5.4 · 10−3

… with stabilization (DS) - 1.4 · 10−6 1.3 · 10−6 5.4 · 10−3

Isochoric/deviatoric discretization (I) - 1.4 · 10−7 5.4 · 10−3

… with stabilization (IS) - 5.4 · 10−3

Penalty (P) -
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Table II
Summary of results for inflation of biventricular meshes.

Results show key metrics of stability for the direct discretization compared with our stabilized method, 

discretization using the isochoric/deviatoric split, and a penalty method. For each setting, we show the number 

of cases that succeed up to typical end-diastolic pressure (1 kPa), and the number of cases that reach extreme 

inflation (100 kPa), as well as the mean pressure reached when averaging results over all 20 cases, and the 

worst case pressure reached over all cases. For the stabilization we use κ = 5 Pcav, while the penalty method 

uses κ = 1000 kPa.

Method Mean inflation pressure Worst-case pressure Typical EDP Extreme inflation

Direct discretization 4.25 kPa 0.11 kPa 18/20 0/20

… with stabilization 90.1 kPa 0.12 kPa 18/20 18/20

Isochoric/deviatoric discretization 95.1 kPa 1.3 kPa 20/20 19/20

… with stabilization 95.2 kPa 3.8 kPa 20/20 19/20

Penalty method 85.2 kPa 0.01 kPa 18/20 17/20
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Table III
Results for whole cycle simulations.

The left-most column indicates the number of simulations that complete successfully to end isovolumetric 

relaxation. Letters in the other columns indicate the number of meshes for which the simulation failed to 

converge in a certain cardiac phase, and match those from Figure 5. For the stabilization we use κ = 5 PCav, 

and for ‘Non-Decreasing’ entries we do not allow κ to decrease during the simulation.

Homogeneous activation

Method Succeed Fail in inflation Fail in IVC Fail in ejection Fail in IVR

Direct discretization 16 2 1 1

… with stabilization 17 2 1

… with stabilization, non-decreasing 17 2 1

Isochoric/deviatoric discretization 5 1 11 3

… with stabilization 16 1 3

… with stabilization, non-decreasing 19 1

Septal activation

Method Succeed Fail in inflation Fail in IVC Fail in ejection Fail in IVR

Direct discretization 0 2 1 11 6

… with stabilization 1 2 1 16

… with stabilization, non-decreasing 17 2 1

Isochoric/deviatoric discretization 0 1 10 9

… with stabilization 0 1 19

… with stabilization, non-decreasing 19 1
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