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Abstract

Most decisions share a common goal: maximize reward and minimize punishment. Achiev-

ing this goal requires learning which choices are likely to lead to favorable outcomes. Dopa-

mine is essential for this process, enabling learning by signaling the difference between

what we expect to get and what we actually get. Although all animals appear to use this

dopamine prediction error circuit, some do so more than others, and this neural heterogene-

ity correlates with individual variability in behavior. In this issue of PLOS Biology, Lee and

colleagues show that manipulating a simple task parameter can bias the animals’ behavioral

strategy and modulate dopamine release, implying that how we learn is just as flexible as

what we learn.

Learning the value of objects in the environment is critical for survival. Some mushrooms are

deadly; others provide sustenance. Rain in the dry season can be a harbinger of life, while in a

monsoon, it means heading for cover. How do animals learn these values and adapt them over

time? One of the most common ways is through trial and error. As we explore our environ-

ment, we make predictions about the value of stimuli around us. If outcomes match our pre-

dictions, there is no need to adapt. If outcomes are different, we use that discrepancy to

improve our predictions for the future. This difference between actual and expected outcome

is known as prediction error, and it turns out to be crucial for learning in animals [1–3] as well

as machines [4,5]. As befitting such a conserved learning mechanism, the brain has developed

a fine-tuned system to encode it.

In the 1990s, Schultz and colleagues [6,7] recorded monkey dopamine (DA) neurons and

discovered a curious response. When monkeys received an unexpected reward, such as a drop

of juice, DA neurons became excited. If animals received the same reward but fully expected it,

DA neurons showed no response. Instead, DA neurons fired to the earliest reliable predictor

of the reward, typically a sound or picture that indicated juice was coming soon. Finally, if the

reward was expected but never materialized, DA neurons dipped below their baseline firing

rate at precisely the moment when the reward was anticipated. Together, these results imply

that DA neurons encode the difference between actual and expected reward—in other words,

reward prediction error (RPE), the precise signal already known to facilitate learning.

The link between DA and RPE has been replicated and extended numerous times in a host

of species and tasks (for review see [8]). Notably, modern neuroscience tools have confirmed

that prediction error neurons are indeed dopaminergic [9] and have revealed a local circuit in
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the ventral tegmental area that is partially responsible for calculating the RPE signal [10]. Fur-

thermore, causal manipulations have demonstrated that both positive [11] and negative [12]

DA RPEs are sufficient to cause associative learning.

While RPE signaling may represent the dominant population response [13], as more inves-

tigators began to study DA and reinforcement learning, it became apparent that DA neurons

also encoded other signals. In rats trained to associate an audio–visual stimulus (insertion of a

metal lever) with the delivery of a food pellet into a nearby receptacle, an intriguing relation-

ship was found between heterogeneity in DA signaling and individual variability in behavior

(Fig 1) [14]. Some rats, termed “sign-trackers,” readily approached and engaged with the

reward-predictive lever cue, even though this behavior had no effect on subsequent reward

delivery. Other rats, termed “goal-trackers,” used the lever only to time entry into the recepta-

cle in anticipation of food; otherwise, they ignored the lever. Strikingly, these behavioral strate-

gies were characterized by distinct DA responses: DA RPE signals were observed only in sign-

trackers. For goal-trackers, cue-evoked DA release was weak, and the DA response to expected

reward failed to decline, even when the rats had clearly learned the cue–reward association.

Furthermore, pharmacological blockade of DA signaling disrupted the sign-tracking response

but had no effect on goal tracking. These data suggest that individual differences in allocating

attention and attributing value to meaningful stimuli may be driven, at least in part, by endog-

enous variation in the function of midbrain DA neurons.

The empirical finding that stimuli can acquire different motivational properties in individu-

als trained on the same task is difficult to explain computationally with DA RPEs. To address

this problem, Lesaint and colleagues [15] recently proposed a model that builds on previous

efforts in two important ways. Typically, reinforcement learning algorithms use RPEs to drive

learning about the value of states [16], not discrete stimuli. The Sign-Tracking and Goal-

Tracking (STGT) model instead uses RPEs to create factored representations in which the

value of stimuli can be adjusted independently, enabling the lever and food cup to acquire dis-

tinct motivational properties.

The second key advance is that values calculated by multiple learning systems are integrated

as a weighted sum instead of relying exclusively on a value derived from RPEs. Given the wide

range of situations that humans and other animals encounter in complex, unpredictable envi-

ronments, it is unlikely that a single learning system can optimally address all potential prob-

lems. The STGT model leverages two previously described systems, termed model free and

model based [17,18]. Model-free systems learn the value of actions and events through trial

and error and store this information for later use. When the same stimuli are encountered

again, past experience serves as a guide to estimate future outcomes. In contrast, model-based

systems draw on an internal model of the world to make cognitive predictions of future events

by forward inference. Model-based systems are able to flexibly generate goal-directed choices

based on prospective assessment of the consequences of events or actions, without those con-

sequences actually having to be experienced. Model-free and model-based learning systems

offer complementary advantages and are thought to be implemented by distinct neural circuits

[19]. Notably, DA RPEs are ideally suited to drive model-free learning.

The STGT model integrates stimulus values computed by model-free and model-based sys-

tems, with individual variation determining the weight assigned to each component. For sign-

trackers, the DA-dependent model-free system dominates, assigning greater value to the lever

that perfectly predicts reward. Goal-trackers preferentially rely on the DA-independent

model-based system, which infers the optimal behavior to maximize reward and favors

approach to the location where it will appear. Intermediate behavioral phenotypes are easily

explained as a balanced weighting of values computed by the two systems.
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In this issue of PLOS Biology, Lee and colleagues [20] test a specific hypothesis from the

STGT model: changing the intertrial interval (ITI) will modulate DA signaling and bias ani-

mals between sign tracking and goal tracking (Fig 2). The logic goes like this: the longer the

ITI, the more times an animal might visit the food cup between trials, when there is no food

available. Each time this happens, DA neurons encode a negative RPE, and the value of the

food cup goes down. Eventually, the food cup loses its salience to the animal, and the animal

becomes more likely to sign-track, approaching the lever rather than the food cup. After all,

the lever is more reliable at signaling reward: it always predicts food delivery, while the food

cup often does not. Mirroring the behavior, DA neurons might show large bursts of activity

both when the lever is presented—denoting the lever’s increased value to the animal—and

when the food cup actually contains food, since this has become surprising. All of these

Fig 1. Behavioral variability and DA response. Hungry rats perform a task in which the appearance of a lever predicts

food delivery several seconds later. When the lever is presented, some rats, termed sign-trackers (left), immediately

approach the lever, while other rats, termed goal-trackers (right), approach the food cup instead. When reward is

delivered, all rats approach the food cup. Previous work has demonstrated different patterns of DA release for these two

groups: sign-trackers exhibit large DA release to the lever but not the reward, while goal-trackers show small but persistent

DA responses to the lever and the reward. Both the behavioral and the neural differences between these groups have been

interpreted to reflect the relative weights of two learning systems: model free and model based (see text). When model-free

learning predominates, rats sign track; when model-based learning predominates, they goal track. DA, dopamine.

https://doi.org/10.1371/journal.pbio.3000043.g001

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000043 October 11, 2018 3 / 7

https://doi.org/10.1371/journal.pbio.3000043.g001
https://doi.org/10.1371/journal.pbio.3000043


predictions are reversed if the ITI is short and the animal has limited opportunity to visit an

empty food cup.

The experiment was simple: on each trial, a lever was presented for 8 s, followed by pellet

delivery into the food cup. Some animals then waited 60 s for the next trial to begin, while oth-

ers had to wait 120 s. As expected, Lee and colleagues found that rats randomized to the 120-s

ITI were more likely to sign-track (i.e., approach the lever), while rats randomized to the 60-s

ITI were more likely to goal-track (i.e., approach the food cup). This was particularly apparent

at the beginning of each trial; after 4 s, the two groups behaved similarly. While the rats were

performing the task, the authors used fast-scan cyclic voltammetry to measure a proxy of DA

release in the nucleus accumbens and found that the long-ITI group showed significantly

higher DA release to both the lever and the food cup compared to the short-ITI group. In fact,

the short-ITI group did not show any significant DA response to the reward after learning.

These results correlated with the amount of time the rats interacted with the food cup during

the ITI: the more time rats spent with the food cup during the ITI, the higher the DA release to

both the lever and the food cup. These changes in behavior and DA release developed over a

similar time course, implying that they either drive each other or that they are both driven by a

common factor.

Together, Lee and colleagues show that a simple manipulation—changing the amount of

time between trials—can modulate behavior and DA release in the nucleus accumbens. Based

on the STGT model, the authors interpret their results as reflecting interactions with an empty

food cup between trials, triggering a lower estimate of the food cup’s value, and biasing the rats

toward a model-free, sign-tracking approach. Curiously, when the rats were nudged toward

sign-tracking behavior, their DA responses did not recapitulate the sign-tracking pattern

Fig 2. Experimental predictions. In this issue of PLOS Biology, Lee and colleagues randomized rats to short or long ITIs

and measured behavior and dopamine release. They predicted that with a long ITI, rats would have more opportunities to

engage with an empty food cup, causing repeated negative dopamine responses and biasing the animals toward a model-

free, sign-tracking approach. In contrast, short ITIs would bias the animals toward a model-based, goal-tracking approach.

ITI, intertrial interval.

https://doi.org/10.1371/journal.pbio.3000043.g002
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observed by Flagel and colleagues [14], with reward responses decreasing over time. Similarly,

when the rats were nudged toward goal-tracking behavior, the DA responses did not show the

sustained reward response one might have expected from pure goal-trackers [14]. In both

cases, DA release was a hybrid of the two patterns. This demonstrates that sign tracking and

goal tracking are not hardwired and unchanging; rather, these tendencies arise from specific

interactions the animals have with stimuli in a task. By the same logic, it is unlikely that the

DA-dependent model-free system is ever completely offline; instead, animals give this system

more or less weight depending on their experience and needs. The simple one-to-one relation-

ship between DA release and behavioral strategy turns out to be much more complex.

These results suggest a number of important future directions. For example, to shore up the

correlations between food cup interactions and DA responses (Fig 2), investigators might con-

sider removing the food cup entirely during the ITI [21]. If the STGT interpretation is correct,

this should abolish any effect of ITI on the rats’ behavior. If behavioral differences remain,

other interpretations must be sought—for example, long waiting times might simply increase

the salience of all stimuli, regardless of interactions with those stimuli in the meantime.

Another fruitful approach might be a cross-over design, in which rats experience both ITI

lengths at different points in the experiment. Is the effect strong enough to shift an individual

rat back and forth between sign tracking and goal tracking? Higher resolution, trial-by-trial

measurements of DA (e.g., through extracellular recording) might also be crucial to explore

the complicated temporal dynamics of behavior on this task. Finally, causal manipulations of

the DA circuit, especially through temporally specific means such as optogenetics, would go a

long way toward demonstrating that patterns of DA activity actually control behavior in this

task, rather than simply reflect it.

For the field more generally, numerous fascinating questions remain open. Where in the

brain do model-based and model-free learning occur, and what determines the relative weight

between them [19]? How are RPEs calculated in the first place [22]? Is DA the only relevant

circuit for RPE-driven model-free learning, or are there redundant circuits, for example, in the

cerebellum [23]? What are the genetic or environmental factors that bias some animals to

sign-track and others to goal-track under equivalent testing conditions? What relationship

does this phenomenon have to disorders of learning or habit, such as OCD or addiction?

Finally, emerging evidence from multiple species indicates that a subset of DA neurons is acti-

vated by unpleasant or painful stimuli [24–26]. Is there undiscovered individual variability in

behavior or DA activity within the aversive domain? Should aversive DA signals be integrated

into computational frameworks for reward learning, or do these represent entirely separate

computations? These questions will take concerted effort across many labs and multiple years,

but they may hold the key to some of the most fundamental questions in neuroscience: how

we learn about rewards and punishments and how this process breaks down in neuropsychiat-

ric disease.

Zooming out even further, it is important to note Lee and colleagues’ general approach.

They studied a computational model of an interesting physiological phenomenon, developed a

specific hypothesis from that model, and then collected new data to test this hypothesis

directly. What they found partially validated the model but also brought up new and unantici-

pated questions. Regardless of the specific results, this is the scientific method at its purest, and

it should be celebrated.
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