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Abstract

Introduction

Leptospirosis is a zoonotic disease responsible for over 1 million severe cases and 60,000

deaths annually. The wide range of animal hosts and complex environmental drivers of

transmission make targeted interventions challenging, particularly when restricted to regres-

sion-based analyses which have limited ability to deal with complexity. In Fiji, important envi-

ronmental and socio-demographic factors include living in rural areas, poverty, and

livestock exposure. This study aims to examine drivers of transmission under different sce-

narios of environmental and livestock exposures.

Methods

Spatial Bayesian networks (SBN) were used to analyse the influence of livestock and pov-

erty on the risk of leptospirosis infection in urban compared to rural areas. The SBN models

used a combination of spatially-explicit field data from previous work and publically available

census information. Predictive risk maps were produced for overall risk, and for scenarios

related to poverty, livestock, and urban/rural setting.

Results

While high, rather than low, commercial dairy farm density similarly increased the risk of

infection in both urban (12% to 18%) and rural areas (70% to 79%), the presence of pigs in a

village had different impact in rural (43% to 84%) compared with urban areas (4% to 24%).

Areas with high poverty rates were predicted to have 26.6% and 18.0% higher probability of

above average seroprevalence in rural and urban areas, respectively. In urban areas, this
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represents >300% difference between areas of low and high poverty, compared to 43% dif-

ference in rural areas.

Conclusions

Our study demonstrates the use of SBN to provide valuable insights into the drivers of lepto-

spirosis transmission under complex scenarios. By estimating the risk of leptospirosis infec-

tion under different scenarios, such as urban versus rural areas, these subgroups or areas

can be targeted with more precise interventions that focus on the most relevant key drivers

of infection.

Author summary

Leptospirosis is a zoonotic disease responsible for over 60,000 deaths annually and is

transmitted from mammal hosts to humans through contact with infected urine. The

range of possible hosts and complex environmental factors related to transmission make

targeted interventions challenging. We used spatial Bayesian Networks applied to a case

study in Fiji to show that livestock exposure and poverty affect the probability of infection

differently in rural compared to urban areas. This work illustrates the complexity of lepto-

spirosis transmission drivers in Fiji, and shows how they are affected by the interactions

between livestock exposure and other environmental and socio-demographic factors. In

doing so, we support previous findings linking the risk of leptospirosis to poverty.

Introduction

Leptospirosis is a globally occurring zoonotic disease, with an estimated one million severe

cases and 60,000 deaths annually [1]. Infection is particularly common in tropical developing

countries, with the highest mortality rates found in Oceania (including the Pacific Islands),

accounting for an estimated 9.61 deaths per 100,000 people [1–3]. Outbreaks are often associ-

ated with extreme weather events such as flooding, and prevalence is expected to increase as

these events become more common as a result of climate and global environmental change

[4–7]. With lack of resources being a key limitation for health adaptation to climate change in

low and medium income countries [8], the ability to efficiently allocate available resources by

tailoring interventions is crucial for maximising impact [9].

Infection in humans is caused by contact with infected urine from a mammalian (non-

human) host [10]. This can occur via different exposure pathways and risk of infection is

affected by numerous interacting environmental, socio-demographic, and behavioural factors.

With global environmental and demographic change, these factors could individually, or pos-

sibly synergistically, increase the risk of transmission. The relative importance of these factors

also varies between places. For example, urbanisation has been identified as a key predictive

factor in the risk of transmission in Brazil [11]. Typically, urbanisation in developing countries

results in densely populated areas with high poverty levels, poor dwelling construction and low

education rates, such as the favelas of Brazil [12]. However, in other countries such as Fiji,

urban dwellers have a lower risk of infection than those in rural areas, mostly due to differ-

ences in exposure to subsistence livestock animals [13, 14]. Livestock including pigs, cattle and

sheep are known to be important reservoirs [2, 10, 15–17], although exposure to these animals
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differs across communities [14] and even for different individuals within the same

communities.

By assessing the estimated risk of leptospirosis infection under different scenarios and for

different sub-populations, such as urban versus rural areas, these groups or areas can be tar-

geted with more precise interventions that specifically focus on the key drivers of infection

most relevant to them. Common methods used in epidemiology, such logistic regression mod-

els, do not easily allow for scenario analysis and in many cases separate models are required

for each scenario, retraining the model each time on a subset of the data [15]. Geographically

weighted regression models have been used to determine the spatial variation in the relative

importance of environmental factors [18], but like standard regression models, they are not

designed for scenario analysis.

Bayesian networks (BNs) are a machine learning technique [19] commonly used in creating

decision support systems in numerous fields including environmental management [20–22],

and health [14, 23, 24]. BNs are better suited than regression models for assessing complex sys-

tems and outcomes under different scenarios [14, 25]. Scenario analysis using BNs is facilitated

by a graphical interface which allows decision makers to interact directly with the model,

define scenarios (including ones with multiple strongly correlated variables) and explore out-

comes. Recently, BNs have been integrated with geographic information systems (GIS) to gen-

erate decision support systems that include predictive risk maps [20, 22, 26].

In this paper, we use BNs and a linked GIS to produce a predictive risk map of human lep-

tospirosis infection in Fiji. We also examine different scenarios for selected combinations of

environmental and livestock exposures to examine how these interactions may impact the risk

of disease transmission.

Materials and methods

Ethics statement

Ethics approvals were granted by the Fiji National Research Ethics Review Committee (2013

03), the Human Research Ethics Committee of The University of Queensland (2014000008)

and the London School of Hygiene & Tropical Medicine (6344). Support was sought and

obtained from divisional and sub-divisional Ministry of Health officers for community visits.

Study location and setting

Fiji is divided into 86 Tikinas (administrative areas), which are further broken down into enu-

meration areas (EAs) of between 80–120 households. The total population is approximately

837,217 [27] and is predominately iTaukei (native Fijian) (57%), with Fijians of Indian descent

(Indo-Fijians) comprising 35% [27]. Livestock are commonly kept for both commercial and

subsistence purposes. Contact with specific livestock species varies between ethnic groups and

urban/rural settings [14]. Fijians have varying access to education and basic services such as

electricity and metered water (treated water supplied to houses), particularly between rural

and urban areas.

Data sources

Data were obtained from an eco-epidemiological study of leptospirosis on the three major

islands in Fiji (Viti Levu, Vanua Levu and Taveuni) conducted in 2013, as well as from govern-

ment departments and the most recent census [13]. In 2013, field data were collected on 2,152

human participants from 82 villages, and included questionnaire data on household-level and

village-level risk factors, such as the presence of livestock and other animal species, serological
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data (using the microscopic agglutination test) indicating evidence of past leptospirosis infec-

tion, and GPS coordinates of place of residence. Census and government data included envi-

ronmental and sociodemographic factors such as rainfall, poverty and education levels as well

as information on commercial livestock. This information was available at either the Tikina or

EA level. A total of 50 potential predictor variables were identified in this study (Table A in S1

Appendix).

As this study aims to look at environmental rather than individual-risk factors, values for

predictor variables and the percentage of the population with antibodies to Leptospira (sero-

prevalence) were summarised to the village level. A full description of the data is given in a pre-

vious publication by Lau et al [7].

Generating spatial data

Data on environmental and socio-demographic predictors were plotted onto maps of Fiji at

the Tikina or EA level, depending on the resolution of the dataset. The resulting maps of the

predictor variables were clipped to include only areas within 1km of populated places and con-

verted to 50 m grids (raster layers). The grids were then converted to the ASCII format

required by the GeoNetica software [28]. Data on the presence of pigs were only available at

the village level, so a country-level grid layer was not generated.

Bayesian networks

BNs combine a graphical interface overlaying a probabilistic data model. In the graphical com-

ponent, variables are represented as nodes, which are joined by links [19, 25]. The direction of

a link implies causality from parent node to child node. Depending on the context, parent

nodes can alternatively be considered as indicators (predictor variables).

The dependent variable in an analysis is referred to as the target node in a BN. An example

BN is given in Fig 1, with presence of Leptospira antibodies as the target node.

The data component of a BN is stored in conditional probability tables (CPTs), in the case

of a node linked to parent nodes, or as probability distribution tables for parentless nodes.

CPTs contain the probability of a node being in a given state for each combination of the par-

ent nodes. An example CPT for the BN shown in Fig 1 is given in Table 1.

The simplest form of BN is a naïve BN, in which every node is a child of the target node,

and only the target node. A naïve structure has the benefit of relatively small CPTs, but does

not account for any interactions between predictor variables (Fig 2).

Fig 1. A simple BN showing the probability of the presence of Leptospira antibodies being present (target node) is

influenced by the residential setting and the presence of pigs in the community. The ‘Residential settings’ node and

the ‘Pigs in community’ node are parent nodes of the presence of Leptospira antibodies node, which is referred to as

the child node. ‘Pigs in community’ is also a child node of ‘Residential setting’.

https://doi.org/10.1371/journal.pntd.0006857.g001
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Although the interpretation of the arrows in Fig 2 is counter-intuitive compared to struc-

tures that point from cause to effect (Leptospira antibodies do not cause there to be pigs in a

community), the child nodes (‘Pigs in community’ and ‘Residential setting’) are being used

here as indicators of the parent node. That is, the links in this model represent inference rather

than causation.

More structured networks allow more complex links (and interactions) between nodes.

Structures can be machine-learned, such as a “tree augmented naïve” (TAN) network, in

which every variable has the target node and at most one other node as a parent node [19]; or

expert structured, where variables and links are defined by the modeler based on knowledge

about disease transmission and/or the research question(s) being asked. Structured networks

have been shown to improve the predictive performance of BNs by taking into account the

complex interactions between predictor variables, including in a previous study of leptospiro-

sis in Fiji [14]. BNs were implemented in the Netica software [29].

Categorising predictor variables

Most BN software packages, including Netica [29], require continuous variables to be catego-

rised to form the different states of each node. The suitable number of categories for each vari-

able is influenced by several factors including the amount of data available (i.e. the number of

‘cases’ available for machine learning) and the structure of the network. The size of a CPT is

determined by the number of parent nodes, and the number of states in each parent nodes.

Models may be unstable if CPTs are too large relative to the size of the dataset [25].

As our study only included 82 cases (villages), each node (variable) was categorised into

two states, with approximately 50% of villages in each. To reduce the number of states in the

residential setting node, the 12 peri-urban villages, were combined with the urban villages into

Table 1. Example CPT for the presence of Leptospira antibodies node showing the probability of antibodies being

present for each combination of residential setting and presence of pigs in the community.

Residential setting Pigs in community Presence of Leptospira antibodies

Rural Yes 27.50%

Rural No 22.30%

Urban Yes 23.80%

Urban No 8.90%

Peri-urban Yes 25.90%

Peri-urban No 12.90%

https://doi.org/10.1371/journal.pntd.0006857.t001

Fig 2. A naïve Bayesian network relating the residential setting and presence of pigs in the community to the

probability of Leptospira antibodies.

https://doi.org/10.1371/journal.pntd.0006857.g002

Leptospirosis risk mapping with Bayesian networks

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006857 October 11, 2018 5 / 16

https://doi.org/10.1371/journal.pntd.0006857.t001
https://doi.org/10.1371/journal.pntd.0006857.g002
https://doi.org/10.1371/journal.pntd.0006857


a single ‘urban’ category. The target node, the Presence of Leptospira antibodies, was set to rep-

resent the probability that the village’s seroprevalence was below or above the average sero-

prevalence of 17% found in the study, i.e. a proxy measure of whether each village was below

or above average risk.

Variable selection using naïve network

To generate a parsimonious model, we removed any variables that were not substantially con-

tributing to the predictive performance of the network. To assess this, 50 pairs of data were

created from the dataset, for each pair randomly allocating 80% of the data to the training set

and the remaining 20% to the testing set. Using a naïve network structure, we carried out a

sensitivity to findings analysis in the Netica software package [29]. This analysis lists variables

in order of their influence on the target variable. Influence was measured using variance reduc-

tion, which describes the expected reduction in the target variable as a result of an observed

value of the predictor variable. Predictor variables were removed in order from least to most

influential. Each time a variable was removed, CPTs were recalculated using a training dataset

(80% of data) and then evaluated based on the predicted values for each case in the corre-

sponding testing set. This evaluation was repeated for each of the 50 training/testing data

pairs, each time evaluating the area under the receiver operating curve (AUC) [30] and the

true skill statistic (TSS) [31] scores of the network. The procedure was repeated until the TSS

and AUC scores of the BN began to deteriorate, after which time no further variables were

removed, i.e. exclusion of the remaining variables would have significantly affected model

performance.

Structured network

A TAN structure (learnt using Netica) was used to account for the most important variable

interactions. The final model was validated using TSS and AUC over 50 trials using the same

training/testing dataset pairs used for variable selection.

Generating risk maps

GeoNetica [28] is a software program that maps the output of BN. Once a BN has been has

been implemented in the Netica software (including CPTs), GeoNetica [28] uses maps of the

predictor variables to generate a prediction map for the target variable by setting the states of

the nodes for each cell in the map. Where a corresponding predictor map has been included,

GeoNetica uses the value of the predictor for that cell to set the state of that node in the BN.

The state for a node can also be set directly through the BN, for example, setting the ‘Pigs in

village’ node to be ‘Yes’, will set the node state to be ‘Yes’ for every cell in the map. If a node

state is not selected, and no map is provided, the value for that node is estimated according to

values in either the CPT (for nodes with parents) or the probability distribution tables for par-

entless nodes.

To minimise spurious predictions caused by lack of data for uncommon scenarios, spatial

layers were only included for the most influential nodes based on a sensitivity to findings anal-

ysis on the final BN. Where necessary, node states were adjusted to have the same minimum

and maximum values as the corresponding GIS dataset. Predictive risk maps were generated

for selected areas in each of the three divisions included in the 2013 field study [13], in and sur-

rounding the cities of Suva (Central Division) and Labasa (Northern Division), and the coastal

area from Sigatoka to Ba (Western Division). Because of the limited number of data points

used to train the model (82 villages), predictive risk mapping was limited to these areas, where

we had sufficient data for robust predictions.

Leptospirosis risk mapping with Bayesian networks
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Scenario analysis

Scenarios were defined by selecting combinations of states for the relevant nodes, and leaving

all other nodes in the default state. For example, by setting the ‘Pigs in village node’ to ‘Yes’

and the ‘Residential setting’ node to ‘Rural’, the BN will calculate the probability of the Pres-

ence of Leptospira antibodies in rural communities with pigs (Fig 3).

When generating risk maps for different scenarios, the variable being examined was fixed

as before, and the variation between urban and rural areas was compared on the map. Individ-

ual livestock and poverty scenarios were tested, with each being analysed separately for both

urban and rural areas.

Results

Variable selection for the final model

The seven most influential predictor variables identified using the naïve network and sensitiv-

ity analysis were urbanisation, population density, subsistence farming, primary education or

less, tertiary education, households with electricity supply, and percentage of houses with good

construction. We removed tertiary education from the final model as it was strongly correlated

with primary education (Pearson’s coefficient -0.77), but was the less influential of the two.

In addition to the influential variables identified through sensitivity analysis, poverty rate

and the two most influential livestock variables (presence of pigs in the village and commercial

dairy farm density) were specifically included in the final model to allow scenario analysis

related to these variables. The final nine variables used in the final models are shown in

Table 2. See Figure A in S2 Appendix for full results from variable selection.

Model predictive ability

When structured as a TAN, the resulting BN model (Fig 4) had a mean AUC of 0.89 (SD =

0.07) and a mean TSS of 0.64 (SD = 0.19) over 50 trials. This was comparable to a naïve network

constructed with the same variables (AUC mean = 0.88, SD = 0.08, TSS mean 0.64, SD 0.18).

Predictive risk map

Spatial layers were created for the most influential nodes: urbanisation, population density

(1000/ha), subsistence farming, percentage of residents with primary education or less, and

houses on the electricity grid. Urbanisation and population density had similar spatial distri-

butions (i.e. high population density was found only in urban areas); therefore the spatial layer

Fig 3. Example BN with the evidence set to show the probability of Leptospira antibodies being present in a rural

setting with pigs in villages.

https://doi.org/10.1371/journal.pntd.0006857.g003
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for population density was not included for predictive risk mapping. Spatial layers for the

remaining four nodes were combined with the BN to generate the predicted risk maps. In gen-

eral, the BNs predicted a much greater chance of above average seroprevalence in rural areas

than urban areas, which is clearly evident in the mapped results (Fig 5).

Scenario analysis

Scenario analysis was used to examine whether poverty, the presence of pigs in a village or the

density of dairy farms have different impact on the predicted seroprevalence in rural compared

to urban areas (Table 3, Fig 6).

There was a clear difference in the predicted probability of above average seroprevalence in

rural compared to urban areas under different scenarios of livestock exposure and poverty

rates (Fig 6). The presence (rather than absence) of pigs in a village was more influential in

rural rather than urban areas (an increased probability of above average seroprevalance from

41.7% to 84.4% for rural areas compared to an increase from 3.94% to 23.7% for urban areas),

however the difference was less marked with low compared to high dairy farm density (an

increased probability of above average seroprevalance from 69.7% to 79.2% for rural areas

compared to an increase from 11.7% to 18.0% for urban areas). While high and low poverty

rates appear to have similar impact on both urban and rural areas, it should be noted that the

proportional increase in risk is much higher in the urban settings.

Risk maps

Risk maps for different scenarios of commercial dairy farm density show that the increase in

predicted risk in low density and high density scenarios are similar in urban and rural areas

(Fig 7).

Table 2. Final variables used in predictive model. Variance reduction describes the expected reduction in the proba-

bility of above average seroprevalence in village as a result of an observed value of the predictor variable.

Variable Categories (states in

BN)

Variance

reduction

Urbanisation [27] • Rural

• Urban & peri-urban

35.30%

Population density [27] • High (> = 1.3)

• Low (< 1.3)

34.30%

Subsistence farming

(% of population who depend entirely on subsistence crops) [27]

• High (> = 13%)

• Low (<13%)

28.90%

Primary education or less (% of population with primary school

education or less) [27]

• High (> = 24%)

• Low(<24%)

23.80%

Households with electricity supply (% of households on the Fiji

Electric Authority’s supply grid) [27]

• High (> = 89%)

• Low(<89%)

21.50%

Percentage of houses with good construction [27] • High (> = 49%)

• Low(<49%)

19.40%

Pigs in village [Questionnaire data, [13] • Present

• Absent

17.60%

Poverty rate (% of population below poverty rate) [32] • High (> = 39%)

• Low(<39%)

11.70%

Dairy farm density

(Number of dairy farms/sq km in Tikina) [33]

• High (> = 0.028

farms/sq km)

• Low (<0.028 farms/sq

km)

3.82%

https://doi.org/10.1371/journal.pntd.0006857.t002
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Maps of the scenarios for low and high poverty rates showed a predicted increase in proba-

bility of above average seroprevalence with high poverty levels in both urban and rural areas

(Fig 8).

Discussion

Our study demonstrates the use of spatial BNs to provide valuable insights into the different

drivers of leptospirosis transmission under complex scenarios, and the spatial variation in

transmission risk. In Fiji, important environmental and socio-demographic factors included

living in rural areas, poverty levels, and livestock exposure. Our results support previous stud-

ies that agricultural intensification may contribute to increased outbreaks of zoonotic diseases

such as leptospirosis [34]. Although seroprevalence (and therefore infection risk) was higher

in rural areas, the impact of livestock exposure was shown to differ between urban and rural

areas. However, while high commercial dairy farm density similarly increased the risk of infec-

tion in both urban and rural areas, the presence of pigs in a village had a greater impact in

rural compared with urban areas.

Urban slums in developing countries have been linked to high risk of many diseases,

including leptospirosis [12]. In our study, areas of high poverty rates were predicted to have

26.6% and 18.0% higher probability of above average seroprevalence in rural and urban areas,

Fig 4. TAN Bayesian network designed to predict the probability of above average seroprevalence in villages in Fiji, with predictor variables shown in their

default states (i.e. no scenarios defined). The structure of the network was learnt using the Netica software to account for relationships between predictor variables.

https://doi.org/10.1371/journal.pntd.0006857.g004
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respectively, compared to areas of low poverty rates. Although the absolute difference in these

predictions is relatively small (<8%), they represent >300% difference in urban areas com-

pared to 43% in rural areas. A possible explanation for the greater difference in risk in urban

areas is that, particularly in developing countries, the disparity between the rich and the poor

is typically much greater in urban areas compared to rural areas, resulting in greater inequities

in health. This is particularly evident in urban slums, where marginalized and neglected popu-

lations suffer from very poor health outcomes, including infectious diseases [12, 35, 36].

Our results corroborate findings from other studies in diverse settings that leptospirosis is a

disease of poverty, especially in urban slums, and disproportionately affects the most vulnera-

ble populations [1, 11]. Population growth and urbanization in developing countries typically

result in areas of urban and peri-urban poverty; together with climate change, rising frequency

of extreme weather events, and the high risk of flooding in urban slums, both endemic and epi-

demic leptospirosis are likely to cause an increasing disease burden in the future [4, 35–38].

Fig 5. Predictions of probability of above average seroprevalence generated from the BN for selected regions of Fiji: a) Western Division, b) Northern Division, c)

Central Division, d) map of Fiji showing approximate locations of the predictive risk maps. Urban and peri urban areas are outlined in black.

https://doi.org/10.1371/journal.pntd.0006857.g005

Table 3. Number of villages in each scenario (total 82 villages from 2013 field study)[13].

Pigs Dairy farm Poverty Total

No Yes Low High Low High

Rural 7 41 17 15 17 31 128

Urban /peri-urban 19 15 9 13 30 4 90

Total 26 56 26 28 47 35

https://doi.org/10.1371/journal.pntd.0006857.t003
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Fig 6. Predictions of probability of above average seroprevalence in urban and rural areas for scenarios based on (a)

pigs present in the village, (b) commercial dairy farm density and (c) poverty levels.

https://doi.org/10.1371/journal.pntd.0006857.g006

Fig 7. Predictions of probability of above average seroprevalence generated from the spatial BN under different scenarios of commercial dairy farm density a) Western

Division, low density, b) Western Division, high density, c) Northern Division, low density d) Northern Division, high density e) Central Division low density, f) Central

Division high density, g) map of Fiji showing approximate locations of the predictive risk maps. Urban and peri-urban areas are outlined in black.

https://doi.org/10.1371/journal.pntd.0006857.g007
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Of note in this study is that the maximum rainfall did not present as one of the most influ-

ential variables, despite the previous links between flooding and leptospirosis outbreaks [4].

There are several possible reasons for this. Firstly, while high rainfall may increase the risk of

infection, there may not be sufficient variation in rainfall across the islands of Fiji for this to be

an influential predictor variable. Secondly, other environmental factors may influence the

effect of rainfall, e.g. in flood prone compared to well drained areas.

By including a spatial component to the BNs, we were able to produce predictive risk maps

to demonstrate the spatial variation in the impact of poverty and livestock exposure on lepto-

spirosis risk between urban and rural areas. There are several advantages to using a BN model-

ing approach compared to the commonly applied regression models for generating risk maps.

Firstly, spatial data used for training the models generally do not meet the assumption of inde-

pendence of a regression models due to spatial autocorrelation [39]. BNs reduce this constraint

by allowing relationships between the variables to be accounted for in the model (in this case

by using a TAN network structure). Secondly, linking a BN to a GIS allows for multivariable

scenarios to be mapped out without needing to retrain the model on a subset of the data.

In this work, when the scenarios for high or low dairy farm density were mapped, differ-

ences in the amount of increased risk between urban and rural areas became apparent. The

substantially lower risk posed by living in an urban compared to rural setting is also evident in

the mapped visualization of the predictions. This study demonstrates the utility of spatial BN

for analyzing outcomes under different scenarios. The integration of BNs with spatial data

Fig 8. Predictions of probability of above average seroprevalence generated from the BN under different scenarios of poverty rates: a) Western Division, low poverty, b)

Western Division, high poverty, c) Northern Division, low poverty d) Northern Division, high poverty e) Central Division low poverty, f) Central Division high poverty,

g) map of Fiji showing approximate locations of the predictive risk maps. Urban and peri-urban areas are outlined in black.

https://doi.org/10.1371/journal.pntd.0006857.g008
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allows spatially explicit scenarios to be examined more easily than with traditional regression

methods.

Despite the benefits of a BN approach, one caveat that should be considered is the possible

loss of information as a result of discretising the variables to form the states of the nodes. In

this study, nodes were discretised into only two states in order to minimise the number of

combinations that occur when generating the risk map (i.e. every when node is set to a particu-

lar state). This helps to reduce the uncertainty that arises from incomplete CPT tables. By

doing this, it is possible that relationships between the variables may not have been detected.

In situations with either more data or fewer scenarios, a larger number of states may be

appropriate.

In this study, we focused on a few selected scenarios as a case study to demonstrate the util-

ity of spatial BNs for understanding leptospirosis transmission, but a wide range of other sce-

narios, including more complex ones, could be explored. Because this study was based on a

dataset of only 82 villages, we limited each variable to two states to ensure robustness of the

model. Larger datasets would allow more refined classifications of predictor variables, and

potentially provide further insights into more complex scenarios, including scenarios that

include combinations of states of urban/peri-urban/rural and poverty rates and animal

exposure.

Our study provides empirical evidence that the drivers of leptospirosis transmission in Fiji

are complex, and include environmental and socio-demographic factors, as well as exposure to

livestock. This information supports a One Health approach to disease prevention and control

that takes into account human, animal, and environmental factors. Our findings also suggest

that to achieve maximum impact, a more targeted and precise approach to public-environ-

mental health strategies is needed, where interventions are specifically designed for specific

scenarios. Spatial BNs can be used to help pinpoint hotspots and identify the most important

drivers of transmission in different areas. Future studies should also be specifically designed to

assess the impact of interventions under different scenarios.
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