Skip to main content
. 2017 Oct 31;10(1):12. doi: 10.1007/s40820-017-0165-1

Table 4.

Comparison of the performance between hierarchical Sb2S3 hollow microspheres with other reported Sb2S3 in studies as anode materials for LIBs

Synthesis method Samples Voltage range (V) Current density (mA g−1) Capacity (mAh g−1) (cycle number)
One-step hydrothermal method [20] Sb2S3 0–1.5 100 910(1)–201(20)
Reflux process [14] Sb2S3 0.01–2.0 50 970(1)–835.3(50)
Polyol-mediated process [57] a-Sb2S3 0.01–2.5 50 650(1)–512(100)
Hydrothermal reaction [58] Sb2S3/C 0–2.0 100 1200(1)–570(100)
Solution-based synthesis technique [19] rGO/Sb2S3 0–2.0 50 660(1)–670(50)
Hydrothermal reaction [47] Sb2S3/RGO 0.005–3.0 50 1170(1)–581.2(50)
A modified Hummers’ method [55] Sb2S3/SGS 0.01–2.5 2000 720(1)–524.4(900)
Mechanochemical process with heat treatment [59] Sb2S3 in P/C 0.005–2.0 50 818(1)–611(100)
Hydrothermal reaction [60] Sb2S3@C 0.01–2.5 100 1066(1)–730(100)
Two-step wet-chemical synthesis method [61] MWNTs@Sb2S3@PPy 0–2 100 870 (1)–500(85)
Microthermal solvothermal sulfidation process [62] ZnS-Sb2S3@C 0.01–1.8 100 1660(1)–630(120)
Present work: hydrothermal reaction Sb2S3 0.01–2.0 200 988(1)–384(50)