Skip to main content
. 2017 Dec 8;10(2):23. doi: 10.1007/s40820-017-0176-y

Table 2.

Summary of photocatalytic H2 evolution performance of 2D modified TMO&Cs

Material Dimension/thickness Light source Loading Reaction solution H2 PR (% mmol (gh)−1) Comparison Ref.
Elemental doping
N-TiO2 NS 80 nm/20 nm UV–Vis light NA Ethanol 0.865 0.211 (N-TiO2 MC) [118]
Heterojunction with semiconductors
TiO2 NS/MoS2 NS 100 nm/12 nm Xe lamp 0.5 wt% MoS2 Methanol 2.145 0.061 (TiO2) [193]
MoS2 NS/CdS NP Xe lamp 0.2 wt% MoS2 Lactic acid 5.3 [194]
1T-MoS2 NS/TiO2 NC UV light Methanol 2 0.6 (2H-MoS2) [188]
MoS2 NS/ZnO NP 30–50 nm/– Xe lamp 1 wt% MoS2 Na2S/Na2SO3 0.765 0.052 (ZnO) [147]
MoS2 NS/CuInS2 NP 4 µm/80 nm Xe lamp 3 wt% MoS2 Na2S/Na2SO3 0.316 0.011 (CuInS2) [141]
MoS2 NS/TiO2 NF Xe lamp 60 wt% MoS2 Na2S/Na2SO3 1.6 [142]
MoS2/TiO2 NW Visible light TEOA-H2O 16.7 [70]
1T-WS2/TiO2 NP 100 nm/– Xe lamp Distilled water and Methanol 2.57 0.225 (2H-WS2/0D TiO2) [55]
ZnS/CuS NP 20 nm/– Visible light Na2S/Na2SO3 4.147 [164]
TiO2 NS/CdS QD –/0.7 nm Visible light Na2S/Na2SO3 0.1 [153]
MoS2/N-rGO NS 80 nm/– Visible light Ethanol 0.025 [162]
Heterojunction with conductive materials
TiO2 NS/Au–Pd NP 200 nm/– UV–Vis light 0.3 wt% TIO2 Methanol 0.526 [177]
ZnO NS/Au/CdS NP 5 µm/100 nm W lamp Na2S/Na2SO3 0.608 [165]
MoS2 NS/Ag NP Xe lamp 20 wt% MoS2 Na2S/Na2SO3 36 24 (MoS2) [175]
MoS2-Graphene NS/TiO2 NC 7–10 nm/– UV light Ethanol/water 2.06 0.0625 (TiO2 NC) [69]
MoS2-graphene NS/ZnS NP Xe lamp 2 at % MoS2 Na2S/Na2SO3 2.26 0.12 (ZnS) [146]
MoS2 NS/g-C3N4 NS Xe lamp 0.5 wt% MoS2 Methanol 17.8 [136]
WS2 NS/g-CN NS Xe lamp 0.3 at % WS2 Lactic acid 0.12 [150]
ZnS NS/Ag2S NP –/20 nm Xe lamp Na2S/Na2SO3 0.105 [192]
Surface functionalization
MoS2 NS/ZnTCPP/ZnO NS Visible light 0.5 wt% MoS2 Triethanolamine 0.750 [133]
MoS2 NS/ZnTCPP/TiO2 NP Xe lamp 1 wt% MoS2 TEOA 0.102 [131]

PR production rate, NS nanosheet, NP nanoparticle, NF nanofiber, NW nanowire, QD quantum dot, MC microcrystal, NC nanocrystal