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The large and complex genome of Pseudomonas aeruginosa, which consists of significant portions (up
to 20%) of transferable genetic elements contributes to the rapid development of antibiotic resistance.
The whole genome sequences of 22 strains isolated from eye and cystic fibrosis patients in Australia and
India between 1992 and 2007 were used to compare genomic divergence and phylogenetic relationships
as well as genes for antibiotic resistance and virulence factors. Analysis of the pangenome indicated a
large variation in the size of accessory genome amongst 22 stains and the size of the accessory genome
correlated with number of genomic islands, insertion sequences and prophages. The strains were diverse
in terms of sequence type and dissimilar to that of global epidemic P. aeruginosa clones. Of the eye
isolates, 62% clustered together within a single lineage. Indian eye isolates possessed genes associated
with resistance to aminoglycoside, beta-lactams, sulphonamide, quaternary ammonium compounds,
tetracycline, trimethoprims and chloramphenicols. These genes were, however, absent in Australian
isolates regardless of source. Overall, our results provide valuable information for understanding the
genomic diversity of P. aeruginosa isolated from two different infection types and countries.

The diverse and dynamic genetic composition of Pseudomonas aeruginosa enables this Gram-negative bacterium
to colonise various environments, including humans where it can cause opportunistic infections" P. aeruginosa
is particularly associated with infections that are caused due to impaired anatomical structures or a weakened
immune system. Such infections include microbial keratitis (MK), ventilator-associated pneumonia, wound
infections, and respiratory infections in patients suffering from cystic fibrosis (CF)*=>. Several reports have shown
that the prevalence of such infections by multidrug-resistant (MDR) strains is increasing rapidly worldwide®?,
which makes this bacterium difficult to treat and hence there is a high risk of mortality associated with infection
by P. aeruginosa'®. This pathogen has an exceptional capacity to develop resistance to antibiotics by the selection
for genomic mutations and by exchange of transferable resistance determinants''. Knowledge of the genomic
diversity of P. aeruginosa will help to understand differences in pathogenesis between strains and the mechanism
of antibiotic resistance, which is important for controlling infections.

The genome size of P. aeruginosa varies greatly, ranging from 5.5 to 7 Mbp'*'?, Such variation arises due to the
presence of a large accessory genome. Accessory genomes are strain specific blocks of DNA and can occupy up to
20% of the whole genome'“. They are composed of horizontally transferable elements which include prophages,
transposons, insertion sequences (IS), genomic islands (GI) and plasmids'®. Accessory genomes are important
for carrying virulence and acquired antibiotic resistance genes. The lateral transfer of those genes between strains
contributes to the development of MDR virulent strains'®. Furthermore, mutational changes of chromosomal
genes can also contribute to virulence and antibiotic resistance'®!”. Therefore, unraveling the genetic content of P.
aeruginosa helps to understand the gene modifications that are associated with more pathogenic and more resist-
ant strains. Several studies have reported a comparison between genomes of P. aeruginosa in different infections
at various points of time during infections'®!#-2!. However, most of those studies have centered around CF isolates
and there is very limited comparative genomics of ocular isolates of P. aeruginosa.
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PA31 308 137 7100578 | 66.02 6619 | 69 1709
PA32 308 155 7101589 | 66.01 6611 |69 1701
PA33 308 166 7092617 | 66.02 6609 | 69 1699
Eye/India PA34 1284 130 6885314 | 65.95 6326 | 66 1416
PA35 308 156 7094960 | 66.02 6611 | 69 1701
PA37 308 241 7154765 | 65.94 6645 | 69 1735
PA82 1027 64 6387501 | 66.51 5810 |65 900

Average number of
accessory genes = 1552

PA17 New 60 6360710 | 66.45 5825 | 72 915
PA40 New 109 6284606 | 66.44 5700 | 69 790
Eye/Australia PA149 New 59 6314825 | 66.46 5745 | 68 835
PA157 386 56 6249622 | 66.53 5708 | 68 798
PA171 471 60 6339342 | 66.49 5812 | 69 902
PA175 309 62 6757641 | 66.2 6181 | 68 1271
Average number of
accessory genes =919
PA55 549 77 6235554 | 66.57 5668 | 67 758
PA57 New 73 6333117 | 66.48 5792 | 68 882
PA59 New' 78 6289887 | 66.55 5767 | 68 857
PA64 775 87 6264428 | 66.55 5713 | 65 803
CF/Australia | PA66 New' 93 6337310 | 66.51 5828 | 68 918
PA86 New’ 76 6170893 | 66.46 5685 | 68 775
PA92 775 81 6144573 | 66.59 5584 | 65 674
PA100 483 83 6310616 | 66.5 5732 | 66 822
PA102 1717 62 6245474 | 66.55 5710 | 69 800

Average number of
accessory genes =810

PAO1" 549 1 6264404 | 66.6 5671 |73 761

Table 1. General features of the genomes of P. aeruginosa strains. *Sequence types were determined by the
multi locus sequence typing database. The sequence types not listed in the MLST database have been deemed as
new. *Accessory genes were determined by subtracting number of core genes (4910) from total number of CDS.
TSame MLST allelic profile. *Reference strain.

This study aims to compare the genomic diversity between P. aeruginosa strains from MK and CF isolated
in Australia and India. There are previous reports of genomic characterisation of Indian ocular isolates of
P. aeruginosa®2*. A genotypic study of eye isolates of P. aeruginosa has shown that keratitis isolates from the UK are
highly related®. However, information on genomic comparison amongst contemporary isolates of P. aeruginosa
from eye infections in different geographical locations is still missing. This study focussed on 13 MK strains,
which were isolated in India and Australia and nine strains from CF cases which were isolated in Australia. The
whole genomes of all 22 strains were sequenced and a comparative genomic analysis was conducted to identify
genomic divergence, evolutionary relationships, antibiotic resistance properties and virulence factors.

Results and Discussion

General features of genomes. A de novo assembly of the genomes of 22 P. aeruginosa strains generated a
number of contigs from 56 in PA175 to 241 in PA37 (Median =79). Like other published complete genomes of
P. aeruginosa®'****, a mean C+ G content of 66.4% and size of 6.1 to 7.1 Mbp was observed in the draft genomes.
The genomic size varied widely between strains showing up to 900 kbp more DNA than PAO1, which was taken
as the reference strain in this study. Similarly, the number of coding sequences (CDS), which were determined
based on Prokka annotation pipeline, ranged from 5584 (in PA92) to 6645 (in PA37). Amongst 82 complete
genomes of P. aeruginosa listed in the Pseudomonas genome database (PGDB)? (accessed on 12/03/2018), PA92
has the lowest and PA37 has the second highest number of CDS. Wide variations in the tRNA copy numbers
(65-73) per strain observed here is probably due to use of incomplete draft genome. In addition, different number
of tRNAs in the same genome was observed when annotated using different pipelines. Table 1 shows the general
features of the genomes.

A total of 9786 orthologs were detected in all 22 strains and the reference strain PAO1. As the pan-genome
represents the cumulative genetic information within a set of bacterial genomes, its size increases with the num-
ber and diversity of strains used for evaluation. A study that included 17 P. aeruginosa reference strains from
diverse sources has found 9344 orthologs in the pangenome?, which is comparable to the results observed here.
The higher number of genes in the pan-genome in our study may be the result of the diverse nature of the studied
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Figure 1. Composition of accessory genomes. (a) Distribution of unique genes. (b) Distribution of predicted
no of insertion sequences (IS), genomic islands (GI) and phages.

strains. Out of the 9786 pan genes, 4910 genes were common in at least 99% of strains and this represents the core
genome for the strains in the current study. Prior studies have reported core genomes of 5316%, 5233%%, 5021°,
and 4934 in different P. aeruginosa strains. Although the other studies used smaller sets (5 to 17) of genomes,
the results are broadly comparable. Many factors may be responsible for the smaller core genomes in the cur-
rent study including a larger population of genomes used for alignment, use of incomplete draft genomes, the
diverse nature of the study populations (ocular and lung; Australian and Indian) and a strict definition of the core
genome (>99% similarity in each strain). For example, pan-genome analysis of the same set of genomes of the
current study but excluding PA57 and using >95% similarity resulted in 5287 core genes.

In addition to the large core genome, P. aeruginosa has accessory genomes that are not common in all strains®.
The accessory genome can comprise of up to 20% of the total genome, and the majority of genes in this accessory
genome are acquired horizontally. These genes include phages, transposons, IS and GI'*. In the current study, the
accessory genes were identified by subtracting the core genes (4910) from the total number of CDS. The frequency
of accessory genes was 12% to 26%, which is more than the previously reported size of accessory genome®>**.
However, the use of draft genomes may overestimate the number of accessory genes because of the presence of
genomic repeats or transposable elements that may interrupt assembly and give an apparently larger genome than
this actually present®®. Accessory genomes may carry genes that help strains to persist in environments that may
be unsuitable for others®. Like many other bacteria, the accessory genomes of P. aeruginosa encompasses genes
related to virulence and antibiotic resistance®**>. The presence of a higher number of accessory genes in the set of
ocular isolates indicates that eye strains may have acquired many genes to make this opportunistic species suitable
to grow in the ocular environment. Furthermore, we examined the number of unique genes amongst accessory
genes and found that the functions of the majority of the unique genes are unknown (Fig. 1a).

The genomes were examined for the presence of insertion sequences (IS), genomic islands (GI) and prophages,
which are the main elements of an accessory genome'®. Contigs of draft genomes were reordered with reference
to PAOI and the ordered contigs were joined together and made into a single FASTA file before examining data-
bases. The results show that the average predicated number of GI was 26 (range 29-18) in Indian eye isolates,
which was greater than that of Australian isolates (average 13) irrespective of source. Similarly, the average pre-
dicted number of IS and phages were higher in Indian eye isolates (Fig. 1b). Twenty (PA157) to 75 (PA33) total
accessory elements were observed in all draft genomes. In contrast, a study has noted 38 to 53 accessory elements
that are integrated into 89 potential genomic loci (region of genomic plasticity) in the complete genome of sev-
eral P. aeruginosa strains'*. Complete genomes are required to ascertain the actual number of genes in accessory
genome. Nevertheless, the predicted number of IS, GI and phages was well correlated with the size of the acces-
sory genome indicating that they contribute to the genomic diversity as highlighted in other studies!>*>*.
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Figure 2. Phylogenetic analysis of Pseudomonas aeruginosa isolates. Maximum likelihood phylogenetic tree
built with core genome SNPs based on mapping to the PAO1 excluding SNPs identified in regions that had
arisen by recombination. (a) The original tree where the scale bars represent the number of substitutions per
site. (b) Magnified tree showing branches and groups. Strains used in this study are indicated by distinct colour
circles. Relative positions of few reference strains are shown, which are P. aeruginosa VRFPA04, P. aeruginosa
UCBPP-PA14, P. aeruginosa PAO1, and P. aeruginosa DK2.

From the pangenome and MLST analysis (below), five Indian strains, isolated from different patients with
different histories, were found to be clonal and showed at least 99.98% sequence similarity with each other in
MUMmer3* whole genome alignment. To avoid the overestimation of the accessory genome due to the dom-
inance of a single clone, we obtained the nucleotide sequence of five additional Indian eye isolates from public
databases??~?* and reran the pan genome analysis. The relative size of the accessory genome to PAO1 was exam-
ined (Supplementary Fig. S1). The results tend to show that the eye isolates have larger accessory genome than CF
isolates. However, due to limited number of clonally diverse strains of Indian origin, further research on larger
datasets is required to confirm this.

Based upon MLST analysis, 16 distinct sequence types (STs) were found, with seven of these constituting new
types. The ST was assigned to each strain according to the matched number in the MLST database®. Any strain
that did not match with the existing database was deemed to have a new ST. Five Indian ocular isolates (out of
seven) belonged to ST 308, two Australian CF isolates corresponded to ST 775 and three Australian CF strains
had identical allelic profiles but did not match with any existing ST in the MLST database (all MLST profiles
are shown in Supplementary Table S4). The remaining 13 STs were unique, with only a single representative
(Table 1). Our results show that these strains belong to a diverse range of STs and are not similar to previously
described clinical epidemic isolates®*. Five strains with ST 308, collected from keratitis patients from the same
centre in India, indicate the strains were potentially acquired from the same source where these strains may
persist. The most common genotype observed in this study, ST 308, was also reported in MDR hospital strains
in France®. Although the MLST database does not contain all P. aeruginosa strains, our observations show the
diverse nature of the strains, which were not related to so-called world epidemic STs (ST 235, ST 111, ST 175, ST
395)%. This result also contradicts the previous finding that some keratitis isolates were clonally related with ST
235 CF strains*’.

Phylogenetics. A total of 82 complete genomes of P. aeruginosa including PAO1 were downloaded from
the NCBI database and used to compare the phylogenetic diversity of 22 strains from the current study. These 82
strains were listed in PGDB?® as a complete genome and could represent a global P. aeruginosa collection. Core
genome alignment was generated using Parsnp of the Harvest Suite with PAO1 as the reference. The alignment
was then used to construct a tree following previously described methods, with P. aeruginosa PA7, a taxonomic
outliner?, as an outgroup. A multi-sample variant call file was generated from the core genome alignment and
SNPs present in all strains were examined (Supplementary Tables S1 and S2). In total 284,252 SNP sites were
identified amongst 104 isolates.

All strains, except PA57, were clustered into two groups (Fig. 2). This is in agreement with several studies
which have also shown that P. aeruginosa strains from various sources tend to cluster into two major groups**~#,
with group 1 being larger, and which contains the most widely studied stains PAO1' and some notable CF strains
such as DK2 and LESB58*>%. Group 2 tends to be smaller and includes the well known virulent strain PA1413
and an Indian ocular isolate VRFPA04, a virulent MDR strain?%. All seven Indian and one Australian eye isolates
were clustered into three sub-lineages within the group 2. A typing-based population structure analysis has also
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Figure 3. The presence and absence of resistance genes as detected by Resfinder database. Associated
resistance: Beta lactams: - blagxa s bldpao, blayps., Aminoglycosides: - aph(3')-1Ib, aph(6)-1d, aph(3")-Ib,
aac(3)-11d Fosfomycin: fosA Sulphonamide: sull Chroramphenicol: cmlA1, catB7 Tetracycline: tet(G).
Quaternary ammonium compounds: gacEdeltal.

unveiled that keratitis P. aeruginosa strains are closely related®. Furthermore, this supports the finding of the
previous study that human P. aeruginosa are less diverse than isolates from the environment*’. Similarly, all the
CF strains and five Australian eye strains were of group 1 (See Supplementary Table S1 for phylogeny group clas-
sification of each strains and associated core genome SNPs). Amongst the CF isolates, continuous mutations have
been shown to be an evolutionary process that may make a strain more pathogenic so that they rapidly transfer
between humans'®*'. However, previous studies have not focussed on ocular isolates. Our analysis showed that
more than 60% of eye isolates clustered together in a single group, which is in aggrement with previous findings
that 71% of MK isolates of P. aeruginosa from the UK clustered together in the same group*. Further studies
should focus on the evolutionary changes in ocular isolates of P. aeruginosa over a prescribed period of time.
A CF strain PA57 was in a separate cluster and did not show similarity with other strains. This strain could be
another taxonomic outlier of the P. aeruginosa (group 3)*.

Antibiotic resistance gene profiles. Horizontally acquired resistance genes were examined using the
assembled contigs in the ResFinder database. Altogether, 13 distinct types of acquired resistance genes were
detected in this study (Fig. 3). In common with other P. aeruginosa strains®, two beta-lactams (blaox .50, blapac)
and one each for aminoglycoside (aph(3’)-IIb) fosfomycin (fosA) and chloramphenicol (catB7) resistance
genes were present in all studied strains. Furthermore, six out of 22 strains had acquired additional resistance
genes. Interestingly, all six strains were Indian eye isolates and possessed two aminoglycoside resistance genes
(aph(3")-1b and aph(6)-Id), one sulphonamide resistance gene (sul1) and one quaternary ammonium compound
resistance gene (qacEdeltal). The tetracycline efflux protein transporter gene tet(G) was detected in five Indian
eye isolates, all of them are ST 308. An Indian eye strain PA34 possessed four unique resistance genes; blaNPS-1,
aac(3)-1Ib, dfrA15 and cmlA1 that can confer resistance to beta-lactams, aminoglycosides, trimethoprims and
chloramphenicols, respectively. As horizontally acquired resistance genes may be associated with integrons, we
analysed all of the draft sequences for the presence of integrons using Integron Finder version 1.5.1%. Although
sull and qacEdeltal are indicative of class I integrons, only strain PA34 possessed a class 1 integron, in agreement
with a recent publication®. The acquired resistance genes detected were comparable to previous observations
for an Indian eye isolate of P. aeruginosa®. As all Indian isolates of the current study were from the same centre
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Table 2. Antibiotic susceptibility profile of P. aeruginosa strains.

in India, it is possible that there was antibiotic selection pressure that led to the selection for strains that had
acquired such resistance genes from the environment. The absence of such genes in Australian isolates indicates
that the antibiotic selection pressure may be different between Australia and India or that the genes associated
with resistance are not readily accessible to P. aeruginosa in their local Australian environment. Furthermore, iso-
lates from India were more likely to carry more resistance genes than Australian isolates, potentially reflecting the
relatively unregulated use of antibiotics in India compared to Australia®. Antibiotic susceptivity tests also shows
that Indian eye isolates were resistance to gentamicin and at least one fluoroquinolone. Resistance to aminoglyco-
side and fluoroquinolone is however, low in Australian isolates (Table 2).

On the basis of searches in the literature and online databases (Comprehensive Antibiotic Resistance Database
(CARD), https://card.mcmaster.ca/home and the Pseudomonas genome database, http://www.pseudomonas.
com), a set of 73 genes, which were related to antibiotic and disinfectant resistance in P. aeruginosa, were selected
to examine variations in these genes between strains. Only high-quality, non-synonymous SNPs and indels were
used for interpretation (Table 3). No insertions or deletions were detected in any of the strains. In terms of the
number of SNPs and strains types, all Indian eye isolates and one Australian eye isolate (PA175) had relatively
more variations (total SNPs >125) in the set of resistance genes than other strains. However, the CF strain PA57
had an exceptionally high number of SNPs in its resistome. Another CF strain, PA55, did not show any variations
in its resistome. In terms of the total SNPs in resistance genes, the least number of variations (<5 SNPs) were
found in five efflux pump-related genes (oprM (5) cycB(1) mexF (4) nalD(5) and nfxB (2)), three target alter-
nation genes (gyrB (5) tufA(2) tufB (0)) and one inactivation gene fosA (3); these are highly conserved genes in
P. aeruginosa.

Virulence genes.  Virulence factors associated with keratitis and cystic fibrosis were selected based on the lit-
erature and published sequences in the Virulence Factor Data Base (VFDB)*? to examine the presence or absence
of genes related to pathogenicity in the strains. A dataset of 147 virulence genes of PAO1 associated with adher-
ence, protease production, the type IV secretion system, quorum sensing, alginate production/regulation and
toxins were curated from VFDB and used in BLAST searches (Fig. 4). For the exoU gene, PA14 was taken as the
reference because it is not present in PAO1. All instances where there was an absence of a gene were manually
examined with orthologs from the most widely studied strains recommended by the PGDB*. Out of 147 genes,
variation in virulence genes were found for 20 genes. This was most evident for a set of effector proteins (toxins)
related to the type III secretion system (exoS, exoT, exoU and ex0Y)***%. As in previous studies, exoS was pre-
dominantly found in CF strains (present in eight out of nine strains) and exoU was primarily found in eye strains
(present in eight out of 13 eye isolates)****->%. Furthermore, as determined by previous studies, exoU and exoS
were mutually exclusive®. However, neither exoU nor exoS was detected in the CF strain PA57. As the exoU gene
is carried by genomic islands®*®, exoU possessing strains showed larger accessory genomes and cluster together
in the same phylogenetic group. The exoT (100%) and exoY (86%) genes were the most prevalent secretory toxins
in the strains and this result is in agreement with previous findings®'. In a recent study, exoY (55%) and exoT (5%)

SCIENTIFICREPORTS| (2018) 8:15668 | DOI:10.1038/s41598-018-34020-7 6


https://card.mcmaster.ca/home
http://www.pseudomonas.com
http://www.pseudomonas.com

www.nature.com/scientificreports/

PA0156 | triA 4 5 5 1 6 5 4 1 1 3 1 1 37
PA0157 | triB 1 1 1 2 1 1 1 1 1 1 1 1 1 14
PAO158 | triC 2 2 2 1 2 2 1 1 1 3 1 18
PA0424 | mexR 2 1 1 2 1 1 1 1 2 12
PA0425 | mexA 1 1 1 1 1 1 1 7
PA0426 | mexB 1 1 2 1 4 2 1 1 13
PA0427 | oprM 1 1 1 1 1 5
PA1236 | farB 1 1 1 1 1 1 1 1 1 1 1 11
PA1282 | IrfA 6 6 9 4 6 8 6 8 5 5 6 4 4 7 3 4 3 3 4 3 4 108
PA1316 | IrfA 2 2 2 1 2 2 3 3 2 1 3 2 3 3 2 2 2 2 2 2 4 47
PA1435 | mexM 4 4 4 5 4 4 3 4 6 5 6 6 5 8 5 5 5 5 5 4 5 102
PA1436 | mdtC 2 2 2 1 2 2 2 3 2 3 2 2 2 2 2 2 2 2 4 41
PA1754 | cysB 1 1
PA2018 | mexY 5 5 5 5 5 5 3 1 1 1 4 1 3 3 1 1 1 1 1 1 2 55
PA2019 | mexX 4 4 4 4 4 4 5 3 4 5 3 3 3 6 3 4 3 3 4 3 4 80
PA2389 | macA 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18
PA2390 | macB 1 1 1 3 1 1 2 1 3 2 3 1 1 3 1 2 1 1 2 1 3 35
PA2391 | opmQ 6 5 6 4 6 6 4 1 3 2 1 2 4 5 4 5 4 4 5 3 1 81
PA2491 | mexS 2 2 2 1 2 2 2 1 1 1 1 1 1 4 2 2 2 2 1 1 1 34
PA2493 | mexE 1 1 1 3 2 1 2 1 1 1 14
PA2494 | mexF 1 1 2 4
PA2495 | oprN 1 1 1 2 1 1 1 1 1 1 2 1 1 15
PA2525 | adeC 3 5 1 1 2 2 2 3 1 20
PA2526 | muxC 1 1 1 1 1 1

PA2527 | muxB 1 2 1

PA2837 | opmA 3 3 3 4 3 3 5 1 1 3 4 6 2 1 2 2 1 1 2 50
PA3019 | taeA Antibiotic efflux | 1 1 1 3 1 1 1 1 1 2 2 2 2 4 1 1 1 1 1 3 1 32
PA3137 | farB 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 24
PA3521 | opmE 3 3 3 2 3 3 2 3 5 6 4 2 3 1 |3 5 3 3 5 3 2 77
PA3522 | mexQ 4 4 4 4 4 4 6 4 5 2 2 3 3 3 4 6 4 4 5 2 3 80
PA3523 | mexP 2 2 2 1 2 2 2 3 2 2 1 2 3 3 3 2 2 36
PA3574 | nalD 1 1 3 5
PA3676 | mexK 1 1 1 2 1 1 5 1 2 2 2 3 6 4 2 4 4 2 2 2 48
PA3677 | mex] 2 2 2 2 2 2 2 1 2 3 3 3 3 3 3 1 36
PA3678 | mexL 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 1 21
PA3894 | adeC 1 1 1 1 1 2 2 1 2 2 1 1 16
PA4205 | mexG 1 1 1 1 1 1 3 9
PA4206 | mexH 1 1 1 2 1 1 1 1 9
PA4207 | mexI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16
PA4208 | opmD 3 3 3 3 3 3 2 5 1 1 4 6 1 38
PA4374 | mexV 2 2 2 4 2 2 3 2 1 1 2 2 4 1 2 1 1 2 1 3 40
PA4375 | mexW 2 2 2 1 2 2 3 3 1 2 3 1 1 2 1 1 1 1 1 32
PA4595 | yjjk 1 1 2 1 2 1 3 1 2 1 1 1 17
PA4597 | opr] 2 2 2 2 9 3 3 5 3 3 3 37
PA4598 | mexD 2 2 2 2 2 2 2 3 2 2 1 3 2 9 2 1 2 2 1 2 3 49
PA4599 | mexC 7 8 8 3 8 8 6 4 1 4 1 5 9 1 1 1 4 4 83
PA4600 | nfxB 1 1 2
PA4974 | opmH 2 1 1 1 5 5 1 2 1 5 1 5 1 1 3 4 39
PA4990 | emrE 1 1 1 1 2 1 1 1 9
PA4997 | msbA 2 3 3 2 2 3 4 4 3 1 1 1 29
PA5158 | adeC 3 3 3 3 3 3 2 2 1 2 3 5 3 3 3 3 2 1 48
PA5160 | farB 4 3 3 2 4 3 5 3 3 3 3 3 3 3 3 4 3 3 4 3 65
PA5518 | rosB 3 3 3 2 3 3 3 1 1 1 1 1 1 1 1 1 29
Continued

SCIENTIFICREPORTS| (2018) 8:15668 | DOI:10.1038/s41598-018-34020-7 7



www.nature.com/scientificreports/

PA0706 | catB7 4 4 4 5 4 4 3 3 2 2 2 3 4 1 2 4 2 2 4 3 3 65
PA1129 | fosA 1 2 3
PA4109 | ampR 2 2 2 3 2 2 1 2 2 3 21
Antibiotic
PA4110 | ampC | inactivation 5 |5 |5 |3 [5 [5 |6 |1 |2 |2 |2 [2 |5 12 |1 (1 |1 |1 1 |2 |2 |69
PA4119 ;{};h(y)- 2 2 2 3 2 2 2 1 1 1 1 4 3 1 1 1 2 31
PA5514 | OXA-50 1 2 1 3 2 5 2 3 2 3 3 4 1 3 1 3 4 43
PA0004 | gyrB 1 3 |1 5
PA0903 | alaS 1 1 1 1 1 1 1 1 1 1 1 2 13
PA1972 | pmrC 3 3 3 3 3 3 1 1 1 4 1 1 2 3 2 3 2 2 3 4 1 49
PA3002 | mfd 1 2 2 3 2 2 1 1 1 2 1 2 1 2 1 1 2 27
PA3168 | gyrA 1 1 1 1 1 2 2 1 1 11
PA3946 | rosC 6 8 8 3 7 6 1 1 1 1 2 2 1 2 1 1 2 2 1 56
PA4265 | tufA Antibiotic target | 1 1 2
PA4277 | tufB alternation 0
PA4560 | ileS 2 2 2 2 2 2 2 1 4 2 1 1 2 4 2 4 2 2 4 3 1 47
PA4964 | parC 2 2 2 2 2 1 1 1 13
PA4967 | parE 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 18
PA3553 | pmrF 3 1 1 1 1 7
PA3554 | arnA 2 4 4 5 4 4 3 2 3 3 4 6 2 2 3 4 55
PA0920 | mprF 6 6 6 4 6 6 9 2 1 1 2 7 8 2 1 2 2 1 2 2 76
Total SNPs 137 | 140 | 144 | 124 | 146 | 150 | 136 |82 |89 |79 |83 |77 |125|0 217 |88 | 109 |88 |81 |101 |87 |86

Table 3. Non-synonymous SNPs detected in the 73 genes related to antibiotic resistance in the 22 isolates
studied using PAO1 as the reference genome.

were less prevalent than in the current study although the reason for these differences in distribution remains
unclear®. One possible reason for this difference is that the study examined genes on the basis of PCR products,
which may not be able to capture all different orthologs of genes.

Flagellar genes help in the establishment of infections as they can be involved in adherence to surfaces and
were also widely variable between strains®. Seven flagellar genes (figK, flgL, fliC, flaG, fliD, fIiS, and fliT) clustered
between PA1086 and PA1096 in PAO1 were not matched with those of 19 strains that included both eye and CF
isolates. However, these genes from 19 strains showed 90% to 99% similarity with genes between PA7_4275 and
PA7_4291 of PA7, orthologs of the above seven flagellar genes. There was low sequence similarity (<50%) for the
above flagellar genes between PAO1 and PA?7. Studies involving CF isolates have shown that the activity of the
SliC gene (that encodes flagellin) had been either downregulated® or was absent in some strains®. As flagella are
immunogenic, the loss of flagella may be an important antiphagocytic mechanism in chronic infection isolates®.
Although it has been shown that non-flagellated strains are defective in acute infections®, 85% of eye isolates in
this study had altered flagellar genes that may affect flagellar function. Previous work has shown that although fliC
contributes to invasion of P. aeruginosa in eye infections, a lack of fliC did not cause complete loss of invasion®.
Further studies will need to clarify the functionality of those flagellar genes on studied strains and their role in
ocular P. aeruginosa infections.

A phospholipase D gene (pldA), a part of the type VI secretion system of P. aeruginosa is believed to promote
chronic infections®”%%. However, pldA was absent from 13 isolates, seven of which were CF isolates and yet over
50% eye isolates had pIdA. Reports on the role of pldA in eye infections have not been published and this should
be an area of future study. Another notable variation was observed in pvdE, a precursor for pyoverdin synthesis,
which is essential for virulence of P. aeruginosa®’°. Eight strains, irrespective of their source of isolation, had a
PAOI homolog of pvdE. Similarly, DK2 and LES homologs of pvdE were equally distributed in 14 strains (Table 4)
suggesting that these orthologs are evenly distributed in P. aeruginosa populations. PvdE can increase invasion
of P. aeruginosa by inducing expression of the exoS”!. Further studies will help understand role of pvdE variants
in pathogenesis.

Conclusions

This study compared the genomic variations between Australian and Indian P. aeruginosa isolates from ocular
infections. P. aeruginosa isolates from various sources showed diversity in the size of accessory genome, antibiotic
resistance genes and virulence factors. We found a slightly smaller core genome than has been reported previ-
ously. Although all 22 strains were distributed throughout the global phylogeny of P. aeruginosa, certain clusters
were observed in the eye isolates where five Indian eye isolates were clustered into a single clonal lineage in the
group which also contains a well-studied and virulent strain PA14. Larger accessory genomes were associated
with eye isolates of this group. Furthermore, the strains of this group had more SNPs in their set of 73 resistome
suggesting possible positive antibiotic selection pressure. Variation in virulence factors, except for exoU, was not
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Figure 4. A circular representation of the genomes of studied isolates. The draft genomes of 22 strains were
aligned against the 147 virulence genes curated from VFDB. Each genome is represented by a ring with different
colours, which are shown in figure. Image was generated using BRIG (http://brig.sourceforge.net).

PA31, PA32, PA33, PA34, PA35, PA37 and PA175 P. aeruginosa DK2 (DK2_13280)
PA82, PA17, PA171, PA175, PA55, PA57, PA64, and PA92 | P. aeruginosa PAO1 (PA2397)
PA40, PA149, PA59, PA66, PA86, PA100 and PA102 P. aeruginosa LESB58 (PALES_28991)

Table 4. Distribution of pvdE orthologs among strains.

correlated with phylogeny. This study relied on draft genomes and may not be able to predict actual genomic
diversity because the analysis could not ascertain the presence of the plasmids in any of the isolates. Further
studies will focus on improvement of the assembly of these genomes. Overall, these findings have extended our
understanding of the genomic diversity of P. aeruginosa in two different infections and information can be used
to elucidate various mechanism that would help fight against virulent and drug resistant strains.

Methods

Bacterial strains and antibiotic susceptibility tests. Twenty two clinical isolates of P. aeruginosa from
corneas of microbial keratitis and from the lungs of CF patients were selected for this study. Seven ocular isolates
were obtained from a tertiary eye care centre in India (L.V. Prasad Eye Institute, Hyderabad, India), six ocular
and nine CF isolates were acquired from various sources in Australia. All strains were collected from institu-
tional repositories between 1992 and 2007 without identifiable patient data and all experiments followed the
institutional guidelines, which were in place at the time (Table 5). Genome sequence data of an additional 82
P. aeruginosa strains, based on availability of complete genome sequence in Pseudomonas genome database
(PGDB) version 17.2? including P. aeruginosa PAO1 (reference strain) were collected from public databases
and used in this study to compare results and to build phylogenetic trees (all the reference strains used in this
study are listed in Supplementary Table S1). The minimum inhibitory concentrations (MICs) of ceftazidime,
cefepime, aztreonam, ticarcillin, imipenem, gentamicin, levofloxacin, ciprofloxacin, moxifloxacin and polymyxin
were determined by broth microdilution according to CLSI guidelines and published standard breakpoints”>~7%.
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Strains | Collection date* | Geographical location Associated infections
PA31 02/10/1997 LVPEI, Hyderabad, India Microbial Keratitis
PA32 08/10/1997 LVPEI, Hyderabad, India Microbial Keratitis
PA33 29/08/1997 LVPEI, Hyderabad, India Microbial Keratitis
PA34 28/08/1997 LVPEI, Hyderabad, India Microbial Keratitis
PA35 09/08/1997 LVPEI, Hyderabad, India Microbial Keratitis
PA37 11/07/1997 LVPEI, Hyderabad, India Microbial Keratitis
PAS82 11/05/2004 LVPEIL Hyderabad, India Microbial Keratitis
PA17 15/09/1992 Flinders, Adelaide, Australia Microbial Keratitis
PA40 02/02/1999 SEH, Sydney, Australia Microbial Keratitis
PA149 04/03/2004 Flinders, Adelaide, Australia Microbial Keratitis
PA157 29/04/2006 PAH, Brisbane, Australia Microbial Keratitis

PA171 16/03/2006 PAH, Brisbane, Australia Microbial Keratitis

PA175 07/10/2006 PAH, Brisbane, Australia Microbial Keratitis
PA55 2003 RPAH, Sydney, Australia Cystic Fibrosis
PA57 2003 RPAH, Sydney, Australia Cystic Fibrosis
PA59 2003 RPAH, Sydney, Australia Cystic Fibrosis
PA64 2003 RPAH, Sydney, Australia Cystic Fibrosis
PA66 2003 RPAH, Sydney, Australia Cystic Fibrosis
PA86 2004 RPAH, Sydney, Australia Cystic Fibrosis
PA92 2004 RPAH, Sydney, Australia Cystic Fibrosis
PA100 2004 RPAH, Sydney, Australia Cystic Fibrosis
PA102 2004 RPAH, Sydney, Australia Cystic Fibrosis

Table 5. List of strains used in this study. LVPEI = LV Prasad Eye Institute; Flinders = Flinders University,
SEH = Sydney Eye Hospital; PAH = Princes Alexandra Hospital; RPAH = Royal Prince Alfred Hospital CF
Clinic, Sydney, Australia. *All cystic fibrosis isolates were obtained from Royal Prince Alfred Hospital CF Clinic,
Sydney, Australia, between 2003 and 2004. Information on exact date of collection is missing in our record.

Whole genome sequencing. Genomic DNA was extracted from overnight cultures using the DNeasy®
Blood and Tissue Kit (QIAGEN®, Germany) following the manufacturer’s instructions. The paired-end library
was prepared using Nextera XT DNA library preparation kit (Illumina®, San Diego, CA, USA). Libraries were
then sequenced on Illumina® MiSeq bench top sequencer (Illumina), generating 300 bp paired-end reads. All of
the libraries were multiplexed on one MiSeq run.

Genome assembly and sequence analysis. The MiSeq sequencing resulted an average of 760,773 reads
(range 632,180 to 1,193,844) per isolate. FastQC version 0.11.7 (https://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc) was used to assess the quality of raw reads, which were then quality trimmed to remove adaptor
sequences using Trimmomatic version 0.36 and with the setting of minimum read length of 36 and minimum
coverage of 157°. A de novo assembly was performed by SPAdes version 3.11.17°. with the default setting. The anno-
tations of the assembled genomes were performed using Prokka version 1.7. using GenBank® compliance flag””.
The genome of P. aeruginosa PAO1 (RefSeq accession number NC_002516.2), which was used as the reference in
this study, was re-annotated with Prokka to avoid annotation bias. Whenever necessary, the contigs of the draft
genomes were reordered and/or aligned with the reference genome using MAUVE multiple-genome alignment
software’®”°. Artemis, a genome browser tool®’, was used to concatenate the ordered contigs to get a single frag-
ment of genomes which were used to examine insertion sequence using web tool ISsaga (http://issaga.biotoul.fr/
ISsaga2/issaga_index.php), genomic islands using IslandViewer 4*! and prophages using PHASTER®? Multi locus
sequence type (MLST) was determined using pubMLST database to find sequence type (ST) of each strain.

Pan-genome and Phylogenetics. The pangenome analysis was performed using Roary version 3.12.0%
which uses the GFF3 files produced by Prokka. The program was run using the default settings, which uses
BLASTYp for all-against-all comparison with a percentage sequence identity of 95%. Core-genes were taken as the
genes which were common in at least 99% of strains. The accessory genome was obtained as the genes present in
the genome of each strain minus core genes. The Roary “gene_presence_absence.csv” file was further examined
for unique genes using “union” and “difference” command. Parsnp version 1.2 in the Harvest Suite3! was used to
align the genomes of 104 P. aeruginosa strains (82 complete genomes from the PGDB and 22 draft genomes from
this study), followed by the construction of a maximum likelihood tree based on core genome single nucleotide
polymorphisms (SNPs), excluding SNPs identified in regions that had arisen by recombination.

Variant calling. The paired-end reads for each isolate were aligned against the genome of the P. aeruginosa
PAO1 using Bowtie2 version 2.3.2% following “score-min” command to avoid alignments that score less than the
default minimum score threshold and with “local” flag for better score. Genomic variants were compiled using
“mpileup” in SAMtools, version 1.7%¢. A minimum quality score of 50 was set to list the SNPs and Indels. The
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genomic variants were annotated using SnpEff version 4.3%” with the default options to obtain the nucleotide
changes and the predicted effects at the protein level.

Antibiotic resistance and virulence genes. Genomes were examined for the presence of acquired resist-
ance genes using Resfinder 3.0 (Centre for Genomic Epidemiology, DTU, Denmark)®. Furthermore, a set of
73 genes related to antibiotic and disinfectant resistance in P. aeruginosa were selected from searches in the
online databases Comprehensive Antibiotic Resistance Database (CARD) (https://card.mcmaster.ca/home)®
and Pseudomonas genome database (http://www.pseudomonas.com)?. These 73 genes were manually examined
for the presence of non-synonymous SNPs to predict genotypic changes in the resistome (see Supplementary
Table S3).

A dataset of 146 virulence genes of PAOI and one virulence gene (exoU) of Pseudomonas aeruginosa
UCBPP-PA14 (NC_008463.1) associated with adherence (flagella), protease production, type IV secretion sys-
tem, quorum sensing, alginate production/regulation and toxins were curated from the Virulence Factor Data
Base (VFDB) and used in BLAST searches to match them with the genomes of the strains studied here. BLAST
Ring Image Generator (BRIG)?! was used to generate an image that shows presence or absence of virulence genes
in multiple genomes. (List of virulence genes used is shown in Supplementary Table S4). The contigs were joined
together before searching them in BRIG to avoid false matching due to fragmented genomes. The absence of a
gene in this analysis was confirmed by manual BLASTn searching using orthologs from a widely-studied panel of
P. aeruginosa suggested by PGDB. These include PA14, P. aeruginosa LESB58 (NC_011770.1), P. aeruginosa PA7
(NC_009656.1) and P. aeruginosa DK2 (CP003149.1).

Nucleotide accession. The nucleotide sequences are available in the GenBank under the Bioproject acces-
sion number PRJNA431326.
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