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Abstract. Isocitrate dehydrogenases 1 and 2 (IDH1/2) are
enzymes that play a major role in the Krebs cycle. Mutations
in these enzymes are found in the majority of lower gliomas
and secondary glioblastomas, but also in myeloid
malignancies and other cancers. IDHI and IDH2 mutations
are restricted to specific arginine residues in the active site of
the enzymes and are gain-of-function, i.e. they confer a
neomorphic enzyme activity resulting in the accumulation of
D-2-hydroxyglutarate (2-HG). 2-HG is an oncometabolite
causing profound metabolic dysregulation which, among
others, results in methylator phenotypes and in defects in
homologous recombination repair. In this review, we
summarize current knowledge regarding the function of
normal and mutated IDH, explain the possible mechanisms
through which these mutations might drive malignant
transformation of progenitor cells in the central nervous
system, and provide a comprehensive review of potential
treatment strategies for IDH-mutated malignancies, focusing
on gliomas.

In the past decade, our knowledge regarding the molecular
events that drive malignant transformation in diffuse gliomas
has increased significantly. This knowledge led to a major
revision of the 2007 edition of the World Health
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Organization Classification of Tumors of the Central
Nervous System that was published 2 years ago, the 2016
Classification of Tumors of the Central Nervous System. In
the 2016 revision, molecular parameters are integrated with
histology in order to clearly define glioma subtypes,
providing at the same time, in some cases, prognostic
information. IDH mutations are undoubtedly one of the most
important molecular parameters in the current glioma
classification (1-3).

IDH mutations in gliomas were first reported in 2008.
Parsons et al., using next-generation sequencing technology,
found IDHI mutations to be present in 12% of patients with
glioblastoma, mainly in younger patients and in patients with
secondary glioblastoma. In this initial publication, it was
reported for the first time that the presence of IDHI mutations
is also associated with improved prognosis in terms of overall
survival, relative to patients with glioblastoma with wild-type
IDH1 (4). Following this pivotal study, Yan et al. reported that
IDH]I and IDH?2 mutations occur in the majority (>70%) of
WHO grade II/III astrocytomas, oligodendrogliomas,
oligoastrocytomas and secondary glioblastomas, and are
associated with improved prognosis (5). Multiple subsequent
studies have confirmed these findings (6-13). Interestingly,
two studies have shown that the presence of an IDH mutation
in patients with astrocytoma/glioblastoma is a stronger
predictor for overall survival than the histological type and
grade of the tumor (14, 15).

IDHI and IDH2 mutations have also been found in
patients with hematological malignancies and in a number of
solid tumor types, including acute myeloid leukemia (AML),
myelodysplastic syndromes, myeloproliferative neoplasms,
cholangiocarcinoma, melanoma and cartilaginous tumors
(16-24). In AML, IDHI/IDH?2 mutations have been reported
in 16-17% of patients, while the frequencies in all other
entities remain much lower (23, 25). Furthermore, IDH
mutations have also been observed in intrahepatic
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cholangiocarcinomas (26), chondrosarcomas (16) and
sporadically in other tumors as well (Table I).

In this review, we summarize current knowledge regarding
the function of normal and mutated IDH, explain the
possible mechanisms through which these mutations might
drive malignant transformation of progenitor cells in the
central nervous system, and provide a comprehensive review
of potential treatment strategies for IDH-mutated

malignancies, focusing on gliomas.
Biochemistry and Function of Wild-type IDH

In biochemistry, IDH enzymes are known for their role in
the Krebs cycle (tricarboxylic or citric acid cycle). The IDH
family in humans consists of three IDH isoenzymes, IDHI1,
IDH2 and IDH3, which all catalyze the oxidative
decarboxylation of isocitrate into alpha-ketoglutarate (aKG)
and carbon dioxide. IDH1 and IDH2 are homodimeric
enzymes with high structural similarity (69%) that are
encoded by two distinct genes, IDHI on 2q33.3 and /IDH2
on 15q26.1, respectively. The protein IDH1 is located in the
cytoplasm and peroxisomes, while IDH2 is located in the
mitochondria. They are both nitotinamide adenine
dinucleotide phosphate (NADP*)-dependent enzymes that
use NADP* as a cofactor, producing NADPH during their
enzymatic activity (27, 28). IDHI and IDH2 are the major
sources of NADPH in the cytosol and mitochondria
respectively (20).

IDH3 is a heterotetrameric enzyme consisting of two
alpha, one beta and one gamma subunit that are encoded by
the genes IDH3A on 15q25.1-2, IDH3B on 20pl3 and
IDH3G on Xq28, respectively. IDH3 is located in the
mitochondria and is one of the most critical enzymes in the
Krebs cycle. IDH3 uses NAD™ as a cofactor and produces
NADH, which is necessary for energy production (29, 30).
Despite its important role in cellular metabolism, mutations
in IDH3 genes have not as yet been linked to tumorigenesis.

IDH1 and IDH2 are necessary for the production of aKG
and NADPH. NADPH is an important cofactor in many
cellular functions, e.g. lipid metabolism (31), glucose
metabolism (32) and oxidative stress defense, by reducing
glutathione and thioredoxin, and by activating catalase (33-
35). Interestingly, IDH1 is the main source of NADPH in the
brain and is also thought to be a main source of NADPH in
other tissuesl (36, 37).

aKG is also an important molecule in diverse cellular
processes, by being an essential cofactor for the family of
aKG-dependent dioxygenases. This family consists of more
than 60 enzymes that require aKG as a cofactor. aKG-
dependent dioxygenases are present in all living organisms
and affect multiple cellular functions: they catalyze
hydroxylation reactions on a diverse set of substrates,
including collagen, lipids, proteins, histones, transcription
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Table 1. Frequency of isocitrate dehydrogenase (IDH) mutations in
different tumor types.

Gene Tumor type Frequency Reference
IDHI1 Astrocytoma 54-72% (6,9,41)
Oligodendroglioma 65-70% (6,9, 41)
Primary glioblastoma 3% )
Secondary glioblastoma 50-88% 6,9
AML 6-16% (65)
MDS 2-3% (65)
MPN <1% (65)
Chondrosarcoma 40% (16)
Intrahepatic cholangiocarcinoma 7-20% 17
IDH2  Low-grade gliomas and glioblastoma <5% (5,51)
AML 8-19% (65)
MDS 2-7% (130)
MPN 2% (65)
Chrondrosarcoma 16% (16)
Intrahepatic cholangiocarcinoma 3% 17

AML, Acute myeloid leukemia; MDS, myelodysplastic syndrome;
MPN, myeloproliferative neoplasms.

factors, alkylated DNA and RNA, 5-methylcytosine of
genomic DNA and 6-methyladenine of RNA, as well as
antibiotics. Members of the aKG-dependent dioxygenase
family are propyl hydroxylases, jumonji-C domain-
containing histone demethylases, ten-eleven translocation
(TET) enzymes, 5-methylcytosine hydroxylases, collagen
propyl-4-hydroxylases 1, 2 and 3, and many more (37, 38).
Many of these enzymes play a pivotal role in regulating
histone and DNA demethylation in normal cells (39, 40).

Biochemistry and Function of Mutant IDH

In gliomas, mutations in the IDHI and IDH2 genes are
somatic and invariably heterozygous, missense mutations
that result in a single amino acid substitution. Interestingly,
these mutations involve specific conserved arginine residues
in the active site of the IDH enzymes that play a key role in
substrate binding (4).

For the IDH]I gene, mutations are found at the arginine codon
132 (R132) and the most common mutation is the substitution
of arginine by histidine (R132H), which occurs in more than
90% of all IDHI mutants. Far less common are R132C
substitutions (arginine—>cysteine), R132S (arginine—serine),
R132G  (arginine—glycine) and R132L  mutations
(arginine—leucine), which occur in approximately 5% of cases.
For the IDH2 gene, the homologous conserved arginine residue
is at codon 172 (R172) and the reported mutations are R172K
(arginine—lysine), R172M (arginine—methionine), R172G
(arginine—glycine) and R172W (arginine—tryptophan) (5, 41),
as well as R172S (arginine—serine). All these mutations are
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registered in the Catalogue of Somatic Mutations in Cancer
(COSMIC) database (https://cancer.sanger.ac.uk/cosmic). The
incidence of mutations of each IDH gene differs among tumor
types, as summarized in Table 1.

The fact that IDH1/2 mutations affect the active site of the
enzyme led to the initial theory that these mutations cause
loss of enzymatic activity of wild-type IDH. Initial in vitro
studies had shown that mutant IDH proteins impair normal
IDH catalytic action in a dominant-negative fashion by
heterodimerizing to the wild-type enzyme and altering its
activity, leading to reduced levels of aKG and NADPH (42-
44). Reduced levels of NADPH and aKG could then lead to
cellular damage and genomic instability, through impairment
of the normal cellular detoxification mechanisms, as well as
other important cellular processes described above. This
theory was supported by biochemical studies suggesting that
mutant IDH1/2 was unable to catalyze the oxidative
decarboxylation of isocitrate. However, subsequent studies
revealed that mutant IDH enzymes were not catalytically
inactive, but rather enzymes with a gain-of-function activity
[summarized in (45)].

A landmark report by Dang et al. showed that the mutant
IDHI1 protein is not a non-functional enzyme, but rather an
enzyme with a neomorphic activity, which converts aKG to
2-hydroxyglutarate (2-HG) with the simultaneous
consumption of NADPH (46). 2-HG is a byproduct in
normal mitochondrial metabolism that is normally found at
very low levels in the cell and has two enantiomers, D-2HG
and L-2HG (or, R-2HG and S-2HG, respectively). IDHI-
mutant cells exclusively produce D-2HG at very high levels,
up to 100-fold higher than in normal tissues. In the same
manner, /DH2 mutations have been found to result in high
levels of D-2HG (47). Jin et al. showed that accumulation of
high levels of D-2HG takes place in vivo and in vitro only
when both wild-type and mutant /IDH] alleles are expressed
(48), indicating that the wild-type—mutant IDH1 heterodimer
is critical for the rapid conversion of aKG to D-2HG. Indeed,
loss of wild-type IDHI1 expression in IDHI-mutated
glioblastoma cells led to reduced levels of D-2HG. This may
explain why loss of heterozygosity is rare in IDH-mutated
gliomas (48, 49). Interestingly, in vitro studies have
additionally shown that L-2HG is increased in human
neuroblastoma, pediatric glioblastoma, glioblastoma, renal
cell carcinoma, and embryhonic kidney cell lines in the
setting of hypoxia via enzymatic reduction of aKG (50).

It is worth noting that 2-HG accumulation in human cells
has also been described in 2-HG acidurias that are rare
inherited metabolic disorders characterized by abnormally
high levels of hydroxyglutaric acid in almost all organ
systems and body fluids (51). 2-HG aciduria is caused by
inherited loss-of-function mutations in the genes encoding
enantiomer specific flavin adenine dinucleotide-dependent
2-hydroxyglutarate dehydrogenases (D-2ZHGDH and L-

2HGDH for D and L enantiomers, respectively) that normally
convert 2-HG to aKG preventing its accumulation in cells
(52, 53). D-2HG aciduria has also been reported in
association with inherited gain-of-function mutations in IDH2
and is characterized by developmental delay, epilepsy and
cardiomyopathy and short life-span, while L-2HG is
characterized by a variable clinical course and by increased
risk of developing brain tumors in longer survivors (51, 54).

The right-enantiomer, D-2HG, is structurally similar to
aKG. The two molecules differ only in the presence of a C2
hydroxyl group in D-2HG instead of the C2 carbonyl group
in aKG. D-2HG has been shown to act in vitro as a
competitive inhibitor of aKG-dependent enzymes, including
jumonji-C domain-containing histone demethylases and TET
family of hydroxylases. These enzymes, as mentioned
earlier, are key regulators of histone and DNA demethylation
in cells and therefore their inhibition through D-2HG results
in a profile of cellular hypermethylation (38, 55-57). D-2HG
is considered an ‘oncometabolite’ not only because it
increases dramatically in cells as a consequence of IDH1/2
mutations (46), but also because it was shown to transform
hematopoetic into leukemia cells (58) and promote
epithelial-mesenchymal transition in colorectal cancer cells
even in the absence of IDH mutation (59); by contrast,
L-2HG does not appear to have such phenotype-aggravating
properties.

The intracellular accumulation of 2HG in IDH-mutated
gliomas has been used as a non-invasive tool for accurate
diagnosis using magnetic resonance spectroscopic (MRS)
technology (60).

Recently, a more specific technique has been described,
Fourier-transform infrared spectroscopy, which seems
promising for rapid and intraoperative glioma classification.
This technique can provide prognostic information to the
surgeon at the time of the surgery for optimal treatment
decisions (61), but needs further development for clinical
applications. In the same vein, in vivo 3D MRS may be used
for patient surveillance in the context of clinical trials for
assessing treatment efficiency (62).

Role of Mutant IDH in Oncogenesis

The originally proposed oncogenic effect of IDH mutations
through increasing the expression of hypoxia-inducible
factor-1 alpha (HIF1o) and its target genes (44) was later
rejected since IDH mutations in fact result in increased
degradation of HIF1a (63). The exact role of IDH mutations
in tumorigenesis is still not fully understood, although much
progress has been made in this direction (64).

The described gain-of-function IDH mutations giving rise
to gliomas have traditionally been considered as being
directly responsible for malignant transformation (13, 30,
65), since these are established in neural progenitors in the
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brain (30) before lineage-specific genomic alterations that
are described in IDH-mutated gliomas (Figure 1).
Corresponding knowledge on the manifestation of IDH
mutations in myeloid malignancies is less concise; in
leukemia, for example, the biological effects of IDH
mutations, including a favorable prognostic impact of IDH2
mutations, seem to depend on coexisting genomic alterations
(66); this may support a previous hypothesis that IDH
mutations may develop in later steps of malignant
transformation in this context (67).

The early establishment of IDH mutation seems to provide
the common origin and perturbed metabolic and molecular
environment for the development of IDH-mutation-positive
gliomas (68-70) that diverge into specific oligodendrocytic
and astrocytic lineages based on additional genomic
alterations aided by changes in their microenvironment (71).
Thus, oligodendrogliomas acquire changes such as 1p/19q
co-deletion and mutations or fusions in key genes located in
1p, such as the capicua transcriptional repressor gene (CIC)
and far upstream element binding protein 1 gene (FUBPI),
but also in the promoter of telomerase reverse transcriptase
(TERT), the gene encoding the -catalytic subunit of
telomerase (72-74). In comparison, astrocytomas are
characterized by the addition of mutations in tumor protein
53 (TP53) in 80% of cases and in alpha thalassemia/mental
retardation syndrome X-linked gene (ATRX); the latter is
involved in alternative lengthening of telomeres (75-77),
while ATRX mutations are mutually exclusive from
mutations in the TERT promoter. As shown with single-cell
RNA sequencing, lineage determination in IDH mutation-
positive gliomas is non-overlapping (71), thus justifying the
WHO 2016 classification that recommends avoiding use of
the histological term ‘mixed oligoastrocytoma’.

Additional genomic changes determine the malignant
potential of anaplastic gliomas (Figure 1). It remains obscure
however, how IDH mutations and the resulting
oncometabolite D-2HG contribute to the acquisition of the
changes necessary for the development of each glioma
lineage, and whether the same mutations drive the transition
of low-into high-grade glioma.

The main global metabolic consequence in IDH-mutated
cells seems to be energy deprivation: IDH-mutated tumors
have a low-energy requirement, with dozens of metabolites
contributing to this pro-survival feature (68, 70). The low-
energy requirement of IDH mutation-positive tumors may in
fact be related to the methylator phenotype that has been
proposed as the oncogenic mechanism of IDH mutations.
Noushmehr et al. in 2010 described a specific
hypermethylation pattern in CpG islands in a subset of
patients with glioma referred to as a glioma CpG island
methylator phenotype (G-CIMP). This pattern is associated
with altered expression of several genes through
transcriptional silencing (78). Furthermore, G-CIMP has
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been found to be tightly associated with a specific gene-
expression profile called the proneural subtype; the latter is
always characterized by the presence of IDH mutations (79).
Following these studies, Turcan et al. were able to replicate
the G-CIMP signature in human astrocytic cells by
expressing IDH1 R132H mutations, establishing in this way
the attractive theory that IDH mutations constitute the
molecular basis of G-CIMP (80). However, not all IDH
mutation-positive gliomas exhibit the methylator phenotype
(69), while the same phenotype may result from mutations
in other genes.

As previously mentioned, aKG-dependent dioxygenases
are directly involved in histone and DNA methylation and
their inhibition through D-2HG can result in a
hypermethylation pattern consistent with the G-CIMP
signature. This interesting scenario is supported by multiple
preclinical data. DNA demethylation is in part being
regulated by TETs, enzymes that catalyze the conversion of
5-methylcytosine to its unmethylated form. It has been
shown that in vitro expression of IDH mutations inhibits
TET activity, resulting in DNA hypermethylation, and this
inhibition can be reversed by the exogenous addition of aKG
(38). In patients with AML, IDH1/2 mutations have been
found to result in a DNA hypermethylation pattern similar to
G-CIMP through impairment of normal TET catalytic
activity. Interestingly, a subset of patients with AML harbor
TET loss-of-function mutations and have the same epigenetic
defects as patients with IDH mutations. It is worth noting
that IDH and TET mutations are mutually exclusive (81).

Main implications of the methylator phenotype associated
with IDH mutations include the altered expression of genes
participating in practically all cellular functions, some of
which have been studied in detail. IDH mutations have been
inhibit aKG-dependent histone jumonji-C
demethylases that regulate histone methylation. Chowdhury
et al. showed that IDH mutations inhibit members of the
jumonji-C family with different potencies, with the 2-keto-
3-deoxy-D-glycero-D-galacto-nononic acid (KDN) family of
histone demethylases being the most sensitive to inhibition,
leading to an increase in histone methylation marks (55).
These findings have been replicated by other investigators
(38). Lu et al. showed that this increase in histone
methylation leads to a block in cellular differentiation,
probably due to hypermethylation of genes associated with
differentiation (82). Flavahan et al. showed that the
methylator phenotype associated with IDH mutations alters
normal chromosomal topology via disruption of CCCTC-
binding factor (CTCF) insulator protein binding. This protein
is responsible for organizing DNA into chromatin loops and
boundaries. Methylation of CTCF-binding sites disrupts
normal binding of the CTCF proteins, allowing aberrant gene
expression. It has been shown that in IDH-mutant cells, loss
of CTCF binding at a specific domain boundary results in
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Figure 1. Potential differences in the development of isocitrate dehydrogenase (IDH) mutations in the course of oncogenesis in the two main systems
with IDH-mutant malignancies. A: The IDH-dependent pathway in glioma development is well characterized: IDH mutations are established in
local progenitors that give rise to two glioma lineages with specific genotypic characteristics, as described in the text. B: The sequence of events
with respect to IDH mutations in myeloid malignancies remains hypothetical. In cytogenetically normal (primary) acute myeloid leukemia (AML),
IDH mutations occur early and are clonal. In most other cases and in secondary AML, IDH mutations may be subclonal, indicating a later
establishment. MPN: Myeloproliferative neoplasm; MDS: myelodysplastic syndrome; RTK: Receptor tyrosine kinase pathway; PI3K/MAPK:

phosphoinositide 3-kinase/mitogen-activated protein kinase pathway.

overexpression of a prominent glioma oncogene, platelet-
derived growth factor receptor A (PDGFRA). Moreover,
treatment of these cells with a demethylating agent resulted
in down-regulation of PDGFRA and partial restoration of the
CTCEF function (83). Turcan et al. also proposed that histone
and chromatin modifications are the main consequences of
the metabolic environment in IDH-mutant cells (84).
Chesnelong et al. found that in IDH-mutant cells there is
silencing of lactate dehydrogenase A gene (LDHA) via
methylation of its promoter. LDHA is a subunit of LDH
essential for glycolysis and silencing of LDHA in these cells
results in a defective glycolytic pathway. This could perhaps
explain the slow growth reported for IDH-mutant tumors
compared to their wild-type IDH counterparts (85). The
methylation-based silencing of genes encoding for immune
checkpoint inhibitors, such as programmed cell death protein
1 (PDCD1/PD1) and programmed cell death-ligand 1
(PDL1) (86-88) is also worth mentioning in the context of
the above described IDH-related methylator phenotype.
Two consequences directly attributed to the high levels of
2-HG resulting from IDH mutations include endoplasmic
reticulum stress in murine glioma progenitors (89) and the
stalled DNA-damage repair demonstrated in various IDH
mutation-positive tumors, including gliomas (90). Compared
to IDH mutation-negative gliomas, IDH mutation-positive
gliomas exhibit higher apoptotic death rates that can be

further increased with endoplasmic reticulum stress-inducing
agents such as tunicamycin and thapsigargin (89) and with
inhibition of B-cell lymphoma-extra large protein (BCL-xL)
(91). IDH mutations through high 2-HG levels induce
homologous recombination repair deficiency, which was
accompanied by a high sensitivity of IDH-mutated tumors to
poly (ADP-ribose) polymerase (PARP) inhibitors in
preclinical models (90, 92). The importance of the above
features in IDH mutation-positive tumors lies in the fact that
IDH mutations can be exploited with synthetic lethality
strategies using existing drugs.

Prognostic and Predictive Role of IDH Mutations

Many studies have shown that patients with IDH mutation-
positive gliomas have better survival compared to their wild-
type IDH counterparts irrespective of histology and grade,
making IDH mutation the most important prognostic
factor for survival, followed by age, tumor grade and
0%-methylguanine-DNA methyltransferase gene (MGMT)
status, as summarized in (20). The favorable prognostic
effect of IDH mutations compared to wild-type IDH has
been reported in patients with glioblastoma (median overall
survival: 31 vs. 15 months) and anaplastic astrocytoma
(median overall survival: 65 vs. 38 months) (5, 14, 93, 94)
and with anaplastic oligodendroglioma (95). In line with the
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above findings is recent work by Yao et al. in which it was
shown in glioma stem cells in vitro that the presence of IDH
mutation was associated with a less aggressive phenotype
compared to wild-type IDH (96).

Patients with glioma with IDH mutations have distinct
clinical features. They are usually younger in age (4, 5) and
most commonly the lesion is found in the frontal lobes
compared to patients with wild-type IDH tumors (97-101).
Moreover, these tumors are associated with different
characteristics on radiological imaging, such as less contrast
enhancement, less necrosis and increased stiffness compared
to gliomas with wild-type IDH (102, 103).

As mentioned, the above findings have made it clear that
histology and grading are not enough to fully characterize a
glioma tumor and led to the 2016 WHO CNS classification that
incorporates molecular features in addition to histology and
grade. Traditionally, mutations, IDH included, have been
detected with wet (polymerase chain reaction-based) molecular
methods such as Sanger sequencing (Figure 2) and these are
included in most next-generation sequencing panels. The
development of an antibody that recognizes the most frequent
IDH alteration in gliomas, namely /DHI p.R132H (104), and
its validation for diagnostic immunohistochemistry application
in 2014, has greatly facilitated the integration of IDH testing
in routine pathology diagnostic practice (Figure 3).

Similarly to patients with IDH-mutated glioma, patients
with IDH-mutated cholangiocarcinoma have been shown to
have better overall survival and longer time to recurrence
after surgical resection (105).

In patients with AML, mutation of IDH2, but not IDHI
has been shown to be associated with better overall survival
compared to patients with wild-type IDH (106). However,
conflicting results have been reported (64, 66) and the effect
of IDH mutations in leukemia seems to depend on the
genomic context and coexisting alterations rather than
standing independently (66).

IDH mutations have been shown to be predictive of
response to chemotherapy. This has been shown in patients
with low-grade gliomas and secondary glioblastomas treated
with temozolomide (107, 108), as well as in patients with
anaplastic oligodendroglioma treated with procarbazine,
lomustine and vincristine (109).

In their study, Lu et al. showed that a possible mechanism
for chemosensitivity in patients with IDHI mutation-
positive gliomas is through 2-HG production and oxidative
defects, which result in impairment of PARP1-mediated
DNA repair (92).

Targeted Treatment of IDH-mutant Tumors
Based on the unique characteristics of IDH-mutant tumors,

it is intriguing to assume that these tumors may need to be
treated differently from their wild-type IDH counterparts.
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The mostly tested strategy in this context is with
compounds acting as IDH inhibitors. The fact that IDH
mutations occur early in gliomagenesis and that such
mutations are tumor specific and are expressed uniformly in
all tumor cells (13) resulted in the development of drugs
targeting IDH1/2 enzymes. Data from preclinical studies
showed that IDH inhibitors can reduce 2-HG production,
reverse histone and DNA methylation, and induce cell
differentiation (110-112). The clinical trials testing the
efficiency of IDH inhibitors in gliomas and hematological
malignancies are shown in Table II.

Popovici-Muller ez al. in 2012 were the first to develop an
IDH1/2 inhibitor that lowered the 2-HG level in a glioblastoma
xenograft mouse model (113). Following these findings,
Chatuverdi et al. showed that the use of another IDH1 inhibitor
in leukemia cells from patients with IDHI mutations blocked
colony formation without affecting normal cells (114). AGI-
5198, also an IDH1 inhibitor, was shown in two in vitro studies
to inhibit 2-HG production and induce cell differentiation (110,
115). Similarly, AGI-6780, an IDH?2 inhibitor, was shown to
induce differentiation of /DH2-mutated erythroleukemia and
primary human AML cell lines (111).

IDH inhibitors were first studied in patients in 2013. The
first agent to be tested was AG-221 (enasidenib), a selective
IDH2 inhibitor. Yen et al. showed in vitro that enasidenib
suppressed 2-HG production in and induced cellular
differentiation of primary human /DH2 mutation-positive
AML cells ex vivo and in xenograft mouse models (116). On
this basis, enasidenib was initially tested in a phase I/II
clinical trials in patients with advanced hematological
malignancies and a known IDH?2 mutation (NCT01915498).
Results from this trial were encouraging. The drug was well
tolerated and resulted in 98% reduction of 2-HG levels. The
objective response rate among 181 patients with relapsed or
refractory AML was 41%, with 28% of patients achieving
complete response and a median response duration of 5.8
months. Grade 3 or 4 drug-related side-effects were observed
in 21% of patients and included indirect hyperbilirubinemia
(12%) and IDH-inhibitor differentiation syndrome (7%)
(117-119). Subsequent translational studies from the trial
population have shown that cellular differentiation is the
main mechanism of action of enasidenib (120). Interestingly,
in the trial population, 23% of patients taking enasidenib at
a dose of 100 mg once daily had a complete response lasting
a median of 8.2 months (121).

These results led to the approval of enasidenib by the
Food and Drug Administration (FDA) (August 2017) for use
in patients with refractory or relapsed AML along with a
companion diagnostic, the RealTime IDH?2 assay to detect
IDH?2 mutation (USFDA Approved Drugs—FDA Granted
Regular Approval to Enasidenib for the Treatment of
Relapsed or Refractory AML; https://www.fda.gov/Drugs/
InformationOnDrugs/ApprovedDrugs/ucm569482.htm),
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Figure 2. Example of an isocitrate dehydrogenase-2 (IDH2)-mutant grade 11l glioma. The patient was a 22-year-old male with a central nervous
system tumor that recurred within 3 years. The case was examined before the introduction of diagnostic IDHI RI132H antibody. A: As shown in the
hematoxylin- and eosin-stained section, morphologically the tumor exhibited both an oligodendrocytic and an astrocytic component (original
magnification x200). B: Sanger sequencing targeting IDHI exon 2 and IDH2 exon 4 (CCDS 10359.1) was applied to the patient’s germline DNA
from peripheral blood, on a normal brain sample, and on the indicated tumor DNA samples that were macrodissected from the same paraffin section.
The pathogenic IDH2 mutation p.R1728/c.516G>T (arginine— serine; COSM34090) was tumor-specific and was found in both the oligodendrocytic
and astrocytic components. Courtesy: Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, Greece (archived in 2011).

which is also being tested in many clinical trials. A phase III
trial evaluating enasidenib versus best supportive care in
elderly patients with AML harboring IDH2 mutation is
currently recruiting (NCT02577406). Enasidenib has also
been evaluated in a phase I/II trial in patients with advanced
solid tumors harboring an /DH2 mutation (NCT02273739).
Similarly, AG 120, an IDHI1 inhibitor, has been tested
in patients with advanced hematologic malignancies
(NCT02074839) and solid tumors harboring /DHI mutations
(NCT02073994). Preliminary results have been presented and
AG 120 has been reported to have a clinical benefit rate of 37%
among all patients and 25% among those with glioma (122).

Furthermore, additional IDH inhibitors have been
designed and have entered clinical trials, including IDH-
305, DS-1001b and BAY-1436032, which are all IDH -
mutant inhibitors (122, 123), and AG-881 (vorasidenib), a
pan inhibitor of mutant IDH1 and IDH2 enzymes, which
has been shown to fully penetrate the blood—brain barrier
(NCT02381886, NCT03030066, NCT02746081). AG-881
is currently being tested in two clinical trials,
NCT02481154 and NCT02492737, involving patients with
advanced solid tumors including gliomas with IDHI/IDH?2
mutations and advanced hematological malignancies,
respectively (20, 49).
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Table II. Summary of clinical trials evaluating isocitrate dehydrogenase (IDH) inhibitors, alone and in combination, in patients with glioma or

myeloproliferative malignancies.

IDH inhibitor Disease/patient Somatic IDH Trial Status CT.GOV
population status phase (May 2018) ID
AG-221 (enasidenib) vs. Advanced hematological IDH?2 mut 172 Active, not recruiting NCTO01915498
conventional regimen malignancies
Advanced solid tumors IDH?2 mut 1/2 Completed, results awaited NCT02273739
including glioma
Older patients with IDH?2 mut 3 Recruiting NCT02577406
late-stage AML
AG-881 (vorasidenib) Advanced hematological IDH] or IDH2 mut 1 Active, not recruiting NCT02492737
malignancies
Advanced solid tumors IDH1 or IDH2 mut 1 Active, not recruiting NCTO02481154
including gliomas
AG-120 (ivosidenib) Advanced solid tumors, IDH] mut 1 Active, not recruiting NCT02073994
including gliomas
Advanced hematological IDHI mut 1 Active, not recruiting NCT02074839
malignancies
Grade II or III gliomas IDHI mut 1 Recruiting NCT03343197
prior to surgery
Previously treated IDHI mut 3 Recruiting NCT02989857
cholangiocarcinoma
IDH305 Advanced malignancies IDHI mut (IDH-R132) 1 Active, not recruiting NCT02381886
BAY 1436032 Advanced AML IDHI mut 1 Recruiting NCT03127735
Advanced solid tumors IDHI mut 1 Recruiting NCTO02746081
DS-1001b Gliomas relapsed after IDHI mut 1 Recruiting NCT03030066
standard radiotherapy
AG-221 plus AG-120 Newly diagnosed AML IDH1 or IDH2 mut 172 Recruiting NCT02677922
plus azacitidine
AG-120 or AG-221 Newly diagnosed AML IDH]I or IDH2 mut 1 Recruiting NCT02632708
with chemotherapy
AG-221 alone or AG-221 High-risk MDS IDH?2 mut 2 Recruiting NCTO03383575
plus azacitidine
Azacitidine alone or Untreated AML IDHI mut 3 Recruiting NCT03173248
AG-120 plus azacitidine
AG-120 plus venetoclax Relapsed or refractory AML IDHI mut 172 Recruiting NCT03471260
AG-120 or AG-881 Grade II or III gliomas IDHI mut 1 Recruiting NCT03343197

prior to surgery

AML, Acute myeloid leukemia; MDS, myelodysplastic syndrome; mut, mutant; CT.GOV.ID, clinicaltrials.gov identifier.

A different treatment approach, synthetic lethality for
IDH-mutant solid tumors, was recently suggested by
Sulkowski et al. (90) based on the observation that 2-HG
results in homologous recombination repair deficiency,
rendering such cells highly sensitive to PARP inhibition.
Importantly, they also observed that this sensitivity is
reversed by IDH inhibitors. In the same context, Lu et al.
(92) reported on synergistic effects between temozolomide
and the PARP inhibitor olaparib, in patients with IDH
mutation, providing the possibility to achieve improved
cytotoxic effects with minimal use of alkylating agents in
order to reduce bone marrow cytotoxicity (109). Based on
these results, a phase I trial with the above combination in
patients with relapsed glioblastoma recently completed
accrual and results are awaited (NCT01390571) (124).
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Another potential pathway to be targeted in IDH-mutant
gliomas was identified based on the specific hypermethylation
patterns associated with such tumors. As previously described,
histone and DNA hypermethylation reported in IDH-mutant
tumors leads to an arrest of cellular differentiation and
malignant transformation. The use of decitabine and
azacytidine, both DNA-demethylating agents approved by the
FDA for myelodysplastic syndromes, has been shown in
preclinical models to reverse the hypermethylation phenotype,
induce cellular differentiation and delay tumor growth in
IDH[-mutated xenograft models (125, 126).

As immunotherapy constantly gains ground in the battle
against cancer, many researchers have tried to use different
immunotherapy approaches against IDH-mutant tumors. The
fact that IDH mutations are events that occur early and
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Figure 3. Isocitrate dehydrogenase-1 (IDHI)-R132H immunohistochemistry
in gliomas of different histological grade. Left panel: Hematoxylin- and
eosin-stained sections; Right panel: Sections stained using the diagnostic
antibody to IDHI R132H (clone DIA-H09). The antibody detects the most
common IDHI mutation, arginine—histidine at codon 132, but may also
detect further amino acid changes in the same codon. Staining is
cytoplasmic. A: Diffuse astrocytoma (grade 11). B: Anaplastic astrocytoma
(grade III). C: Anaplastic oligoastrocytoma (grade III). The area
corresponds to the oligodendrocytic component. D: Same case as in C,
IDH]I RI32H-negative area in the periphery of the tumor. Reactive gliosis
(or astrocytosis) is expected to be stain negatively with this antibody, which
is of great value for distinguishing between non-tumor and tumor in areas
with high cellularity in diagnostic CNS pathology. E: Glioblastoma (grade
1V). Note that vascular endothelial cells are negative for this marker and
serve as an internal negative control. In A, B, C and E, negative residual
cells are present in the tumor bed. Original magnification x200. Courtesy:
Dr. Thomas Zaramboukas; Dept. of Pathology; School of Medicine;
Aristotle University of Thessaloniki, 54124 Thessaloniki.

steadily through time in gliomagenesis, in combination with
the fact that mutant IDH enzymes are expressed only in
glioma cells, have made them intriguing antigens for

IDH inhibitors 1 IR; TMZ

IDH mut
h 4

T 2-He
—> Methylator phenotype

(\ PD/PDL1 expression}: TMZ  Checkpoint
—>» Mutator phenotype? IR Inhibitors?7?

—> I DNA double-strand breaks; HRD«<—— PARP inhibition
L Sensitivity to apoptosis induction <« Anti-BCL2

Drives transformatlon Cell differentiation

Figure 4. Features of isocitrate dehydrogenase (IDH) mutations in
gliomas and potential treatment approaches. IDH inhibitors effectively
reduce the level of 2-hydroxyglutarate (the oncometabolite in IDH-
mutated tumors) and induce cell differentiation, but are incompatible
with major treatment modalities for gliomas. In addition, these
inherently counteract any of the molecular treatment options presented
(right panel). In the clinical setting, when tumors are diagnosed,
transformation has been accomplished and tumors have already
acquired additional molecular/genomic characteristics, questioning the
value of targeting IDH for effective tumor growth inhibition. The three
drug classes on the right target the effects of 2-HG and not 2-HG itself.
Checkpoint inhibitors are under trial, but these need their target
molecules programmed cell death protein 1 (PD1) and programmed
death ligand 1 (PDLI) to be expressed or overexpressed in order to be
effective. These molecules are underexpressed in IDH-mutant tumors
due to promoter hypermethylation. Temozolomide (TMZ) may reverse
the low expression of checkpoint molecules in IDH-mutant gliomas and
induce the hyper-mutator phenotype, but this has still to be proven in
the clinical setting. The straightforward options seem to be poly-ADP-
ribose polymerase (PARP) targeting in the context of synthetic lethality,
and apoptosis inhibition with already available drugs. Combinations of
the three classes of drugs on the right may be considered. BCL2: B-cell
lymphoma 2 protein; IR: irradiation; HRD: homologous recombination
repair deficiency.

activating the immune system. A mutation-specific anti-
IDH1(R132H)-specific peptide vaccine has been produced
and been shown to generate an immune reaction in
preclinical studies and to reduce tumor growth in a mouse
model (127, 128). Currently there are three IDH1 peptide
and dendritic vaccines targeting the IDHIR132H mutation
that are being evaluated in phase I clinical trials
(NCT02193347, NCT02454634 and NCT02771301). Since
PDI and PDLI genes were found to be methylated and
underexpressed in IDH-mutant tumors (86-88), inhibitors of
PD1 (pembrolizumab) and PDL1 (avelumab) are currently
being evaluated in pretreated patients with gliomas, either
alone in patients with glioma grade II-IV that harbor
hypermutator phenotype, or in combination with
radiotherapy in secondary glioblastoma (NCT02658279 and
NCT02968940, respectively). Pretreatment with irradiation
with/without temozolomide may interfere with the
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methylator phenotype and hence alter the expression of
targets of pembrolizumab and avelumab, while
temozolomide may induce a mutator phenotype in gliomas,
through inactivation of DNA mismatch repair genes (129).

In conclusion, several therapeutic approaches are being
tested in patients with IDH mutant tumors based on preclinical
evidence (summarized in Figure 4). The first approach involves
IDH inhibitors, which target the effect of IDH mutations, i.e.,
the oncometabolite 2-HG, and reduce its levels. The second
tries to exploit the effects of the oncometabolite, i.e. deficient
DNA strand breaks and apoptosis. The third is in the context
of immunotherapy. Because IDH inhibitors do not kill cells but
induce them to differentiate or drive them into a reversible
autophagic state, these inherently counteract existing treatment
modalities, such as radiotherapy, cytotoxic chemotherapeutics,
as well as most molecularly targeted agents. Thus, despite
approval, this class of molecules is not expected to be
effectively integrated into clinical practice, for gliomas at least.
In comparison, approaches of synthetic lethality appear more
promising based on the rationale of combination possibilities
and repurposing of existing drugs. IDH-mutant tumors are
progressively being understood as an individual class of
malignancies across tumors of different origins, the reason
being the oncometabolite (D-)2-HG. Deepening our knowledge
on how this metabolite is influenced by currently applied
treatments in patients with IDH mutation-positive tumors is
warranted for the efficient design of clinical trials targeting its
consequences directly or after initial treatment failure,
particularly in patients with glioma.
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