
Abstract. Background/Aim: Patients with breast cancer and
metabolic syndrome have poorer outcomes. We aimed to
develop and characterise an apolipoprotein E-null/aromatase
knockout (ApoE−/−/ArKO) mouse model of breast cancer with
metabolic syndrome to aid research of the mechanisms behind
poor prognosis. Materials and Methods: Wild-type, ApoE−/−

and ApoE−/−/ArKO mice were orthotopically implanted with
EO771 murine breast cancer cells. Tumour growth was
monitored and tumours investigated for pathological features
such as cancer-associated adipocytes, hypoxia and cancer cell
proliferation. Results: Tumours from ApoE−/−/ArKO mice
were significantly more proliferative than those from wild-type
mice (p=0.003), and exhibited reduced expression of insulin-
like growth factor binding protein-5 (p=0.002). However,
ApoE−/−/ArKO mice also had a reduced rate of metastasis
compared to wild-type and ApoE−/− mice. Tumour hypoxia
and the number of cancer-associated adipocytes did not differ.
Conclusion: The ApoE−/−/ArKO model with EO771 breast
cancer provides a novel mouse model to investigate the effects
of metabolic syndrome on aspects of breast tumour biology.

Metabolic syndrome is characterised by a cluster of disorders
that predispose towards development of heart disease, type
II diabetes and atherosclerosis (1). An individual is
diagnosed as having metabolic syndrome if they have at least
three out of five metabolic risk factors: Abdominal obesity,
high levels of plasma lipids (hyperlipidaemia), low levels of
high-density lipoprotein (HDL) cholesterol, high blood

pressure (hypertension) and high fasting blood sugar
(hyperglycaemia) (1). Epidemiological evidence indicates
that individuals with metabolic syndrome also have an
increased risk of developing breast cancer (2) and a worse
prognosis after diagnosis (3).

Mechanistically, there are a number of ways in which the
components of metabolic syndrome can contribute to breast
cancer development and progression. Obesity is
characterised by chronic, low-grade inflammation, which is
reflected by changes in serum levels of inflammatory
markers such as interleukin (IL)-6, and growth factors such
as insulin-like growth factors (IGFs) and their binding
proteins (IGFBPs) (4, 5). Chronic inflammation is a known
contributor to breast cancer development and progression
(6). Obesity-related chronic inflammation is caused by
hypoxic, hypertrophic adipocytes and the increased
infiltration of pro-inflammatory M1 macrophages into obese
adipose tissue (7). Similarly, hyperlipidaemia can lead to the
development of chronic inflammation through toll-like
receptor signalling on macrophages (8). Cholesterol and its
metabolite 27-hydroxycholesterol have been shown to
promote tumour cell proliferation, epithelial to mesenchymal
transition and accelerated tumour growth and metastasis in
mouse models (9-11). In addition, hyperglycaemia has been
shown to induce chemoresistance (12) and increase cell
migration (13) of oestrogen receptor (ER)-positive breast
cancer cells in vitro. Thus, the chronic inflammation and
high levels of cholesterol and glucose associated with
metabolic syndrome result in more proliferative tumour cells
with increased metastatic potential.

It has been shown that adipocytes in close proximity to the
tumour become delipidated and interact with tumour cells to
stimulate their aggressive behaviour (14). These cells are
termed cancer-associated adipocytes (CAA). In vitro, it has
been shown that breast cancer cells cultured with adipocytes
become more invasive (14). This provides a mechanism
whereby excess adipose tissue could directly influence tumour
progression, which is of particular importance in breast cancer
due to the abundance of adipose tissue in the breast.
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Low oxygen (hypoxia) is a negative prognostic indicator
for breast cancer (15). When tumours outgrow their blood
supply, regions of hypoxia develop. This activates hypoxia-
inducible factors (HIF) 1 and 2, transcription factors which
regulate cellular adaptation to hypoxia (16). HIF1 and-2
activate a large array of pro-survival, angiogenic and
metabolic genes, including vascular endothelial growth
factor (VEGF) (16). VEGF is proangiogenic and, under
hypoxia, stimulates the formation of new blood vessels. In
tumours it is aberrantly expressed, which leads to the
formation of dysfunctional vessels and a chaotic vasculature
system (17). This results in further perpetuation of tumour
hypoxia and the chronic overexpression of HIFs and VEGF.
In addition, emerging evidence indicates that obesity and
hyperlipidaemia accelerate tumour angiogenesis (18, 19).

Apolipoprotein E (ApoE) is a key protein involved in
cellular lipid uptake from the bloodstream; thus, ApoE−/−
mice are hyperlipidaemic due to impaired lipid clearance
from the bloodstream (20). However, they lack other features
of metabolic syndrome. The aromatase enzyme is the
product of the aromatase cytochrome P450 gene (CYP19)
and catalyses the conversion of C19 androgens to C18
oestrogens (21). Individuals with a homozygous mutation of
the CYP19 gene, resulting in aromatase deficiency, have
clinical features of metabolic syndrome, namely insulin
resistance and high cholesterol (22). Similarly, aromatase-
knockout (ArKO) mice exhibit insulin resistance, elevated
serum cholesterol and age-progressive obesity (22). Scott et
al. developed and characterised a mouse model of metabolic
syndrome by crossing hyperlipidaemic ApoE−/− mice with
ArKO mice (23). They reported that these mice display all
the characteristics of metabolic syndrome: The mice are
heavier than their wild-type counterparts (likely due to an
increase in abdominal fat), have elevated serum cholesterol
and triglyceride levels, a lower level of HDL cholesterol,
loss of glycaemic control and hypertension (23). In addition,
measurement of circulating adipokines revealed an
inflammatory state. These metabolic abnormalities were
strongly evident from 6 months of age.

Due to the epidemiological evidence indicating a pro-
tumour effect of metabolic syndrome, preclinical evidence is
required to delineate tumour growth characteristics and
composition of the tumour microenvironment in a metabolic
syndrome model with breast cancer. Currently, most mouse
models of metabolic syndrome either do not exhibit all the
characteristics of metabolic syndrome or have impaired
leptin signalling, which is not representative of the clinical
situation [reviewed in (24, 25)]. In addition, no other
preclinical study has investigated the effect of metabolic
syndrome on breast cancer (as far as we are aware). Many
studies have used obese models to examine the relationship
between obesity and tumour growth [reviewed in (26)], and
some of these may also have had other components of

metabolic syndrome [e.g. diet-induced models of obesity can
also be hyperlipidaemic and have insulin resistance (27)], but
this was not documented. For the most part, these studies
have shown that obesity increases tumour burden and
reduces latency (26). 

We aimed to develop a metabolic syndrome model with
orthotopic breast cancer (tumours grown in their correct
anatomical location and tissue) using the ApoE−/−/ArKO
mice developed by Scott et al. (23) and inoculating them
with EO771 murine breast cancer cells. Our objective was to
characterise tumour growth rate, aspects of the tumour
microenvironment, and changes in circulating factors in the
metabolic syndrome ApoE−/−/ArKO compared to
hyperlipidaemic ApoE−/− and wild-type mice.

Materials and Methods

Mouse model. Ethical approval for this study was obtained from the
University of Otago Animal Ethics Committee (C05/14).
International guidelines for animal welfare were strictly followed
(28). Mice with three different genotypes were used: Wild-type
C57BL/6 (n=18), ApoE−/− (n=18) and ApoE−/−/ArKO (n=12).
ApoE−/− mice were originally generated by Piedrahita et al. (20) and
bred in-house from homozygous individuals. ApoE−/−/ArKO mice
were generated by crossbreeding ApoE−/− and ArKO [originally
generated by Fisher et al. (29)], with genotype testing as previously
described (23). To better mimic the age distribution of most patients
with breast cancer, middle-aged female mice (aged 6-12 months)
were used. Mice were fed a standard chow diet, kept on a 12:12-h
light-dark cycle at a temperature of approximately 22˚C and housed
in groups of up to five.

Tumour model. Mice were injected with 2×105 EO771 breast
cancer cells in sterile phosphate-buffered saline (PBS) into the
4th mammary fat pad to form orthotopic breast tumours. EO771
are a medullary breast cancer cell line originally derived from a
spontaneous tumour in a C57BL/6 mouse (30), kindly gifted by
Dr Andreas Moeller (QIMR Berghofer, Australia). Tumour
growth was monitored daily by calliper measurement and the
volume estimated using the following formula: Tumour
volume=width2 × (length/2).

When tumours reached a maximum ethical size of 600 mm3, mice
were injected intraperitoneally with 60 mg/kg of the hypoxia marker
pimonidazole (Hypoxyprobe Inc., Burlington, MA, USA). After 
90 min, mice were anaesthetised by isoflurane (Baxter, Deerfield, IL,
USA) inhalation and euthanised by cervical dislocation. Mice were
euthanised early if the presence of internal metastases was suspected
(n=11). The primary tumour, internal metastases, blood and internal
organs were removed for analysis. Tumours were halved; one half
was formalin fixed and paraffin embedded (FFPE) and the other was
frozen at −80˚C. Blood was centrifuged at 4,000 × g for 10 min to
obtain serum, which was subsequently stored at −80˚C. All
subsequent analyses were blinded to genotype.

Immunohistochemistry. FFPE samples were sectioned at 3-5 μm and
pressure cooker antigen retrieval was performed using citrate buffer
[10 mM trisodium citrate dihydrate, 0.05% (v/v) Tween-20, pH 6.0]
prior to commencement of the staining procedure. The following
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antibodies were used for staining: anti-perilipin (1:800, ab3526;
Abcam, Melbourne, Australia), anti-phosphohistone H3 (pHH3;
1:100, ab5176; Abcam) and anti-pimonidazole (1:1,000, HP1-1000
kit; Hypoxyprobe Inc.). Antibodies were incubated overnight at 4˚C
with sections, and sections were then stained using the EnVisionTM
G/2 System/AP Rabbit/Mouse (Permanent Red) kit (Dako,
Copenhagen, Denmark). Perilipin and pHH3 staining was quantified
by calculating the percentage of positively stained cells per high-
powered field and averaging over 20 random fields. Pimonidazole
staining was quantified using a modified H-score by three
independent observers (AM, LAB, GUD) as previously described
(31). Briefly, staining intensity was assigned a score from 1 (weak)
to 3 (strong), and this number was multiplied by the percentage area
stained.

Tumour lysates. Frozen tumour samples were chilled using liquid
nitrogen and ground into a fine powder using a mortar and pestle
on dry ice. Samples were then lysed using ice-cold RIPA buffer 
(150 mM NaCl, 50 mM Tris, 1% NP-40, 0.5% sodium
deoxycholate, 0.1% sodium dodecyl sulfate, pH 8.0) with freshly
added protease inhibitor cocktail (Roche, Indianapolis, MN, USA),
as described previously (31). Samples were sonicated and
centrifuged to remove cellular debris before storage at −80˚C.

Adipokine antibody array. The presence of adipokines in tumour
lysates was estimated using an Adipokine Antibody Array (R&D
Systems), following the manufacturer’s recommendations. This
array simultaneously detects 38 different proteins. Briefly,
nitrocellulose membranes were loaded with 400 μg of protein
samples (a mixture from four mice per group per membrane) and
incubated overnight at 4˚C on a rotating platform. Staining was
visualised using UVItec Alliance 4.7 (Cambridge, UK).

Enzyme-linked immunosorbent assay. Serum and tumour IGFBP5,
VEGF and IL6 were quantified by enzyme-linked immunosorbent
assay (ELISA) using the following kits and according to the
manufacturer’s instructions: Mouse IGFBP5 ELISA (Abcam),
Mouse VEGF DuoSet ELISA (R&D Systems) and Mouse IL6
Quantikine ELISA Kit (R&D Systems). Absorbance was measured
using a Wallac 1420 Victor3 microplate reader (PerkinElmer Life
and Analytical Sciences, Waltham, MA, USA).

Statistical analysis. All statistical analyses were performed using
GraphPad PRISM 7 (La Jolla, CA, USA). Populations were assessed
for normality using the Kolgomorov–Smirnov normality test.
Differences across more than two groups were tested using either an
ordinary one-way analysis of variance (ANOVA) with Tukey’s post-
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Figure 1. ApoE−/− mice were significantly heavier than wild-type (WT) and ApoE−/−/ArKO mice. A: Body weight of wild-type, ApoE−/− and
ApoE−/−/ArKO mice at the start of the study. Wild-type and ApoE: n=18; ApoE/ArKO: n=11. Kidney (B), Liver (C) and omental fat (D) weight of
wild-type, ApoE−/− and ApoE−/−/ArKO mice at euthanasia. Wild-type and ApoE: n=10; ApoE/ArKO: n=12. **Significantly different at p<0.01.
Data are expressed as individual data points and mean±SD.



hoc test when data were normally distributed, or a Kruskal–Wallis
test with Dunn’s post-hoc test when data did not follow a Gaussian
distribution. Correlations were performed using Pearson correlation.
p-Values lower than 0.05 were considered significant.

Results
Mouse body and organ weight. Hyperlipidaemic ApoE−/−
mice were significantly heavier than both wild-type and
ApoE−/−/ArKO mice (p=0.007 and p=0.003, respectively;

Figure 1A), but there was no significant difference in the
body weight of wild-type compared to ApoE−/−/ArKO mice.
There was no difference in the weights of kidney, liver or
omental fat between the three genotypes (Figure 1B-D).

Tumour growth and cancer cell proliferation. Tumour
growth rate was investigated by analysing the lag phase of
growth, or time taken until tumour establishment (50 mm3),
and the exponential phase of growth, or time taken for the
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Figure 2. Tumours from ApoE−/−/ArKO mice were significantly more proliferative than tumours from wild-type (WT) mice. A: Analysis of the lag
phase of tumour growth as time in days (d) to reach 50 mm3 in wild-type, ApoE−/− and ApoE−/−/ArKO mice. Wild-type and ApoE: n=12;
ApoE/ArKO: n=9. B: Analysis of the exponential phase of tumour growth as time in days to quadruple in volume. Wild-type: n=12; ApoE: n=10;
ApoE/ArKO: n=6. C: Representative immunohistochemical staining for the mitotic marker phosphohistone H3 (pHH3) in tumours from wild-type,
ApoE−/− and ApoE−/−/ArKO mice. Scale bars represent 100 μm. D: Proportion of wild-type, ApoE−/− and ApoE−/−/ArKO mice with internal
metastases. E: Analysis of tumour cell proliferation from wild-type, ApoE−/− and ApoE−/−/ArKO mice according to the percentage of pHH3-positive
cells. Wild-type: n=14; ApoE: n=15; ApoE/ArKO: n=9. **Significantly different at p<0.01, ns: not significant. Data are expressed as individual
data points and mean±SD.



tumour to quadruple in volume (from 50 to 200 mm3). No
differences between groups in either the lag or exponential
phase of tumour growth were observed (Figure 2A and B). 

Tumour cell proliferation, as measured by the mitotic
marker pHH3, was significantly higher in tumours from
ApoE−/−/ArKO mice compared to wild-type mice (p=0.003,
Figure 2E). There was a trend for tumours from ApoE−/−
mice to be more proliferative than those from wild-type mice
(p=0.07), but no difference was observed between ApoE−/−
and ApoE−/−/ArKO mice.

A proportion of mice developed ascites and highly
aggressive metastases within the peritoneal cavity. Wild-type
mice were most prone to these secondary tumours, with 39%
(7/18) developing internal tumours (Figure 2D). In contrast,
22% (4/18) of ApoE−/− mice developed internal tumours, and
0% (0/12) of ApoE−/−/ArKO mice did.

Adipokines in tumours and serum. The antibody array screen
detected 23 out of 38 proteins on the adipokine array, with
four proteins found to be increased and seven reduced by
more than 25% in tumours from ApoE−/− and ApoE−/−/ArKO
compared to wild-type mice (results not shown). IGFBP5
and VEGF changed most notably in tumours from
ApoE−/−/ArKO compared to wild-type mice and were
analysed further by ELISA: In addition, IL-6 was measured
as an inflammatory marker. 

Tumour IGFBP-5 was significantly reduced in ApoE−/−
(p=0.02) and ApoE−/−/ArKO compared to wild-type mice
(p=0.002, Figure 3A). In tumours from wild-type mice,
IGFBP5 levels were significantly lower in internal
metastases compared to primary tumours (p=0.001, Figure
3B). This difference between primary and secondary tumours
was not detected in ApoE−/− mice; ApoE−/−/ArKO mice did
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Figure 3. Tumour insulin-like growth factor binding protein 5 (IGFBP5) was reduced in ApoE−/− and ApoE−/−/ArKO compared to wild-type (WT)
mice. A: Analysis of tumour IGFBP5 in wild-type, ApoE−/− and ApoE−/−/ArKO mice. Wild-type: n=8; ApoE and ApoE/ArKO: n=6. B: Analysis of
IGFBP5 in primary tumours and metastases (Mets) from wild-type and ApoE−/− mice. Wild-type Primary: n=8, Mets n=3; and ApoE Primary: n=6,
Mets: n=3. C: Analysis of serum IGFBP5 in wild-type, ApoE−/− and ApoE−/−/ArKO mice. Wild-type: n=9; ApoE and ApoE/ArKO: n=8. D: Analysis
of serum IGFBP5 in wild-type and ApoE−/− mice bearing only primary tumours or with internal metastases. Wild-type Primary: n=9, Mets: n=4;
ApoE Primary: n=8, Mets: n=3. Significantly different at *p<0.05, and **p<0.01. Data are expressed as individual data points and mean±SD. 



not develop visible metastases in this study. Serum IGFBP5
did not differ between groups (Figure 3C) nor between mice
with only a primary tumour compared to those with
metastases (Figure 3D).

There was no significant difference in tumour or serum
VEGF between groups (Figure 4A and C). However, in wild-
type mice, internal metastases had significantly higher levels of
VEGF compared to primary tumours (p=0.03); this trend was
mirrored in tumours from ApoE−/− mice, although it was not
statistically significant (Figure 4B). Serum levels of VEGF were
significantly higher in wild-type mice with internal metastases
compared to mice with primary tumours only (p=0.001, Figure
4D), but this was not seen in ApoE−/− mice. In mice with
internal metastases, serum VEGF was significantly lower in
ApoE−/− mice compared to wild-type mice (p=0.009).

Levels of tumour and serum IL6 remained unchanged in
all groups (Figure 5A and C). No difference was seen in IL6
levels in secondary compared to primary tumours (Figure
5B), and serum levels were unchanged in mice with
metastases compared to those with primary tumours only
(Figure 5D). There was a non-significant trend for tumour-
bearing mice to have elevated serum IL6 compared to non-
tumour-bearing mice (Figure 5C). 

Adipocyte infiltration and tumour hypoxia. There were a
notable number of adipocytes infiltrating EO771 orthotopic
tumours. However, there was no difference in the number
of CAA within the tumours of ApoE−/− or ApoE−/−/ArKO
compared to wild-type mice (Figure 6A and B). In addition,
there was no difference in the number of CAA in internal
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Figure 4. Tumour and serum vascular endothelial growth factor (VEGF) was increased in wild-type (WT) mice with internal metastases compared
to wild-type mice bearing only primary tumours. A: Analysis of tumour VEGF in wild-type, ApoE−/− and ApoE−/−/ArKO mice. Wild-type: n=8;
ApoE and ApoE/ArKO: n=6. B: Analysis of VEGF in primary tumours and metastases from wild-type and ApoE−/− mice. Wild-type Primary: n=8,
Mets: n=3; and ApoE Primary: n=6, Mets: n=3. C: Analysis of serum VEGF in wild-type, ApoE−/− and ApoE−/−/ArKO mice. Wild-type: n=9;
ApoE and ApoE/ArKO: n=8. D: Analysis of serum VEGF in wild-type and ApoE−/− mice bearing only primary tumours or with internal metastases.
Wild-type Primary: n=9, Mets: n=4; and ApoE Primary: n=8, Mets: n=3. Significantly different at *p<0.05, and **p<0.01; ns: not significant.
Data are expressed as individual data points and mean±SD.



metastases compared to primary tumours for either wild-
type or ApoE−/− mice, nor was there a difference in CAA
between metastases from wild-type compared to ApoE−/−
mice (Figure 6C).

The level of tumour hypoxia was similar between
groups (Figure 7A and B). However, in ApoE−/− mice,
metastases were significantly more hypoxic than primary
tumours (p<0.0001) (Figure 7C). Interestingly, we
observed no difference in the level of hypoxia in primary
tumours compared to metastases from wild-type mice.
Metastases from ApoE−/− mice were significantly more
hypoxic than metastases from wild-type mice (p<0.0001)
(Figure 7C).

Discussion

In this study, we aimed to develop and characterise a mouse
model of breast cancer with metabolic syndrome. Tumours
from ApoE−/−/ArKO mice were more proliferative and had
reduced levels of tumour IGFBP5 compared to wild-type
mice, but showed no difference in the number of tumour-
infiltrating adipocytes, level of tumour hypoxia, serum
IGFBP5, or serum and tumour VEGF or IL6.

Omental fat and organ weights were similar across all
three genotypes, with ApoE−/− mice about 10% heavier than
wild-type and ApoE−/−/ArKO (by 2.5±2.3 g and 3.1±2.3 g,
respectively). In contrast to Scott et al. (23), we found no
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Figure 5. Tumour and serum interleukin 6 (IL6) levels did not differ in ApoE−/− and ApoE−/−/ArKO compared to wild-type (WT) mice. A: Analysis
of tumour IL6 in wild-type, ApoE−/− and ApoE−/−/ArKO mice. Wild-type: n=10; ApoE: n=11; ApoE/ArKO: n=5. B: Analysis of IL6 in primary
tumours and metastases from wild-type and ApoE−/− mice. Wild-type Primary: n=10, Mets: n=5; and ApoE Primary: n=11, Mets: n=4. C: Analysis
of serum IL6 in non-tumour-bearing (NT) and tumour-bearing (T) wild-type, ApoE−/− and ApoE−/−/ArKO mice. Wild-type (NT) and ApoE (NT):
n=3; ApoE/ArKO (NT): n=4; wild-type (T): n=11; ApoE (T): n=9; ApoE/ArKO (T): n=8. D: Analysis of serum IL6 in wild-type and ApoE−/− mice
bearing only primary tumours or with internal metastases. Wild-type Primary: n=11, Mets n=3; and ApoE Primary: n=9, Mets: n=3. Data are
expressed as individual data points and mean±SD.



difference in the body weight or omental fat weight of
ApoE−/−/ArKO mice compared to wild-type mice. This could
be due to the fact that female mice have a weaker weight
phenotype than male mice (unpublished observation). 

Tumours grown in ApoE−/−/ArKO mice showed
significantly higher cancer cell proliferation compared to
wild-type mice, with a similar trend observed in ApoE−/−
mice. Cholesterol and triglycerides are raised in ApoE−/− and
ApoE−/−/ArKO mice (23, 32), and ApoE−/−/ArKO mice also
have increased fasting glucose levels (23). It has been shown
that cholesterol and high glucose can increase breast tumour
cell proliferation (10, 33). This suggests that the metabolic
abnormalities found in ApoE−/−/ArKO mice enhanced
tumour cell proliferation.

The aromatase knockout in ApoE−/−/ArKO mice reduces
circulating oestradiol levels (29), which would be expected to
reduce tumour growth of ER+ tumours. EO771 cells have
been reported to be ER+ (34), but in our study no ER staining
was detected in the tumours (data not shown). Indeed, EO771
tumours grew at similar rates in all three genotypes.

Tumour levels of IGFBP5 were reduced in
ApoE−/−/ArKO and ApoE−/− mice compared to wild-type,
with no changes observed in serum. IGFBP5 is involved in
the induction of apoptosis in the mammary gland after
weaning and may act in a similar manner on breast tumour
cells to induce apoptosis (35). Its exact role in breast cancer
remains unclear, but it may be dependent on its subcellular
localisation (36, 37), which our ELISA would not have
shown.

Serum IL6 is often elevated in a chronic disease state,
such as metabolic syndrome or cancer, and can reflect
underlying inflammation (38). In contrast to Scott et al. (23),
we saw no difference in serum IL6 in ApoE−/−/ArKO
compared to wild-type mice, possibly because circulating
IL6 was already elevated by tumour burden.

Other mouse models of metabolic syndrome do not exhibit
all the characteristics of metabolic syndrome (25), whereas
ApoE−/−/ArKO mice are reported to display most components
(23). However, there are a number of limitations associated
with using these mice for cancer research, including minimal
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Figure 6. The proportion of cancer-associated adipocytes (CAA) within EO771 tumours did not differ between wild-type, ApoE−/− and ApoE−/−/ArKO
mice. A: Representative immunohistochemical staining for perilipin in tumours from wild-type, ApoE−/− and ApoE−/−/ArKO mice. Scale bars represent
100 μm. B: Analysis of CAA content in tumours from wild-type, ApoE−/− and ApoE−/−/ArKO mice according to the percentage of perilipin-positive
cells. Wild-type: n=14; ApoE: n=15; ApoE/ArKO: n=9. C: Analysis of CAA content in primary tumours and metastases from wild-type and ApoE−/−
mice. Wild-type Primary: n=14, Mets: n=4; and ApoE Primary: n=15, Mets: n=4. Data are expressed as individual data points and mean±SD.



signs of abdominal obesity, aromatase deficiency and reduced
cellular lipid uptake due to ApoE deficiency. 

Our data provide further insight into the role of several
components of the metabolic syndrome in breast cancer,
specifically cancer cell proliferation and, potentially,
metastasis. However, we also highlight the complexities of
using genetic knockout models to investigate multifaceted
diseases such as metabolic syndrome and breast cancer.
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