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Abstract

Mitochondria regulate not only cell functions through energy generation but also aging-associated cell phenotypes.
Impaired mitochondrial structural and functional integrity accompanied by excessive mitochondrial reactive oxygen
species (mtROS) production is associated with enhanced programmed cell death (PCD) and cellular senescence.
Dysregulation of mechanisms for mitochondrial integrity, including mitophagy, induces accumulation of mitochondrial
damage. Mitophagy is a highly conserved mechanism of selectively delivering damaged mitochondria for lysosomal
degradation and is mainly governed by phosphatase and tensin homolog (PTEN)-induced putative protein kinase 1
(PINK1) and PARK2. Accumulating evidence suggests that PINK1-PARK2-mediated mitophagy has an important role in
the pathogenesis of aging-associated pulmonary disorders, represented by chronic obstructive pulmonary disease
(COPD) and idiopathic pulmonary fibrosis (IPF).
COPD characterized by progressive airflow limitation is mainly caused by cigarette smoke (CS) exposure, and accumulation
of damaged mitochondria in bronchial epithelial cells (BEC) has been demonstrated. Intriguingly, both enhanced and
impaired mitophagy have been implicated in COPD pathogenesis. Enhanced mitophagy induced by increased PINK1
expression has been associated with programmed necrosis, necroptosis. On the other hand, reduced PARK2 levels were
linked to insufficient mitophagy, resulting in accelerated cellular senescence in BEC. Although dominant involvement of
PCD and cellular senescence remains unclear, PINK1-PARK2-mediated mitophagy regulates mitochondrial ROS and cell fate
during COPD pathogenesis.
Involvement of insufficient mitophagy has been proposed in lung fibrosis development during IPF pathogenesis.
Accumulation of dysmorphic mitochondria and increased ROS production linked to decrease in PINK1 expression were
demonstrated in type II alveolar epithelial cells (AECIIs) in IPF lungs, which can be associated with enhanced apoptosis and
cellular senescence. Furthermore, reduced PARK2 expression levels have been shown in myofibroblasts in IPF lungs.
Insufficient mitophagy caused by PARK2 deficiency induced mtROS production with concomitantly activated platelet-
derived growth factor receptor (PDGFR)/mammalian target of rapamycin (mTOR) signaling, resulting in increased
myofibroblast differentiation and proliferation.
Inappropriate PINK1-PARK2-mediated mitophagy appears to be mainly responsible for regulating cell fate, including
PCD, cellular senescence, and myofibroblast differentiation during COPD and IPF pathogeneses. Modalities to achieve
specific and appropriate levels of PINK1-PARK2-mediated mitophagy activation may be a promising therapeutic option
to regulate the aging-associated pathology, COPD, and IPF.
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Background
Mitochondria regulate cellular bioenergetics through the
process of oxidative phosphorylation (OXOHOS), in
which ATP is formed as a result of the transfer of
electrons [1]. However, accumulating evidence suggests
the pivotal role of mitochondria in regulating not only
cell functions through energy generation but also
aging-associated cell phenotypes including cellular senes-
cence [2]. Although mitochondria are the main sources of
endogenous reactive oxygen species (ROS) during electron
transport, mitochondrial DNA (mtDNA) has been known
to be more susceptible to oxidative injury, which is attrib-
uted to lack of protective histones and paucity of repair
mechanisms, indicating the existence of vicious cycle of
mitochondrial damage and ROS production. Accumula-
tion of mitochondrial damage is associated with excessive
ROS production, resulting in oxidative damage to cellular
components, including DNA, lipids, and proteins [2].
Mitochondrial ROS can also lead to the generation of
single-strand breaks in telomere regions, resulting in telo-
mere shortening, suggesting the causal association be-
tween mitochondrial damage and telomere health [3].
Excessive mitochondrial damage has also been widely im-
plicated in programmed cell death (PCD). Accordingly,
mitochondrial damage should be adequately regulated for
preventing accelerated cellular senescence and PCD.
Mitochondrial integrity is orchestrated by complex

regulatory mechanisms, including biogenesis, dynamics of
fusion and fission, and degradation. Dysregulation of these
regulatory mechanisms has been widely implicated in
aging-associated disease pathogeneses, including pulmon-
ary disorders [1]. Mitochondria selective autophagy-lyso-
somal degradation, known as mitophagy, plays a crucial
role in degradation of damaged mitochondria and is
mainly governed by posttranslational modifications of
phosphatase and tensin homolog (PTEN)-induced puta-
tive protein kinase 1 (PINK1) and Parkinson disease 2
(PARK2) [4–8].
In this review, we focus on dysregulation of mechanisms

for mitochondrial integrity, including PINK1-PARK2-
dependent mitophagy in association with progression of
cellular senescence, cell death, and myofibroblast differen-
tiation as a part of pathogenesis of aging-associated pul-
monary disorders, represented by chronic obstructive
pulmonary disease (COPD) and idiopathic pulmonary fi-
brosis (IPF).

Accumulation of mitochondrial damage in COPD
and IPF
Several studies including ours showed involvement of cel-
lular senescence in the pathogeneses of aging-associated
pulmonary disorders of COPD and IPF [9–15]. Cellular
senescence is characterized by durable cell-cycle arrest
and senescence-associated secretory phenotype (SASP) of

excessive cytokine production [16]. Among a variety of
proposed mechanisms, mitochondrial free radical theory
(MFRTA) has been recognized to be a crucial mechanism
for cellular senescence [2]. ROS are natural byproduct
during OXOHOS, which have physiological roles in regu-
lating cell signalings. In general, mitochondrial ROS
(mtROS) can be increased by accumulation of damaged
mitochondria, resulting in oxidative damage to DNA,
lipids, and proteins in cell compartments [2]. Antioxidant
MitoQ or acetyl-l-carnitine, which targeted damaged
mitochondria with scavenging mtROS, delays both repli-
cative senescence and stress-induced premature senes-
cence [17–19]. Morphological alterations of damaged
mitochondria, represented by enlargement, loss of cristae,
and destruction of inner membrane, are demonstrated
during aging [20]. Similar morphological alterations of
mitochondria with increased mtROS have been detected
in both COPD and IPF lung epithelial cells [21–23]. Aging
is linked to not only increased mtROS but also reduced
ATP production, which can be attributed to reduced anti-
oxidant defense system and reduced electron transport
chain (ETC) complex activity. Reduced ETC complex I
and V activity in type II alveolar epithelial cells and re-
duced ATP content and oxygen consumption rate in fi-
broblasts are demonstrated in IPF lungs [1].
Due to lack of protective histones and paucity of repair

mechanisms, mitochondrial DNA has been known to be
more susceptible to oxidative injury. Accumulation of
mutations and the deletion of mtDNA have been impli-
cated in accelerated aging. mtDNA mutator mice without
proofreading property of the mtDNA polymerase gamma
(POLG) showed premature aging accompanied by high
levels of point mutations [24], suggesting the causal link
between accumulation of mtDNA damage and aging
phenotypes. Actually, increased quantity of mtDNA with
oxidative damage during aging and smoking stress has been
demonstrated [25]. Substantial increase in mtDNA strand
breaks and/or abasic sites was detected in lung tissues from
COPD patients [26]. The authors speculated that genome
and sequence-specific oxidative DNA damage could con-
tribute to transcriptional dysregulation and cell fate deci-
sions in COPD [26]. Mitochondrial SIRT3, a member of
sirtuin family has been implicated in the regulation of lung
fibrosis development with respect to regulating mtDNA
damage via modulating 8-oxoguanine-DNA glycosulase-1
(OGG1) acetylation, a known DNA repair enzyme [20, 27].
SIRT3 deficient mice showed enhanced lung fibrosis devel-
opment by bleomycin and asbestos exposure [20, 28].
Pharmacologic activation of SIRT3 mitigates organ fibrosis
development [29]. Reduced SIRT3 expression accompanied
by higher proportion of damaged mtDNA has been demon-
strated in aging lungs, suggesting the potential causal link
between reduced SIRT3-mediated accumulation of mtDNA
damage and IPF development.
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mtDNA contains CpG-rich sequences of bacterial mo-
lecular motifs, which may act as damage-associated mo-
lecular patterns (DAMPs) for innate immune response. In
the setting of mtDNA spreading out of mitochondrial
compartment because of mitochondrial damage, both cyto-
plasmic and circulating mtDNA may cause inflammatory
responses to injury [30, 31]. Cigarette smoke (CS)-induced
necroptosis in airway epithelial cells initiates inflammatory
responses of cytokine production though releasing DAMPs,
including mtDNA as a COPD pathogenesis [32]. Intri-
guingly, recent paper showed release of mtDNA from IPF
fibroblasts and circulating mtDNA can be a biomarker for
IPF severity, indicating potential association between circu-
lating mtDNA of mitochondrial damage and innate im-
mune response-mediated lung fibrogenesis [33].

Mitochondrial biogenesis in COPD and IPF
Mitochondrial functional and morphological integrity is
orchestrated by complex regulatory mechanisms, includ-
ing biogenesis, dynamics of fusion and fission, and deg-
radation. Mitochondria biogenesis for extending cellular
energy production is governed by master regulators
PPARγ coactivator-1α (PGC-1α) and PGC-1β in associ-
ation with nuclear respiration factors (NRF) expression
[1]. PGC-1 coactivator docking to specific transcription
factors provides a platform for the recruitment of regula-
tory protein complexes that exert powerful effects on
gene transcription for mitochondria biogenesis. PGC-1α
and PGC-1β are preferentially expressed in tissues with
high oxidative capacity, such as heart, slow-twitch skel-
etal muscle, and brown adipose tissue, where they serve
critical roles in the regulation of mitochondrial functional
capacity and cellular energy metabolism [34]. In general,
the capacity for mitochondrial biogenesis declines during
aging through the reductions of PGC-1α and PGC-1β.
Aging-related decline in mitochondrial biogenesis linked
to reduced PGC-1α has been implicated in IPF pathogen-
esis [1, 35]. Reduced PGC-1α expression levels have been
demonstrated in both IPF lungs and bleomycin-induced
lung fibrosis models. Furthermore, PGC-1α-deficient mice
showed susceptibility to bleomycin-induced lung fibrosis
[1, 35]. Interestingly, recent paper showed that thyroid
hormone treatment attenuates bleomycin-induced lung
fibrosis development via reducing alveolar epithelial cell
apoptosis, which can be at least partly attributed to
PGC-1α-mediated mitochondrial biogenesis accompanied
by normalized mitochondrial morphological integrity [36].
Other mechanisms for attenuation of mitochondrial bio-
genesis has also reported in IPF pathogenesis, including
NADPH oxidase-4 (NOX4)-mediated NRF2 and mito-
chondrial transcription factor A(TFAM) inhibition [1].
Accordingly, it is likely that impaired mitochondrial biogen-
esis has an essential role in regulating mitochondrial integ-
rity with respect to IPF pathogenesis, and upregulation of

PGC-1α for enhancing mitochondrial biogenesis can be a
promising approach for IPF treatment.
On the other hand, it has been reported that mTOR-

driven PGC-1β-dependent mitochondrial biogenesis may
also have an essential role in cellular senescence pro-
gression induced by a variety of triggers [37]. Accumula-
tion of damaged mitochondria has also been reported in
COPD lungs, especially in association with accelerated
cellular senescence [21]. Our experimental results using
human bronchial epithelial cells (HBEC) demonstrated
that accumulation of damaged mitochondria by CS ex-
posure is responsible for cellular senescence progression,
and PGC-1β-mediated mitochondrial biogenesis is in-
volved in this process (paper in submission). Although
precise mechanisms and roles remain elusive, it is plaus-
ible that PGC-1-mediated mitochondrial biogenesis can
be beneficial for preventing apoptosis in IPF but may be
harmful for accelerating cellular senescence in COPD
pathogenesis.

Mitochondrial dynamics in COPD and IPF
Mitochondrial morphological changes by dynamics of fu-
sion and fission have been recognized to be a major mito-
chondrial quality control mechanism [38]. Mitochondrial
elongation by fusion is an adaptive stress-resolving mech-
anism by exchanging the damaged mtDNA, proteins, and
lipids between damaged and healthy mitochondria by mild
oxidative stress. Elongated mitochondria are spared from
autophagic degradation and have increased levels of ATP
synthesis. Mitochondrial fragmentation by fission is in-
duced in the setting of severe oxidative stress, which is
associated with programmed cell death or elimination of
damaged mitochondria via mitophagy [39]. Alterations in
mitochondrial morphology have been implicated in ROS
production in terms of COPD pathology [39]. Cigarette
smoke can induce both mitochondrial fragmentation and
elongation, which can be dependent on the level of oxida-
tive stress [21, 22]. Mitochondrial dynamics is regulated
by the balance between fusion-promoting proteins, in-
cluding optic atrophy 1 (OPA1) and mitofusin (MFN),
and fission-promoting proteins, including dynamin-
related protein 1 (DRP1) and mitochondrial fission 1
protein (FIS1) [40]. CS-induced MFN/OPA1 expression
causes hyperfusion of mitochondria accompanied by im-
paired stress resistance and cellular senescence in lung
epithelial cells [22]. CS also induces mitochondrial fission
by translocation of DRP1 to mitochondria, resulting in
accumulation of fragmented mitochondria with increased
ROS production and accelerated cellular senescence [21].
Furthermore, prolonged CS exposure induces FIS1 expres-
sion and reduction of MFN, resulting in mitochondrial frag-
mentation with enhanced ROS [39, 41]. Accordingly,
mitochondrial morphological alterations can be involved in
CSE-induced cellular senescence by ROS production during
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COPD pathogenesis; the level of oxidative stress can deter-
mine the fusion and fission status.
Mitochondrial morphological changes have also been

reported in IPF lungs. Higher frequency of enlarged
mitochondria and fusion tendency with increased mito-
chondrial area have been demonstrated in AECIIs in IPF
lungs [23]. Those alterations may reflect accumulation
of damaged and dysfunctional mitochondria conferred
by insufficient mitophagic elimination, resulting in
AECIIs apoptosis as a part of IPF pathogenesis [23]. Al-
though metabolic shift from OXOHOS to glycolysis of
less efficient ATP production has been reported during
myofibroblast differentiation [42], mitochondrial mor-
phological alterations remain unclear in IPF lung fibro-
blasts. Our in vitro experiments using lung fibroblasts,
insufficient autophagy, and mitophagy induce mitochon-
drial elongation without apparent mitochondrial damage
accompanied by increased myofibroblast differentiation
and proliferation [40]. Thus, mitochondrial dynamics
may contribute to cell phenotype regulation via various
mechanisms in stimulus and cell type-specific manner,
but precise role of mitochondrial dynamics in IPF patho-
genesis remains unclear.

PINK1-PARK2-mediated mitophagy
Appropriate elimination of damaged and dysfunctional
mitochondria plays a crucial role in preventing the re-
lease of proapoptotic proteins, mtROS and mtDNA,
which can be causally linked to apoptosis, inflamma-
some activation, and cellular senescence [43–45]. Au-
tophagy is a process of lysosomal self-degradation that
helps maintain homeostatic balance between the synthe-
sis, degradation, and recycling of cellular proteins and
organelles [46]. Engulfment of cytoplasmic components
by the isolation membrane (phagophore) is the initial
step in autophagy and is followed by elongation and
fusion, which results in the formation of double-

membranous vesicles (autophagosome). Subsequent fu-
sion of the autophagosome with the lysosome to form
the autolysosome is essential for proper degradation
[47]. Damaged mitochondria are mainly degraded via
the mitochondria selective autophagy machinery known
as mitophagy [4]. Mitophagy is a highly conserved
mechanism of selectively delivering unwanted mitochon-
dria for lysosomal degradation. Although PINK1-PARK2
pathway has an essential role in conducting mitophagy
for removal of damaged mitochondria, there are several
mechanisms for mitophagy in specific conditions. For
example, BNIP3L, BNIP3, and the fun14 domain con-
taining 1 (FUNDC1) have been demonstrated to be
specific receptors for mitophagic recognition during red
blood cell maturation, metabolic stress, and hypoxia.
Furthermore, a recent paper showed the existence of
PINK1-mediated PARK2-independent mitophagy via re-
cruitment of autophagy receptors, Optineurin, including
calcium binding and coiled-coil domain 2 (CALCOCO2/
NDP52) and Optineurin (OPTN) [48–51]. Gene muta-
tions of both PINK1 and PARK2 are coupled with Par-
kinson’s disease resulting from accumulation of damaged
mitochondria, which can be attributed to insufficient
mitophagic degradation [52]. Stress-induced membrane
depolarization stabilizes PINK1 on mitochondrial outer
membrane, resulting in recruitment of PARK2, an
E3-ubiquitin ligase, to mitochondria. PARK2-mediated
ubiquitination of mitochondrial substrates, including
BCL2, mitofusins (MFN), and voltage-dependent anion
channel (VDAC), is prerequisite for the binding of the
adaptor protein SQSTM1/p62, which can recognize both
ubiquitinated substrates and microtubule-associated pro-
tein 1 light chain 3 (MAP1LC3, LC3) on autophagosome
[5, 8] (Fig. 1). In addition, PINK1-induced phosphorylated
PARK2 (Ser65) triggers the degradation of mitochondrial
fusion-promoting proteins, including MFN1 and MFN2,
resulting in mitochondrial fission, which is prerequisite for

Fig. 1 Mechanism of PINK1-PARK2-mediated mitophagy
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conducting mitophagy [53]. Although the potential involve-
ment of PINK1-PARK2-independent mitophagy remains to
be elucidated, PINK1-PARK2 pathway-mediated mitophagy
has been widely implicated in COPD and IPF pathogenesis
through regulating cell fate, including programmed cell
death, cellular senescence, and myofibroblast differen-
tiation [14, 54].

PINK1-PARK2-mediated mitophagy in COPD
COPD characterized by progressive airflow limitation is
mainly caused by the noxious effects of CS exposure
with rising incidence worldwide [15, 55]. CS, the major
cause of COPD, is rich in toxic components, including
ROS, and a variety of biological responses to cigarette
smoke exposure have been demonstrated and oxidant-
antioxidant imbalance has been widely implicated in
COPD pathogenesis. Increased burden of oxidants in CS
and ROS released from leukocytes and macrophages
during inflammatory response have been considered as
the source of ROS. However, oxidative stress can persist
even after CS cessation, which can be attributed to en-
dogenous ROS production, indicating the essential role
of mtROS in COPD progression [56]. Chronic CS expos-
ure can cause mitochondrial dysfunction in lung epithe-
lial cells [22]. Intriguingly, it has been reported that
lipophilic fraction in CS extract is directly responsible
for a decrease in mitochondrial membrane potential and
an increase of mitochondrial ROS production by func-
tional ETC [57]. Accumulation of damaged mitochon-
dria with swelling and cristae disruption in airway

epithelial cells from COPD patients has been demon-
strated [21, 22]. It has been recognized that impaired
mitochondrial structural and functional integrity accom-
panied by excessive mtROS production is associated
with enhanced programmed cell death (PCD) and cellu-
lar senescence during COPD pathogenesis, especially in
the setting of altered mitophagic degradation [14, 19, 21,
22, 58] (Table 1).
PCD has been widely implicated in COPD pathogen-

esis, and the involvement of autophagy, including mito-
phagy, has been reported in not only apoptosis but also
programmed necrosis, necroptosis. Although necrosis
has been recognized as a mode of non-programmed cell
death caused by excessive physical or chemical stress, re-
cent advances have showed the existence of a genetically
programmed form of necrosis, termed necroptosis [59].
The receptor-interacting protein-1 and -3 (RIPK1/3) ki-
nases, which form a multiprotein complex of necrosome,
are key regulators during necroptosis progression [59, 60].
In contrast to apoptosis, necroptosis can trigger both the
innate and adaptive immune response through the release
of highly immunologic intracellular proteins of DAMPs
[61]. It has been reported that autophagy in lung tissue
obtained from COPD patients is augmented due to an in-
creased LC3B-II/LC3B-I ratio and that the Egr-1-induced
LC3B expression is essential for autophagy activation [62].
LC3B−/− mouse experiments have confirmed the pivotal
role of LC3B in the induction of epithelial cell apoptosis
by CS exposure [63]. In terms of PINK1-mediated mito-
phagy, increased PINK1 protein levels with enhanced

Table 1 PINK1-PARK2-mediated mitophagy in COPD and IPF

References

COPD

The expression of PINK1 and PARK2

PINK1 levels in homogenated lung increased [58]

PARK2 levels in homogenated lung decreased [19]

The role of mitophagy (the choice by the degree of damage.)

Increased PINK1-mediated mitophagy enhancing program cell death [58]

Insufficient PARK2-mediated accelerating cellular senescence [19]

IPF

The expression of PINK1 and PARK2

PINK1 levels in AEC II decreased [23]

PINK1 levels in FF decreased [71]

PARK2 levels in FF decreased [40]

PARK2 levels in fibroblast decreased [40]

The role of mitophagy

Insufficient PINK1-mediated mitophagy enhancing apoptosis and cellular senescence [23, 70]

Insufficient PARK2-mediated mitophagy accelerating myofibroblast differentiation

AEC II: type II alveolar epithelial cells
FF: fibroblast foci
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mitophagy have been implicated in COPD development.
Increased PINK1-mediated mitophagy is responsible for
conducting necroptosis. PINK1-deficient mice showed
protection against mitochondrial dysfunction and air-
space enlargement of COPD phenotypic alteration
during CS exposure [58], suggesting mitophagy activa-
tion can be a detrimental process through enhancing
PCD especially in the setting of cytotoxic condition.
COPD is assumed to be a disease of accelerated lung

aging, and cellular senescence has been implicated in the
pathogenesis of COPD, presumably due to impaired cell
repopulation and the aberrant cytokine secretion ob-
served in SASP [9, 10, 12, 14]. Autophagy plays a pivotal
regulatory role in cellular senescence. CSE transiently in-
duces the activation of autophagy followed by the accu-
mulation of p62 and ubiquitinated proteins accompanied
by an increase in HBEC senescence. The autophagy in-
hibition further enhances HBEC senescence with the
concomitant accumulation of p62 and ubiquitinated pro-
teins, reflecting insufficient autophagic degradation. The
increased accumulation of p62 and ubiquitinated pro-
teins detected in lung homogenates from COPD patients
supports the notion that insufficient autophagic clear-
ance is involved in the accelerated cell senescence ob-
served in COPD [11]. To further investigate the details
of the role of insufficient autophagy in the regulation of
HBEC senescence, we next focused on mitophagy. Both
PINK1 and PARK2 knockdown resulted in the enhance-
ment of HBEC senescence in response to CSE exposure
with concomitantly accumulated damaged mitochondria
and increased ROS production [19]. Furthermore,
PARK2 levels were decreased in lung homogenates from
COPD patients, and there was a positive correlation
between PARK2 levels and percentage of FEV1/FVC of
pulmonary function test, suggesting the causal link be-
tween insufficient PARK2-mediated mitophagy and air-
way obstruction associated with accelerated cellular
senescence during COPD pathogenesis. Although we ob-
served potential involvement of reduced SIRT6 expres-
sion, a member of the sirtuin family, in insufficient
autophagy in COPD through modulating insulin-like
growth factor (IGF)-I signaling, the association between
SIRT6 and PINK1-PARK2-mediated mitophagy remains
to be elucidated [64].
The central purpose of both PCD and cellular senes-

cence is eliminating damaged cells for tissue regener-
ation, mitophagic regulation of PCD, and cell senescence
depend on the amount of damage. Hence, it is likely that
once a certain threshold of mitochondrial damage is
reached, the choice is made by mitophagy between PCD
and senescence [19]. Accordingly, determining the ad-
equate levels of mitophagy activation can be critically
important to develop mitophagy-targeted treatment
for COPD.

PINK1-PARK2-mediated mitophagy in idiopathic
pulmonary fibrosis
IPF is a progressive and devastating lung parenchymal fi-
brosis with poor prognosis [65]. The main pathological
feature of IPF is the excessive accumulation and depos-
ition of extracellular matrix, resulting in scar formation
and loss of elasticity in lungs. Aberrant wound healing
process comprised of initial alveolar epithelial cell dam-
ages of unknown cause, and subsequent accumulation of
profibrotic myofibroblasts has been recognized as the
key mechanisms for fibrosis development during IPF
pathogenesis. Insufficient autophagy has been demon-
strated in IPF lungs [66, 67], and involvement of im-
paired autophagy in lung fibrosis development has been
clarified by increased bleomycin-induced fibrosis devel-
opment in ATG4B knockout mice, an essential factor for
autophagosome formation [68]. Insufficient autophagy,
including mitophagy, has been implicated to IPF patho-
genesis, and special attention has been paid to
PINK1-PARK2-mediated mitophagy in terms of regulat-
ing cell fate for both epithelial cells and fibroblasts [20,
23, 40, 69] (Table 1). Regulatory role of PINK1-regulated
mitophagy has been shown in AECIIs apoptosis and cel-
lular senescence [23, 70]. Decrease in PINK1 expression
levels accompanied by impaired autophagic degradation
has been demonstrated during aging [71]. Decrease in
PINK1 expression in AECIIs is elucidated in IPF lungs
associated with accumulation of dysmorphic mitochon-
dria with reduced ETC activity and increased ROS
production, which leads to increased apoptosis [23]. In-
creased endoplasmic reticulum (ER) stress resulting
from inappropriate proteostasis machinery has been
detected in lung epithelial cells [72]. Intriguingly, ER
stress affects mitochondrial function through downregu-
lating PINK1, which can be attributed to expression of
ATF3, a transcription repressor of PINK1 in AECIIs.
Transcriptional repression of PINK1 may be associated
with enhanced cellular senescence of p16 and p21 expres-
sion [23, 70]. Accordingly, reduced expression of PINK1
of insufficient mitophagy during aging and in response to
ER stress in AECIIs appears to be involved in the regulatory
mechanisms for cell fate with respect to IPF pathogenesis.
However, the involvement of PARK2 expression levels in
mitophagy regulation in AECIIs remains uncertain.
Impaired autophagy/mitophagy can also be responsible

for regulating myofibroblast differentiation in lung fibro-
blasts [40, 67]. Both PINK1 and PARK2 reduction-medi-
ated insufficient mitophagy can induce myofibroblast
differentiation. However, compared with PINK1, PARK2
may have a predominant role in the regulation of myofi-
broblast differentiation. Insufficient mitophagy caused by
PARK2 deficiency induces mtROS production with con-
comitantly activated platelet-derived growth factor recep-
tor (PDGFR)/mammalian target of rapamycin (mTOR)
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signaling, resulting in myofibroblast differentiation and
proliferation [40]. PARK2-deficient mice showed aggrava-
tion of bleomycin-induced lung fibrosis development. Re-
duced PARK2 expression levels were elucidated in
myofibroblasts of fibroblastic foci and lung fibroblasts de-
rived from IPF lungs [40]. Reduced PINK1 levels were also
demonstrated in fibroblastic foci in IPF lungs, and TGF-β
may have a role in PINK1 reduction, resulting in promo-
tion and perpetuation of pulmonary fibrosis [71].
Inducing sufficient levels of PINK1-PARK2-mediated

mitophagy can be a promising treatment modality to pre-
vent lung fibrosis during IPF development. We have re-
cently showed that pirfenidone, an anti-fibrotic agent
generally used to treat IPF, induces PARK2 expression,
and PARK2-mediated mitophagy is partly responsible
anti-fibrotic effect of pirfenidone [73]. Intriguingly, it has
been reported that thyroid hormone induces PINK1
expression with concomitant mitophagy, which is respon-
sible for normalizing mitochondrial morphological and
functional integrity and for attenuating bleomycin-
induced lung fibrosis development [36].

Conclusion
Accumulation of mitochondrial damages has an essential
role in development of aging-associated pulmonary disor-
ders. Among a wide array of mechanisms for regulating
mitochondrial integrity, inappropriate PINK1-PARK2-
mediated mitophagy appears to be mainly responsible for
regulating cell fate, including PCD, cellular senescence, and
myofibroblast differentiation during COPD and IPF patho-
geneses. Therefore, modalities to achieve specific and ap-
propriate levels of PINK1-PARK2-mediated mitophagy
activation may be a promising therapeutic option to regu-
late the aging-associated pathology, COPD and IPF.
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