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Abstract

Background: Transitions into and out of the anaesthetised state exhibit resistance to state transitions known as neural

inertia. As a consequence, emergence from anaesthesia occurs at a consistently lower anaesthetic concentration than

induction. Motivated by stochastic switching between discrete activity patterns observed at constant anaesthetic con-

centration, we investigated the consequences of such switching for neural inertia.

Methods: We simulated stochastic switching in MATLAB as Brownian motion on an energy landscape or equivalently as

a discrete Markov process. Effects of anaesthetics were modelled as changing stability of the awake and the anaes-

thetised states. Simulation results were compared with re-analysed neural inertia data from mice and Drosophila.

Results: Diffusion on a two-well energy landscape gives rise to hysteresis. With additive noise, hysteresis collapses. This

collapse occurs over a mixing time that is independent from pharmacokinetics. The two-well potential gives rise to the

leftward shift for the emergence dose-response curve. Yet, from in vivo data, DEC50 and D Hill slope are strongly nega-

tively correlated (R2¼0.45, P<1.7�10�15). This correlation is not explained by a two-well potential. The extension of the

diffusion model to a Markov process with 10 states (three awake, seven unconscious) reproduces both the left shift and

the shallower Hill slope for emergence.

Conclusions: Stochastic state switching accounts for all known features of neural inertia. More than two states are

required to explain the consistent increase observed in variability of recovery from general anaesthesia. This model

predicts that hysteresis should collapse with a time scale independent of anaesthetic drug pharmacokinetics.
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How does the brain recover after consciousness is disrupted

by general anaesthesia? The brain is a complex non-linear

dynamical system, which are generically multistable. Thus,

even when all parameters are fixed, the brain can exhibit mul-

tiple, qualitatively distinct behaviours depending on initial con-

ditions.1 It therefore isnotguaranteed that,afteranaesthesia, the
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brain will ever return to its previous, conscious state. As a

consequence of resistance to state transitions, emergence from

anaesthesia occurs at a consistently lower anaesthetic concen-

tration than induction, known as neural inertia.

While sleep and anaesthesia are fundamentally distinct,

there is overlap in the underlying neuronal mechanisms.2e4
rved.
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Editor’s key points

� The dose-response curve for emergence from general

anaesthesia is shifted to lower concentrations relative to

inductionofgeneral anaesthesia,knownasneural inertia.

� Using mathematical modelling, a bistable system can

account for neural inertia, andmore than two states are

required to explain the variability of emergence for

different anaesthetic agents and taxa.

� As a consequence of resistance to state transitions,

emergence from anaesthesia occurs at a consistently

lower anaesthetic concentration than induction; this is

independent of pharmacokinetic factors.
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Sleep andwakefulness activatemutually inhibitory sleep5,6 and

wake-active7,8 neurone populations, respectively, suggesting

that transitions between sleep and wakefulness could be

thought of as a ‘flip-flop’ switch (Fig. 1a).6,9 General anaesthetics

inhibit wake-active and excite sleep-active neurones, biasing

the flip-flop.2,3,5,10e15 The dynamics of flip-flop networks lead to

just two stable patterns of neuronal activity16: either the wake-

active neurones are active and sleep-active neurones are silent,

or vice versa (Fig. 1b). Neuronal mechanisms of anaesthesia are

not limited to sleep-wake circuitry. Nevertheless, dynamics

similar to the flip-flop switch arise in a broad class of neuronal

systems called attractor neural networks.17e20

Dynamics of attractor networks are well-approximated by

diffusion on an energy landscape.21 This energy landscape typi-

cally has multiple wells representing distinct attractors (Fig. 1c).

While meanfield models of anaesthesia18,22e24 use a different

formalism, their dynamics can also be thought of as diffusion on

energy landscapes. These meanfield models of anaesthesia

exhibitbistabilitydaspecial caseofmultistabilitywhereonlytwo

stable states (i.e. attractors) are observed. These stable states are

typically interpretedas ‘awake’or ‘anaesthetised’.More complex

dynamics occur whenmultiple bistable networks are coupled.20

In contrast to meanfield approaches, here we do not

address how the shape of the energy landscape depends on

the underlying neuronal architecture. Rather, we study the

consequences ofmultistability for neuronal inertia.14,25,26 That

is, how does the energy landscape shift with increasing

anaesthetic drug concentrations (Fig. 1d)? What are the im-

plications of these shifts for transitions between the awake

and the anaesthetised state? What is the effect of noise on

neural inertia? Are just two states sufficient to explain the

phenomenology of neural inertia?

Experimental evidence argues that neural inertiadthe hys-

teresis present between dose-response curves for induction and

emergence (Fig. 1e)dis ubiquitous and not explainable by phar-

macokinetic factors alone. Here, we show that a bistable system

suchasaflip-flop switch canaccount for the left shift of thedose-

response curve for emergence relative to induction, but more

than twostatesare required toexplain the increasedvariabilityof

emergence seen across different anaesthetic agents and taxa.
Methods

Energy landscape simulations

All simulations were performed in MATLAB 2014b (Math-

Works, Natick, MA, USA). To simulate transitions between two

distinct states, we used a ‘potential energy’ function adapted

from Moreno-Bote and colleagues:21
Eðx; aÞ ¼ x2
�
x2

2
� 2

�
þ aðx� 1Þ2 þ ð1� aÞðxþ 1Þ2 (1)

E is a function of the state of the system denoted by x.
x ¼ rwake � rsleep where r could be thought of as the firing rate

of a neuronal population in arbitrary units and a is anaesthetic

concentration in arbitrary units scaled between 0 and 1.

E naturally describes an attractor network comprised of

two mutually inhibitory populations of neurones. The two

minima of E are located at xz±1. These minima could corre-

spond, for example, to activated wake-active neurones or

sleep-active neurones. Consistent with experimental evi-

dence, this two-well potential function assures that the two

populations of neurones are not likely to be co-activated. The

analogy to sleep and wake active neurones is used for illus-

tration only. The presence of more than one well in the po-

tential energy produces the phenomena of interest, rather

than any specific features of neuronal architecture.

For the sake of mathematical convenience, anaesthetic-

induced activation of sleep-active and inhibition of wake-

active neurones are assumed to have the same strength.

This assumption does not change any conclusions appre-

ciably, because the Boltzmann relationship assures that the

energy landscape uniquely specifies the probability distribu-

tion of the system states pðxÞfe�Eðx;aÞ (i.e. the probability of

being awake at each anaesthetic concentration). pðxÞ is the

limiting distribution at steady-state in a system perturbed by

noise. Without noise, the system would drift down the energy

gradient and stay at the minimum indefinitely. Thus, without

noise, the behaviour of the system can be computed analyti-

cally (black line in Fig. 2a). Transitions between the awake and

anaesthetised states in the noiseless case only occur when the

starting state of the system loses stability at some critical

anaesthetic concentration. This loss of stability for the awake

and the anaesthetised state occurs at different anaesthetic

concentrations. This difference in concentrations is a neces-

sary consequence of multistabilitydif only one stable state

exists for all anaesthetic concentrations, then the system is by

definition not multistable. Thus, without noise, bistable sys-

tems generically give rise to hysteresis, as predicted by

meanfield models.18,24

Our primary interest here is the non-trivial effect of noise

superimposed on the potential function. Specifically, we are

concerned with the dynamics of the system at a constant

anaesthetic concentration. To model the effect of noise, we

use Brownian motion on an energy landscapedthe change in

the state of the system over time is a sum of the gradient of the

energy landscape (first term) and noise ε:

dx
dt

¼ �D
vEðx; aÞ

vx
þ ε (2)

Together with ε, the diffusion constant D scales the

noise relative to the energy barrier separating the two stable

states. For the purposes of simulation, Dwas held fixed while ε

was varied. ε is modelled as Gaussian noise with mean 0 and

variance s. Equation (2) can be generalised to a broad class of

reaction-diffusion systems which include both stochastic and

deterministic components. Here, we assume the simplest

model that only includes stochastic processes. For clarity we

omit the normalisation constant
ffiffiffi
2

p
typically used to scale ε.

Increasing s makes the system more noise-driven. Simula-

tions of Brownian motion were performed using the standard

Euler method.



Fig 1. (a) Anaesthesia (sleep) active and wake active neuronal

populations are self-reinforcing and mutually inhibitory. This

has been theorised to produce a flip-flop switch that prevents

graded, intermediate responses but stabilises one of two all-or-

none response patterns to reinforce conscious or unconscious

behaviours. One possible model of anaesthetic effects could be

to bias the system to favour the anaesthesia-active population.

Bias could be either an additional inhibitory input to the wake-

active side or an excitatory input to the anaesthesia-active side

or both. (b) A cartoon of activity patterns expected from wake

active (red) and anaesthesia active (blue) neurones with con-

nectivity from panel A. Note that the network strongly favours

one population or the other firing, but there is little overlap

except when the system switches states. (c) This system can be

abstracted as a two-well energy potential, with each local

minimum representing one of the ‘attractors’ in this network

structure: the wake-active dominant conscious state (C) or the
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Markov processes

Equations (1) and (2) allow both the state of the system x and

the anaesthetic concentration a to vary continuously. Dis-

cretising the energy function over a set of bins in the plane

spanned by x and a offers significant simplification. Using

Equation (2) for every value of x one can calculate the proba-

bility of transitioning to x0 in the next time step. This process

can be iterated for N values of x. A transition probabilitymatrix

M, commonly referred to as the Markov matrix, describes the

transition probabilities between each pair of states. Because

the system is most likely to be near the energy minima, the

potential energy function [Equation (1)] can be closely

approximated by a 2�2 transition probability matrix M:

M ¼
�

w 1�w
1� s s

�
(3)

The probabilistic state of the system at time t can then

be expressed as:

xt ¼ xt�1M (4)

Diagonal elements w and s express the probability that

the system in the waking or sleeping, respectively, state will

remain in the same state for one time step. Therefore, pa-

rametersw and s set the noise level in the system. The closerw
and s are to 1, the less likely the system will switch its current

state (i.e. the less noisy the system is). Equation (4) can be

iterated to compute the probabilistic state of the system at any

time. As a corollary to the Boltzmann relationship between E
and pðxÞ, one can useM to compute the distribution of states as

time goes to infinity starting from a distribution of states at

time zero as lim
x/∞

xt ¼ x0M
t. The solution to this equation de-

pends solely on the eigenvalues of M. Because rows of M must

add up to 1, it follows that the largest eigenvalue of M is 1.

Assuming that no elements of M are zeros, and that M is a 2�2

matrix, the steady-state distribution is the eigenvector of M

associated with the largest eigenvalue:

P ¼
�

1� s
2� ðwþ sÞ

1�w
2� ðwþ sÞ

�
(5)

The denominator for each element of P is a normal-

isation factor, which assures that the two components of P add

to 1. The first component of P is the steady-state probability of

being awake, and the second component denotes the steady-

state probability of being anaesthetised. The effect of anaes-

thetic is modelled by making components of M a sigmoid
anaesthesia-active dominant unconscious state (U). The brain,

conceptualised as a particle that is being perturbed by noise (in

this case wake-promoting and anaesthesia-promoting stimuli),

spends most of its time near the basin of the attractor, but oc-

casionally the noise will send the system over the energetic

barrier into the neighbouring attractor. (d) By continuously

varying the concentration of anaesthetic as a parameter, the

system behaviour can be observed to infer the change in the

underlying energy landscapes. (e) During induction of anaes-

thesia, after waiting long enough for pharmacokinetic equili-

bration to occur, the probability of being conscious P(C) at a

given dose of anaesthetic ([Anes]) is higher than during emer-

gence. That is, measured at the time of effect-site equilibrium,

the EC50 is higher during induction than during emergence, with

DEC50 serving as a measure of the degree of hysteresis. This has

been termed ‘neural inertia’.



Fig 2. (a) The system traces out the minimum contour on the energy surface, indicated by the heat map, where red indicates high energy and

blue indicates low energy. The energy surface is a function of anaesthetic concentration and the state of the system as conscious or un-

conscious computed according to Equation (1). The red arrows indicate the trajectory the system will take as anaesthetic concentration is

raised from zero, and the blue arrows indicate the trajectory when lowered from maximal. Note that the induction arm stays in the ‘awake’

minimum until the local minimum disappears, when the trajectory abruptly shifts to the ‘anaesthetised’ minimum. The converse happens

when the system starts anaesthetised and the concentration decreases, producing hysteresis. (b) Once additive noise is included in the

system, hysteresis collapses over time. For an intermediate anaesthetic concentration (EC50 in this case), we simulate the behaviour of the

system that starts out in the awake state for a progressively larger number of time steps. The number of steps is shown above each panel (100

simulations were used). The distribution of data eventually converges to the expected even split between the awake and. (c) The magnitude

of the noise can affect perception of system state. Both traces represent the results of a simulation for a single brain flickering between the

awake and anaesthetised states. In the upper trace, the noise term ismuch smaller than the lower trace, giving the impression that the upper

trace is more ‘awake’. Yet the two systems have the same probability of being in the anaesthetised and awake states.
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function of the anaesthetic concentration, such that P is

entirely in the awake state when a is zero and entirely in the

anaesthetised state when a is 10 (in arbitrary units). The spe-

cific choice of this sigmoid function does not affect any of our

conclusions. The sigmoid function used for the simulations is

a standard Hill equation:

FðaÞ ¼ 1�
a

EC50

��h þ 1
(6)

where EC50 ¼ 5 and h ¼ 10 is the Hill slope and a is the

anaesthetic concentration. The Hill slope was chosen such

that the sigmoid comes very close to 1 at the highest anaes-

thetic concentration (10 in this case), so that the system is

concentrated in the anaesthetised state at the highest anaes-

thetic concentration.

Using Equation (6), the transition probability matrix at any

anaesthetic concentration a can be constructed as follows:

MðaÞ ¼
�
1� FðaÞ FðaÞ
1� FðaÞ FðaÞ

�
(7)

Akin to the case with the energy landscape, Equation (7)

assumes that anaesthetics affect the stability of the awake and

the anaesthetised states symmetrically. Recall that, because

rows of M must add up to 1, the largest eigenvalue has to be 1,

and the associated eigenvector is the steady state distribution

of the states of the system. Thus, simply changing how F
affects w relative to s by changing EC50 or Hill slope would not

result in hysteresis in the long time limit, because M can only

have one uniquely specified final distribution of states

(assuming that no elements of M are zeros, i.e. all states are

connected). Therefore, the system must converge onto the

same dose-response curve for induction and emergence in the

long time limit. This is a well-known analytical result.

When a ¼ EC50, awake and anaesthetised states are equi-

probable. This recapitulates the salient features of the energy

landscape. Note that there is no unique solution to Equation

(5)dwhile every M has only one steady-state distribution, an

infinite number of Markov matrices can be constructed with

the same steady-state distribution of states. For instance,

increasing w and s proportionally will maintain the same

steady-state distribution but change the influence of noise.

This allows us to separate the effect of noise from the effect of

anaesthetics in a Markov process model.
Results

Figure 2a generalises Figure 1d into an energy surface by

plotting Equation (1) as a function of the state of the system x
and anaesthetic concentration a. A brain obtained from the

bottom left hand corner, awake with no anaesthetic, will, in

the absence of noise always be in the local minimum of the

energy surface, denoted by the black line. As anaesthetic

concentration is raised (red arrowheads) and then lowered
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(blue arrowheads), the brain state traces a non-overlapping

trajectory. The area between the curves indicates that this

simple system can give rise to hysteresis. The difference be-

tween the induction and emergence curves necessarily fol-

lows from the fact that E has multiple (two) stable states.

Yet biological systems are perturbed by noise such as

external stimuli, thermal fluctuations, stochastic opening and

closing of ion channels, and other variables. Even though a

system starts out in the awake state at EC50, with addition of

noise, there is a non-zero probability that it will spontaneously

transition into the unconscious state. A simulated evolution of

the distribution of states of the system as a function of time at

a fixed anaesthetic concentration (EC50 in this case) is shown

in Figure 2b. By the Boltzmann relationship (see Methods), in

the long time limit the distribution of states is solely deter-

mined by the relative stability of the awake and the anaes-

thetised states. This implies that, for a broad class of systems

that can be approximated by a multistable potential function

and stochastic processes, over time hysteresis should disap-

pear. After 100 time steps, the system begins to show hyster-

esis collapse, with a substantial fraction of simulated systems

reaching unconsciousness. By 10 000 time steps, the system is

nearly at steady-state (withminimal further change by 100 000

time steps) where the awake and anaesthetised states are

equiprobable as predicted by the Boltzmann relationship.

To examine the impact of noise on system behaviour, we

simulated the system while varying the magnitude of noise

(Fig. 2c). When the noise magnitude is small, transitions be-

tween states are rare. When noise increases, transitions occur

more frequently. From Figure 2c, the brain in the top trace is

more awake than the one in the bottom. Indeed, during the

interval shown, the top trace spends a greater fraction of time

in the awake state. And yet, in the long time limit the two

systems converge to the same probability of being awake (50%
Fig 3. (a) Hysteresis collapse over time in the presence of noise. A dose-

constructed after varying numbers of time steps, 100 (green curve), 10

these dose-response curves is the speed with which the ramps are perf

and concentrations can be changed instantaneously. (b) Effect of noise

high (black) or low (white) levels of noise, and the resulting DEC50 estim

result in a shorter mixing time with faster collapse of hysteresis.
in this case). This illustrates how one can erroneously show

differences in potency of an anaesthetic based on the amount

of noise in the system. Note that the anaesthetic concentra-

tion is held fixed and collapse of hysteresis is entirely driven by

noise rather than by anaesthetic effects.

The traces in Figure 2b also illustrate that the potential

function in Figure 2a can be simplified as a two-state Markov

process. In the long time limit, the probability of being awake

(or anaesthetised) in a two-stateMarkov process is determined

by the stability of the awake and the anaesthetised states. The

time to converge on this long time limit is referred to as the

system’s state ‘mixing time’,27 and is determined by the

magnitude of the noise term relative to the energetic barrier

between wells (or, in the two-state Markov model, the transi-

tion probability). More formally, the timescale of collapse to

the steady-state distribution is related to the spectral gap of

the transition probability matrix.28 By construction, this mix-

ing time is totally independent of pharmacokinetics, as the

simulation holds a fixed.

To explore the collapse of hysteresis over time as a result

of noise, the same simulations as in Figure 2 were performed

at multiple anaesthetic concentrations to construct

concentration-response curves for induction and emergence

after different time intervals (Fig. 3a). As expected, hysteresis

collapses over time, and does so faster in a system with more

noise (Fig. 3b). All curves have the same Hill slope, and the

entire dose-response curve shifts as the simulation runs for

longer times with a change in EC50.
To compare our simulation against existing data for neural

inertia, we obtained measures of EC50 and Hill slope values for

induction and emergence for more than 100 mutant strains of

mice and Drosophila25,26 (M. Kelz personal communication).

Figure 4 plots DEC50 vs change in Hill slope between the in-

duction and emergence arms of the hysteresis loop. There is a
response curve for the same two-well system with additive noise is

00 (red curve), or 10 000 (blue curve). The only difference between

ormed; the model there has no pharmacokinetic equilibration time

on hysteresis collapse over time. The same simulation was run for

ates are plotted as a function of delay time. Higher levels of noise



Fig 4. (a) Degree of hysteresis is related to shift in the Hill slope. Each tested line for flies (circles) or mice (diamonds) tested for hysteresis

with isoflurane (blue) or halothane (red) are plotted. (b) The generic shifts in the shape of the induction compared with emergence arms

with neural inertia: the arm with the higher EC50 has the steeper slope, and this difference increases with increasing magnitude of

hysteresis DEC50.
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significant negative correlation between DEC50 and DHill slope

(Pearson’s correlation coefficient R2¼0.45; P<1.7�10�15, Stu-

dent’s t transformation of Pearson’s correlation coefficient)

(Fig. 4b). That is, the slopes of the curves on each arm of the

hysteresis loop differ. Of note, this relationship holds true

even with the rare mutants with negative hysteresis (those

with a negative DEC50).
25

The two-well potentialmodel gives rise to a single Hill slope

and cannot produce the shift in Hill slope seen in the real data.

As the Hill slope reflects population variability, the steeper the

Hill slope, the less variable the population response. The uni-

versally observed reduction of the Hill slope for the left-shifted

curve implies that recovery from anaesthesia is consistently

more variable than induction of anaesthesia. The two-state

Markov process (or two-well potential system) cannot in-

crease variability because dwell times in awake (and anaes-

thetised) states are exponential. The probability of leaving the

state (the off diagonal elements in the transition probability

matrix) determines the time constant for dwell times. Thus, in

the two-potential well model, there is no way to adjust pop-

ulation variability separately for the induction and emergence

arms of the hysteresis loop without affecting their equilibrium

distribution.

Experimental observations29 suggest that multiple neuro-

physiological states can occur at a fixed anaesthetic concen-

tration, and that some of the transition probabilities between

states are essentially zero. All things held equal, sparse con-

nectivity of the transition probability matrix increases the

mixing time of the system.27 Interestingly, sparse connectivity

can also contribute to increased variability. To illustrate this,

we generalised the Markov model to have multiple (e.g. 10)

states. If the system is in States 1e3 it is ‘awake’ and otherwise

‘anaesthetised’. Both burst suppression and sustained delta

waves in the EEG correspond to discrete brain activity patterns

that are associated with being anaesthetised. The simplest

case of this 10 state system is a random walk on a linedthe

state of the system can increase or decrease by 1 and the

probability of transition is fixed. States 1 and 10 are reflective

boundary conditions. A well-known result in theory of sto-

chastic processes is that return times for a randomwalker on a

real line have a power law distribution with an exponent of 3/

2.30 As a consequence, the mean, variance, and higher
moments of the return times diverge, producing dramatic

variation between seemingly identical experiments.

Transition probabilities were tuned to EC50 d50% proba-

bility of conscious (States 1e3) and unconscious (States 4e10)

behaviour (Fig. 5a). Unlike the two-state system, themultistate

system allows control of both the overall probability of being

awake and the variability. To show this, we plot the distribu-

tion of dwell times in the conscious and the unconscious

states (Fig. 5b). Although the overall probability of being

conscious is the same as being unconscious, the population

variability is much higher in the unconscious states. This in-

crease in variability is because of the right skew in the dwell-

time distribution and matches the observed decrease in Hill

slope of the emergence curve. A multistate Markov model will

still produce hysteresis collapse over time. Thus, given a sto-

chastic process, the parsimonious assumption that a random

collection of neurones is unlikely to produce a conscious brain

naturally leads to the observed features of neural inertia.
Discussion

We have shown that a simple model of the brain as a sto-

chastic process on an energy landscape will generically pro-

duce hysteresis that dissipates after amixing time determined

by noise. To generalise the model while retaining tractability,

we alternatively frame the two-potential well model as a

Markov process, which allows us to generalise the model to

incorporate multiple ‘conscious’ and ‘unconscious’ states,

which has both empirical29,31 and theoretical support.32,33

This study attempted to identify a simple, abstract class of

model capable of producing hysteresis with the features of

neural inertia. Only the briefest characterisation of individual

models within that class was performed to find simple choices

capable of behaviour consistent with experimental observa-

tions. This is inherently limiting. For example, only a one-

dimensional geometry of state space has been explored. As a

result, no effects of sparseness or directedness of connectivity

between Markov states were studied, so it is possible that a

sparse or directed network with fewer than 10 states might

produce behaviour similar to the multistate Markov model

presented here. Furthermore, though this simple model cap-

tures the salient features of what is known currently about



Fig 5. (a) Simulating shifts between consciousness and unconsciousness as a discrete random walk on a line. Three states correspond to

conscious states and seven states correspond to unconscious states, with system state shifting solely because of a stochastic process

encoded in the transition probabilities between states. (b) This model produces a right skewed return time distribution, which generalises

to power law behaviour in the continuous case. a.u., arbitrary units.
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neural inertia, future experimental observations could invali-

date this class ofmodel. Yet the ability of such a simple class of

dynamical models to reproduce neural inertia suggests that

relatively simple dynamics can clarify several observations

about the induction and recovery from anaesthesia.

While noise is unavoidable, the consequences of noise have

not been explored in the context of mechanisms of anaes-

thesia. Noise is relevant for the basic definitions of minimum

alveolar concentration (MAC),27 which is defined as the con-

centration at which 50% of subjects do not respond to a painful

stimulus. There are two paradigmatically different ways in

which MAC can arise, however. The first is population vari-

ability: 50% of the population will not respond to any surgical

stimulus, while the other 50% will remain responsive.

Conversely, it is possible that the same subject will respond to

50% of repeated surgical stimuli. The latter possibility makes

the effects of noise unavoidable. As we illustrate, state

switching because of noise gives rise to mixing timeda time

scale on which a stochastic system decays towards its final

equilibrium distribution of states, which is completely inde-

pendent of drug pharmacokinetics and can produce neural

inertia. This neural inertia will be experimentally observed so

long as themixing time is longer than the pharmacokinetics of

drug equilibration, which appears to be the case in both mice

and Drosophila for volatile anaesthetics.25,26 Mixing time may

also be longer than pharmacokinetic equilibration for

short34,35 but not prolonged propofol infusions.36
Using a simple Markov chain and the parsimonious

assumption of more unconscious than conscious states, we

were able to capture two essential features of neural inertia:

the shift in EC50 and the change in Hill slope. Fluctuations in

behavioural responsiveness are because of stochastic dy-

namics of neuronal states themselves, and naturally raise

questions about established measures of potency.37 For

example, if we attempt to measure MACAwake
38 before the

mixing time has elapsed, the measure of potency will be

confounded, even if the effect-site concentration of anaes-

thetic is at steady-state.

Our exploration of the experimental data for neural inertia

in rodents and Drosophila revealed a consistent, previously

unappreciated relationship between the degree of neural

inertia (shift in the EC50) and population variability (decrease

in the Hill slope). The apparent increase in variability can be

explained by generalising the stochastic model to include

multiple unconscious states, which is consistent with fluctu-

ations in local field potentials recorded in rats at a fixed

anaesthetic concentration.23 One implication of this model is

that recovery times are inherently stochasticdany individual

within a clonal population could have a highly variable re-

covery time. Furthermore, the same individual subjected to an

identical anaesthetic could have dramatically different re-

covery times.

Ablation of orexinergic neurones14 in the hypothalamus or

reduced catecholaminergic signalling26 broadens hysteresis
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by shifting the emergence curve to the left. This might suggest

that orexinergic and catecholaminergic systems are prefer-

entially required for emergence from anaesthesia, an inter-

pretation that implicitly assumes only two states: conscious

and anaesthetised. Yet, multiple discrete stable39,40 activity

patterns occur in the anaesthetised rodent29,41 or human.36,42

Remarkably, not all transitions between these patterns are

equally likely. A multistate Markov process with sparse con-

nectivity produces hysteresis, capturing both the shift in the

EC50 and the decrease in Hill slope observed during emergence.

Thus, in order to broaden hysteresis, orexinergic or norad-

renergic neurones need not specifically act on emergence from

unconscious to conscious states. An equally likely possibility

is that these neurones change the transition probabilities be-

tween states of unconsciousness. The multistate Markov

chain can also explain the hitherto puzzling observation of

‘negative hysteresis’ observed in some Drosophila mutants.

Negative hysteresis arises if the mutation leads to a new

connection from an unconscious to a conscious state. Thus, a

multistate Markov process accounts for all known features of

hysteresis, suggests an existence of a novel time scale that

governs the collapse of hysteresis, and proposes a different

interpretation of genetic experiments that specifically affect

neural inertia.
Authors’ contributions

Ran simulations: A.P.

Conceived the study, analysed and interpreted the results, and

wrote and revised the manuscript: both authors.
Acknowledgements

We thank M. Kelz for kindly providing Hill slope data for

hysteresis mutants.
Declaration of interest

None declared.
Funding

National Institute of General Medical Sciences (7K08GM106144

to A.P., 1K08GM121961 to A.E.H.)
References

1. Strogatz SH. Nonlinear dynamics and chaos: with applications

to physics, biology, chemistry, and engineering. Boulder, CO:

Westview Press; 2014

2. Franks NP. General anaesthesia: from molecular targets to

neuronal pathways of sleep and arousal. Nat Rev Neurosci

2008; 9: 370e86

3. Vacas S, Kurien P, Maze M. Sleep and anesthesia - com-

mon mechanisms of action. Sleep Med Clin 2013; 8: 1e9

4. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep

state switching. Neuron 2010; 68: 1023e42

5. Moore JT, Chen J, Han B, et al. Direct activation of sleep-

promoting VLPO neurons by volatile anesthetics contrib-

utes to anesthetic hypnosis. Curr Biol 2012; 22: 2008e16

6. Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activa-

tion of ventrolateral preoptic neurons during sleep. Science

1996; 271: 216e9
7. Aston-Jones G, Bloom FE. Activity of norepinephrine-

containing locus coeruleus neurons in behaving rats an-

ticipates fluctuations in the sleep-waking cycle. J Neurosci

1981; 1: 876e86

8. Koyama Y, Takahashi K, Kodama T, Kayama Y. State-

dependent activity of neurons in the perifornical hypo-

thalamic area during sleep and waking. Neuroscience 2003;

119: 1209e19

9. Saper CB, Chou TC, Scammell TE. The sleep switch: hy-

pothalamic control of sleep and wakefulness. Trends

Neurosci 2001; 24: 726e31

10. Zecharia AY, Nelson LE, Gent TC, et al. The involvement of

hypothalamic sleep pathways in general anesthesia:

testing the hypothesis using the GABAA receptor

beta3N265M knock-in mouse. J Neurosci 2009; 29: 2177e87

11. Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M. The

sedative component of anesthesia is mediated by GABAA

receptors in an endogenous sleep pathway. Nat Neurosci

2002; 5: 979e84
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