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Abstract

Arthropod-borne flaviviruses such as yellow fever (YFV), Zika and dengue viruses continue

to cause significant human disease globally. These viruses are transmitted by mosquitoes

when a female imbibes an infected blood-meal from a viremic vertebrate host and expecto-

rates the virus into a subsequent host. Bamaga virus (BgV) is a flavivirus recently discov-

ered in Culex sitiens subgroup mosquitoes collected from Cape York Peninsula, Australia.

This virus phylogenetically clusters with the YFV group, but is potentially restricted in most

vertebrates. However, high levels of replication in an opossum cell line (OK) indicate a

potential association with marsupials. To ascertain whether BgV could be horizontally trans-

mitted by mosquitoes, the vector competence of two members of the Cx. sitiens subgroup,

Cx. annulirostris and Cx. sitiens, for BgV was investigated. Eleven to thirteen days after

imbibing an infectious blood-meal, infection rates were 11.3% and 18.8% for Cx. annuliros-

tris and Cx. sitiens, respectively. Cx. annulirostris transmitted the virus at low levels (5.6%

had BgV-positive saliva overall); Cx. sitiens did not transmit the virus. When mosquitoes

were injected intrathoracially with BgV, the infection and transmission rates were 100% and

82%, respectively, for both species. These results provided evidence for the first time that

BgV can be transmitted horizontally by Cx. annulirostris, the primary vector of pathogenic

zoonotic flaviviruses in Australia. We also assessed whether BgV could interfere with repli-

cation in vitro, and infection and transmission in vivo of super-infecting pathogenic Culex-
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associated flaviviruses. BgV significantly reduced growth of Murray Valley encephalitis and

West Nile (WNV) viruses in vitro. While prior infection with BgV by injection did not inhibit

WNV super-infection of Cx. annulirostris, significantly fewer BgV-infected mosquitoes could

transmit WNV than mock-injected mosquitoes. Overall, these data contribute to our under-

standing of flavivirus ecology, modes of transmission by Australian mosquitoes and mecha-

nisms for super-infection interference.

Author summary

Mosquito-borne flaviviruses include medically significant members such as the dengue

viruses, yellow fever virus and Zika virus. These viruses regularly cause outbreaks globally,

notably in tropical regions. The ability of mosquitoes to transmit these viruses to verte-

brate hosts plays a major role in determining the scale of these outbreaks. It is essential to

assess the risk of emergence of flaviviruses in a given region by investigating the vector

competence of local mosquitoes for these viruses. Bamaga virus was recently discovered in

Australia in Culex mosquitoes and shown to be related to yellow fever virus. In this article,

we investigated the potential for Bamaga virus to emerge as an arthropod-borne viral

pathogen by assessing the vector competence of Cx. annulirostris and Cx. sitiens mosqui-

toes for this virus. We showed that Bamaga virus could be detected in the saliva of Cx.

annulirostris after an infectious blood-meal, demonstrating that the virus could be hori-

zontally transmitted. In addition, we showed that Bamaga virus could interfere with the

replication in vitro and transmission in vivo of the pathogenic flavivirus West Nile virus.

These data provide further insight on how interactions between viruses in their vector can

influence the efficiency of pathogen transmission.

Introduction

The genus Flavivirus encompasses over 70 viral species including several human and animal

pathogens, such as yellow fever virus (YFV), dengue viruses (DENV), Zika virus (ZIKV), West

Nile virus (WNV) and Murray Valley encephalitis virus (MVEV) which are transmitted by

mosquitoes [1, 2]. Even though most flaviviruses can replicate in Aedes, Culex, or Anopheles
cells in vitro and sometimes also in vivo, flaviviruses are thought to be either Culex- (WNV,

MVEV) or Aedes-associated (DENV, ZIKV, YFV) in relation to their main vector for trans-

mission [3–5]. Horizontal transmission of these arthropod-borne viruses (arboviruses) occurs

when the virus is ingested by a mosquito whilst it feeds on infected blood from a vertebrate

host. Post ingestion by the mosquito, the virus infects and replicates in the midgut epithelial

cells [6, 7]. The virus then disseminates from the midgut cells and typically undergoes second-

ary replication in other tissues, such as fat bodies or neural tissues. Finally, the virus infects the

cells of the salivary glands before being released into the salivary secretion when the mosquito

probes a vertebrate host during feeding [6, 7]. Several barriers to infection within the mosquito

must be overcome before transmission of an arbovirus including the midgut infection and

escape barriers, and the salivary infection and escape barriers [8, 9]. Vector-competence stud-

ies aim to determine if a mosquito species can transmit an arbovirus, by evaluating if and how

well the virus can overcome the infection, dissemination and transmission barriers in those

mosquitoes [10–17]. These laboratory-based studies producing vectorial capacity data are cru-

cial to determine whether these viruses pose a threat of an epidemic transmission by local
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mosquito species, or simply to better understand the ecological niches in which these viruses

belong.

Bamaga virus (BgV) is a flavivirus which was recently isolated from archival samples of Cx.

annulirostris mosquitoes collected in 2001 and 2004 in Cape York, Far North Queensland,

Australia [18]. While BgV is phylogenetically most closely related to the Australian flavivirus

Edge Hill virus and other vertebrate-infecting members of the YFV group, initial in vitro char-

acterisation experiments indicated that BgV was not able to replicate in a range of vertebrate

cell lines (monkey, chicken, rabbit) suggesting it may have a restricted or narrow vertebrate

host range [18]. In addition, injecting the virus in mice produced no disease and only caused

signs of replication-associated pathology when the highest dose of virus was injected directly

into the brain of the animals [18]. Despite this attenuation, BgV is classified as a vertebrate-

infecting flavivirus based on its phylogenetic position, its ability to replicate to low levels in

selected vertebrate cell lines (hamster, opossum, human), and its dinucleotide usage bias [18,

19]. To determine whether the virus could be horizontally transmitted by mosquitoes, labora-

tory-based experiments were conducted to assess BgV infection, dissemination and transmis-

sion rates in Cx. annulirostris and the closely related Cx. sitiens.
Virus co- and super-infection are defined by the simultaneous or sequential infection of

cells, animals or mosquitoes by two different viruses. It has been shown for a number of verte-

brate-infecting flaviviruses that the level of replication or transmission of a co- or super-infect-

ing flavivirus could be regulated by the presence of the first, both in vitro and in vivo [20].

Examples of this phenomenon include Bagaza virus which suppressed replication of Japanese

encephalitis virus (JEV) and WNV in Culex mosquitoes upon co- and super-infection [21];

WNV and SLEV which could inhibit replication and dissemination of one another in vivo
[22]; and DENV and YFV which could suppress replication of the other in vitro [23]. Further-

more, there is a subset of flaviviruses that only infect insects, and therefore, have no vertebrate

hosts, but have been thoroughly studied in recent years because of their potential for co- or

super-infection interference with pathogenic vertebrate-infecting flaviviruses and their high

prevalence in certain mosquito populations [24, 25]. For instance, it has been shown that

WNV replication (in vitro and in vivo) and transmission by Culex mosquitoes could be regu-

lated by the presence of the insect-specific flavivirus, Palm Creek virus [26, 27]. Such interac-

tions are important to understand in the context of risk assessment of the likelihood of an

arbovirus being transmitted by local populations of mosquitoes. To further explore the phe-

nomenon of competitive interference, we also assessed whether the presence of BgV in mos-

quito cells and in live mosquitoes could interfere with the replication or transmission of Culex-
associated medically significant flaviviruses.

Material and methods

Cell culture

C6/36 cells (Ae. albopictus) were cultured in Roswell Park Memorial Institute 1640 while Vero

cells (Cercopithecus aethiops, African green monkey, kidney epithelial cells) were cultured in

Dulbecco’s Modified Eagle’s Medium. Both cell culture media were supplemented with 2–10%

fetal bovine serum (FBS), 50U penicillin/mL, 50μg streptomycin/mL and 2mM L-glutamine.

Screening mosquito homogenates

Archival and recent mosquito homogenates were screened for the presence of BgV using the

broad-spectrum Monoclonal Antibodies to Viral RNA Intermediates in Cells (MAVRIC)

detection system [28]. Briefly, mosquitoes were collected in the wild using CO2 baited light

traps as described previously [29]. Collections were sorted and female mosquitoes identified to
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species or genus level, pooled and homogenised in cell culture medium using glass beads and a

Tissue Lyser III (Qiagen) for three minutes at 30Hz or following previously published methods

[30]. The homogenates were clarified by centrifugation at 12,000 g for five minutes and filtered

through a 0.2/0.8 μm sterile filter. The filtered homogenates were then inoculated on four

wells of a 96 well plate pre-seeded with C6/36 mosquito cells and incubated at 28˚C for 5-

7days. After incubation, the cell supernatant was harvested and stored at -80˚C, the cells were

fixed and tested in fixed-cell enzyme-linked immunosorbent assay (ELISA) as described below

using anti-dsRNA monoclonal antibodies MAVRIC, or pan-flavivirus monoclonal antibody

(mAb) 4G2. RNA was extracted from the harvested supernatant of positive samples using the

Nucleospin Viral RNA extraction kit (Macherey Nagel) following the manufacturer’s instruc-

tion and tested by reverse-transcription PCR (RT-PCR) using pan-flavivirus primers and the

Superscript III and Platinum Taq One-step RT-PCR kit (Invitrogen) following the manufac-

turer’s instructions [31].

Fixed-cell ELISA

Fixed cells were blocked for 30 minutes at room temperature (RT) in blocking buffer (0.05 M

Tris/HCl (pH 8.0), 1 mM EDTA, 0.15 M NaCl, 0.05% (v/v) Tween-20, 0.2% w/v casein). Pri-

mary mAb, at the optimal dilution in blocking buffer, was added to each well after removing

the blocking buffer and incubated at 37˚C for one hour. Plates were washed with PBS contain-

ing 0.05% Tween-20 (PBS-T) four times and secondary horse radish peroxidase-conjugated

antibody (goat anti-mouse, Dako) was added diluted 1/3000 in blocking buffer and incubated

at 37˚C for one hour. Plates were washed six times with PBS-T and ABTS based substrate

(1mM 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) with 3mM hydrogen peroxide

in a 0.1M citrate / 0.2M Na2PO4 buffer pH 4.2) was added and left to develop in the dark at RT

for one hour. Finally, the absorbance of each well was measured by an automated 96-well spec-

trophotometer at 405 nm. Positive wells were identified with a threshold of optical density

higher than twice the average of mock infected wells.

Virus culture for in vitro and in vivo experiments

The virus strains used were BgV prototype CY4270 (stock with passage number 6, passaged

only in C6/36 cells) [18], WNV New South Wales 2011 strain (passaged on C6/36, Vero and

C6/36 cells successively) [32], MVEV strain 1–51 [33], and Ross River virus (RRV) strain T-48

[34].

Virus titration by 50% tissue culture infective dose (TCID50) assay

Titrated samples were serially diluted eight times 10-fold on C6/36 or Vero cells in 96 well

plates, with four to ten replicate wells per dilution. The plates were incubated for five days at

28˚C or 37˚C respectively, fixed in 20% acetone, 0.02% bovine serum albumin in PBS, and

assessed by fixed-cell ELISA as described above.

Super-infection interference in vitro
C6/36 cells were incubated in suspension, rocking at RT for two hours either in mock cell cul-

ture medium or medium containing BgV to obtain a multiplicity of infection of 10 and seeded

in a T175 flask to grow at 28˚C for five days. After this incubation, cells were reseeded at 5x104

cells per well in 24 well plates in triplicates for each time point and virus, with one extra well

seeded onto a glass coverslip, and incubated for two days at 28˚C. The mock and BgV cover-

slips were fixed in ice cold acetone and immunolabeled by immunofluorescence assay using
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vertebrate-infecting flavivirus E cross-reactive mAb 4G2, as described previously, to confirm

BgV infected all the cells [18]. Cells were washed with sterile PBS once and mock- and BgV-

infected cells were inoculated with either MVEV, WNV or RRV at a multiplicity of infection

of 0.01. After 20 minutes rocking at RT and one hour incubation at 28˚C, inoculum was

removed, cells washed with sterile PBS thrice and topped up with 750μL of growth medium.

Culture supernatants were harvested at 1h, 8h, 24h, 48h and 72h post-infection and titrated by

TCID50 on Vero cells as described above. After incubation for five days at 37˚C, the cells were

fixed and analysed by fixed-cell ELISA as described above, using anti-flavivirus non-structural

protein 1 mAb 4G4 for MVEV and WNV (non-reactive to BgV), and anti-RRV mAb G8.

Mosquito maintenance

Mosquitoes were collected from near Cairns (16o49’S, 145o42’E), north Queensland in April

2016 using CO2-baited passive traps and shipped to the insectary at Forensic and Scientific

Services, Department of Health, Queensland Government, Brisbane, Australia [35]. Insectary

conditions were 26˚C and 12:12 light:dark whilst all mosquito adults were provided 15%

honey water as a nutrient source. To stimulate egg production, mosquitoes were offered defi-

brinated sheep’s blood as a blood-meal for two hours with a Hemotek feeding apparatus (Dis-

covery Workshops, Accrington, Lancashire, United Kingdom) and pig’s intestine as

membrane. The blood engorged females were sorted by species and placed in 30x30x30 cm

cages (BugDorm, MegaView Science Co., Ltd, Taiwan). Mosquitoes were offered blood-meals

an additional eight times over 14 days. A polyethylene container containing double distilled

water was added to each cage for oviposition. Egg rafts were removed daily, and first and sec-

ond instar larvae fed a slurry of Tropical Fish flakes (Wardley’s Tropical Fish Food Flakes, The

Hartz Mountain Corporation, New Jersey), whilst third and fourth instar larvae were fed on

cichlid pellets (Kyorin Co. Ltd, Himeji, Japan). Pupae were removed daily and placed in cages

for emergence. Ten to fifteen day old female mosquitoes were used for the BgV vector compe-

tence assessment.

Mosquitoes for the virus interference experiments were collected from the suburbs of Oxley

(27o33’S, 152o58’E) and Banyo (27o22’S, 153o04’E) in Brisbane, using CO2-baited light traps.

Mosquitoes were transported to the Forensic and Scientific Services insectary and Cx. annulir-
ostris removed, placed in a cage and used in the experiments within 24 hours of collection.

Mosquito exposure to BgV for vector competence

Mosquitoes were exposed to BgV via feeding on a blood/virus mixture with 107 TCID50 IU/

mL of virus using a Hemotek feeding apparatus. Mosquitoes were also exposed to virus by

intrathoracic inoculation of approximately 220nL of BgV at a titre of 105 TCID50 IU/mL i.e.

approximately 22 TCID50 IU/mosquito or 3% FBS cell culture media as mock inoculum using

a Nanoject II (Drummond Scientific, Broomall, PA) micro injector. Mosquitoes were main-

tained at 28˚C, high humidity and 12:12 dark:light cycle in an environmental growth cabinet

(Sanyo Electric, Gunma, Japan), and provided 15% honey water as a nutrient source.

Harvesting and processing of mosquitoes for vector competence

To assess infection, dissemination and transmission rates, mosquitoes were harvested after

incubation for 8–13 days post exposure. Unfortunately, Cx. sitiens mosquitoes displayed a high

mortality rate post-emergence and post-exposure, limiting the numbers available for assess-

ment. A forced salivation method was used to assess transmission potential [36]. Briefly, legs

+wings were removed from each mosquito, whose proboscis was then placed in a capillary

tube with growth media with 20% FBS for two hours. The saliva samples were dispensed into
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600μL of 3% FBS growth media. Bodies and legs+wings were placed separately in 2mL U-bot-

tom tubes containing 1mL of 3% FBS growth media, in order to assess separately for virus

infection and dissemination. All samples were stored at -80˚C. In order to examine potential

tissue tropism of BgV in mosquitoes, Cx. annulirostris exposed to virus by infectious blood-

meal (n = 25) or via intrathoracic inoculation (n = 25) were fixed in 4% formaldehyde, 0.05%

Triton X-100 (BioRad) in PBS for 24h before legs+ wings were removed and bodies transferred

to 70% ethanol for storage.

Super-infection interference in vivo
Mosquitoes were CO2 anaesthetized, immobilised on a refrigerated table, and injected with

approximately 220nL of BgV stock virus diluted in growth medium with 3% FBS to provide a

final titre of approximately 105 TCID50 IU/mL i.e. approximately 22 TCID50 IU/mosquito.

Control mosquitoes were injected with growth medium only. After 7–8 days incubation at

28˚C, 12:12 light:dark cycle and high relative humidity, mosquitoes were offered a blood-meal

containing 106 TCID50 IU/mL of WNV. Mosquitoes were again incubated at 28˚C, 12:12 dark:

light cycle and high relative humidity, before bodies, legs+wings and saliva expectorates were

collected seven or ten days post-blood-meal as described above, and stored at -80˚C.

Virus detection and quantification

Bodies and legs+wings samples from the vector competence study were homogenised with

a metal bead in a Tissue Lyser III (Qiagen) for three minutes at 30Hz, clarified by centrifuga-

tion at 12,000 g for five minutes and filtered through a 0.22μm sterile filter. Mosquito body

homogenates were titrated by TCID50 on C6/36 cells as described above. Undiluted superna-

tant from homogenised legs+wings of positive mosquito bodies were directly inoculated on

C6/36 cells, in four wells of a 96 well plate. Finally, saliva expectorates from mosquitoes posi-

tive for dissemination (virus detected in legs+wings) were titrated to determine a virus titre in

the saliva. Replication was assessed by fixed-cell ELISA (see above) with pan-flavivirus mAb

4G2 [37].

Additionally, 31 BgV injected Cx. annulirostris mosquitoes were harvested as whole mos-

quitoes, to be included in the overall infection rate, and homogenised as described above.

These were tested for presence of BgV by directly inoculating homogenate on C6/36 cells as

described above for the legs+wings and performing a fixed-cell ELISA with mAb 4G2.

Bodies of BgV-injected and mock-injected mosquitoes from the virus interference experi-

ments were processed similarly as above, titrated on Vero cells and analysed by fixed-cell

ELISA with mAb 4G4 (WNV reactive and BgV non-reactive). Vero cells were used here to pre-

vent BgV from interfering with WNV replication further, since these vertebrate cells do not

support BgV replication. To assess the infection status of the BgV-injected mosquitoes, these

homogenates were also inoculated in four wells of a 96 well plate of C6/36 cells and analysed

by fixed-cell ELISA with mAb 1B7, which is BgV reactive and WNV non-reactive. The samples

were not titrated on C6/36 cells as the potential presence of WNV in the homogenates could

have interfered with BgV and altered the titres obtained. Legs+wings from WNV positive bod-

ies were inoculated in four wells of 96 well plates pre-seeded with C6/36 cells, and Vero cells

incubated at 28 or 37˚C, respectively, for six days before being analysed by fixed-cell ELISA

with either mAb 4G4 (Vero) or 1B7 (C6/36) to test for presence of either WNV or BgV, respec-

tively. Similar to body homogenates, saliva from mosquitoes with positive bodies were titrated

on Vero cells and inoculated on C6/36 cells as described above and analysed by fixed-cell

ELISA with either mAb 4G4 or 1B7.
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BgV localisation in mosquitoes by immunohistochemistry

Fixed mosquitoes were paraffin-embedded prior to immunohistochemistry (IHC) as per rou-

tine processing described previously [19]. Five μm sections, collected on charged slides, were

immuno-labelled for BgV using a cocktail of BgV reactive mAbs (e. g. 4G2 [38], 6B6C [39],

1D1 [40] and 1B7 [41]) or BgV-specific mouse serum [18] following a previously described

protocol [26]. The mAb hybridoma supernatants used in this protocol were tested in fixed-cell

ELISA with cells fixed with 4% formaldehyde in PBS with 0.05% Triton X-100 to empirically

determine the optimal dilutions to use on the formaldehyde fixed mosquitoes in IHC.

Analyses

The titres obtained by TCID50 were determined using Reed and Muench’s guidelines [42]. For

the BgV vector competence experiments, the titre of virus in bodies and saliva expectorates of

injected and bloodfed Cx. annulirostris and Cx. sitiens were compared using an unpaired

parametric t-test. The MVEV, WNV and RRV titres in the in vitro super-infection experiment

were analysed using an unpaired parametric t-test. For the in vivo virus interference experi-

ments, Fisher’s exact tests were used to compare WNV infection, dissemination and transmis-

sion rates between BgV-infected and mock-infected Cx. annulirostris. The titres of WNV

positive body samples were statistically analysed using an unpaired parametric t-test. The titres

of WNV positive saliva could not be statistically analysed considering that one of the groups

only had one positive sample. All analyses were conducted using Graphpad Prism Version 7

(GraphPad Software, Inc, San Diego, USA).

Results

BgV ecological niche

There are only three known isolates of BgV, all detected in Cx. sitiens subgroup mosquitoes

collected on Cape York Peninsula, Far North Queensland, Australia between 2001 and 2004

[18]. To further determine the prevalence of BgV in Culex and other species in other genera,

811 additional mosquito pools (pool size ranging from 1 to 107) from the Aedeomyia, Aedes,
Anopheles, Coquillettidia, Culex, Culiseta, Mansonia, Uranotaenia and Verrallina genera,

encompassing at least 31 species, were screened for BgV (Table 1). The mosquito homogenates

were inoculated onto C6/36 mosquito cells for isolation and screened using anti-dsRNA mAbs

MAVRIC and/or using pan-flavivirus mAb 4G2 in ELISA and/or RT-PCR using pan-flavivirus

primers [31]. No BgV isolates were recovered from this range of mosquito homogenates

(Table 1).

Vector competence of Culex mosquitoes for BgV

To determine whether this vertebrate-restricted virus could be horizontally transmitted by

field collected mosquitoes, laboratory reared progeny of wild Cx. annulirostris and Cx. sitiens
collected from Cairns, northern Queensland, were exposed to BgV using methods previously

published [35]. After being exposed to an infectious blood-meal with a titre of 107 TCID50

infectious units per milliliter (TCID50 IU/mL), infection rates were 11.3% (8/71) and 18.8% (3/

16) for Cx. annulirostris and Cx. sitiens, respectively (Table 2 and Table 3). BgV was detected

in the legs+wings of 8/8 positive blood-fed Cx. annulirostris mosquitoes whilst none of the

three positive Cx. sitiens mosquitoes had virus disseminated in their legs+wings (Table 2 and

Table 3). Half of the positive Cx. annulirostris had detectable levels of virus in their saliva (4/8),

resulting in an overall transmission rate of 5.6% (4/71) for Cx. annulirostris; there was no

detectable transmission for Cx. sitiens (Table 2 and Table 3). In addition to exposing the
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mosquitoes to BgV via a blood-meal, Cx. annulirostris and sitiens mosquitoes were injected

intrathoracically with the virus, in order to bypass the midgut infection and escape barriers,

and to provide a group with a controlled virus dose. Injecting BgV intrathoracically achieved

100% infection and dissemination rates (45/45 for Cx. annulirostris and 11/11 for Cx. sitiens).
The virus was found in high prevalence in the saliva of injected mosquitoes, with 82.2% (37/

45) and 81.8% (9/11) transmission rates for Cx. annulirostris and Cx. sitiens respectively

(Table 2 and Table 3).

The level of BgV amplification in vivo was measured in injected and bloodfed mosquitoes.

Whilst the mosquitoes were injected with the equivalent of approximately 20 TCID50 IU, body

titres of 106 TCID50 IU per injected Cx. annulirostris were recovered on average eight to ten

days post exposure, and 106.6 TCID50 IU per injected Cx. sitiens, which indicated successful

Table 1. Summary of mosquito pools screened for BgV in Australasia. (NT = Northern Territory, Australia; PNG = Papua New Guinea; QLD: Queensland, Australia;

WA = Western Australia).

Species Location Number of archival pools (date) Number of recent pools (date) Total

Aedeomyia catasticta NT, WA 15 (1973–76) 1 (2018) 16

Aedes alboannulatus WA 7 (1988–90) 2 (2014) 9

Aedes alboscutellatus NT 2 (2018) 2

Aedes camptorhynchus WA 63 (1988–91) 19 (2014) 82

Aedes clelandi WA 11 (1990) 1 (2014) 12

Aedes hesperonotius WA 1 (1990) 2 (2014) 3

Aedes kochi NT 3 (2018) 3

Aedes normanensis NT, WA 355 (2011–14) 355

Aedes notoscriptus NT, WA 2 (1990) 3 (2014–18) 5

Aedes ratcliffei WA 7 (1990) 7

Aedes species WA 1 (2014) 1

Aedes turneri WA 1 (2014) 1

Aedes vigilax NT, WA 9 (2011–14) 9

Anopheles amictus NT 6 (2013) 6

Anopheles annulipes NT, WA 3 (1990) 29 (2013–14) 32

Anopheles atratipes WA 1 (1990) 1

Anopheles bancroftii NT 9 (2018) 9

Anopheles meraukensis QLD 5 (2000–01) 5

Coquillettidia species WA 4 (1990) 4

Coquillettidia xanthogaster NT 13 (2018) 13

Culex annulirostris NSW, NT, PNG, QLD, WA 67 (1990–2007) 66 (2011–18) 133

Culex australicus WA 6 (1988–90) 2 (2014) 8

Culex bitaeniorhynchus NT 2 (2013–18) 2

Culex gelidus NT 12 (2018) 12

Culex globocoxitus WA 7 (1988–90) 3 (2014) 10

Culex pullus NT, WA 16 (2011–18) 16

Culex quinquefasciatus NT, WA 3 (1990) 11 (2014–18) 14

Culex species WA 1 (1990) 3 (2011–14) 4

Culex vishnui group NT 7 (2018) 7

Culiseta atra WA 6 (1990) 1 (2014) 7

Mansonia uniformis NT, WA 19 (2011–18) 19

Uranotaenia albescens NT 3 (2018) 3

Verrallina funerea NT 1 (2018) 1

TOTAL 209 602 811

https://doi.org/10.1371/journal.pntd.0006886.t001
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replication of the virus in the mosquito tissues (Fig 1). There was a significant difference

between the titres in the bodies of blood-fed Cx. sitiens and Cx. annulirostris, with a higher

titre in Cx. annulirostris (P = 0.0149). This was also the case in the bodies of injected mosqui-

toes, with slightly higher titres on average detected in Cx. sitiens (P = 0.0058). Titres were sig-

nificantly lower in the mosquito bodies of the blood-fed mosquitoes than in the injected

mosquitoes (P< 0.0001 for both species). In contrast, virus titres in saliva expectorates of

injected mosquitoes were not significantly different between Cx. sitiens and Cx. annulirostris
(P = 0.3712). Similarly, titres in the saliva were not significantly different between injected and

blood-fed Cx. annulirostris, although this could be the result of a longer extrinsic incubation

for bloodfed mosquitoes (P = 0.6977).

Tissue tropism in infected Culex mosquitoes

BgV was detected by IHC in the midgut epithelial cells and neuronal cells of 8/25 bloodfed

(harvested 14 days post-infection) and 20/25 injected Cx. annulirostris (harvested 10 days

post-infection). There was more virus antigen present in the midgut of blood-fed mosquitoes,

while injected mosquitoes displayed more antigen in the neuronal cells (Fig 2). Viral antigen

was also detected in the fat bodies proximal to the gonads and in the salivary glands.

BgV inhibits replication of pathogenic flaviviruses in vitro
To determine whether prior infection with BgV affects replication of pathogenic flaviviruses,

mosquito C6/36 cells were either mock- or BgV-infected for five days, and subsequently

infected with RRV, MVEV or WNV. BgV-infected cells were shown to be significantly less

Table 2. Infection, dissemination and transmission rates of BgV in injected (IT) and bloodfed (oral) Cx. annulirostris mosquitoes.

Mode of

exposure

Day post

exposure

% Infectiona % Disseminationb % Dissemination

/infectionc
% Transmissiond % Transmission

/disseminatione

IT 8 100 (9/9) 100 (9/9) 100 (9/9) 66.7 (6/9) 66.7 (6/9)

IT 10 100 (36/36) 100 (36/36) 100 (36/36) 86.1 (31/36) 86.1 (31/36)

Oral 13 11.3 (8/71) 11.3 (8/71) 100 (8/8) 5.6 (4/71) 50 (4/8)

aPercentage of mosquitoes containing virus in their bodies (number positive/number tested)
bPercentage of mosquitoes containing virus in their legs+wings (number positive/number tested)
cPercentage of infected mosquitoes containing virus in their legs+wings (number positive/number infected)
dPercentage of mosquitoes containing virus in their expectorate collected in capillary tubes (numbers positive/number tested)
ePercentage of mosquitoes with a disseminated infection containing virus in their expectorate collected in capillary tubes (number positive/number disseminated)

https://doi.org/10.1371/journal.pntd.0006886.t002

Table 3. Infection, dissemination and transmission rates of BgV in injected (IT) and bloodfed (oral) Cx. sitiens mosquitoes.

Mode of

exposure

Day post

exposure

% Infectiona % Disseminationb % Dissemination

/infectionc
% Transmissiond % Transmission

/disseminatione

IT 8 100 (11/11) 100 (11/11) 100 (11/11) 81.8 (9/11) 81.8 (9/11)

Oral 11 22.2 (2/9) 0 (0/9) 0 (0/2) 0 (0/9) N/A

Oral 13 14.3 (1/7) 0 (0/7) 0 (0/1) 0 (0/7) N/A

aPercentage of mosquitoes containing virus in their bodies (number positive/number tested)
bPercentage of mosquitoes containing virus in their legs+wings (number positive/number tested)
cPercentage of infected mosquitoes containing virus in their legs+wings (number positive/number infected)
dPercentage of mosquitoes containing virus in their expectorate collected in capillary tubes (numbers positive/number tested)
ePercentage of mosquitoes with a disseminated infection containing virus in their expectorate collected in capillary tubes (number positive/number disseminated)

https://doi.org/10.1371/journal.pntd.0006886.t003
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permissive to WNV and MVEV super-infection than mock-infected cells (Fig 3A). Indeed, no

MVEV replication could be detected in BgV infected cells at any time points, while the MVEV

titre increased over time in mock-infected cells. The difference was statistically significant at

48h and 72h with P< 0.0001. Significantly lower titres were attained for WNV in BgV infected

cells at all time points, with P = 0.0003 at 24h, P = 0.0061 at 48h and P = 0.0035 at 72h. This

super-infection interference phenomenon was not observed for RRV (with P = 0.3252 at 24h,

P = 0.1427 at 48h and P = 0.4145 at 72h), suggesting BgV specifically interfered with flavivirus

replication in vitro.

BgV interferes with transmission of WNV in vivo
To examine whether BgV interfered with infection and transmission of pathogenic flaviviruses

in vivo, Cx. annulirostris mosquitoes were injected with either growth medium or BgV

(approximately 220nL at 105 TCID50 IU/mL). Seven to eight days later, the mosquitoes were

offered a blood/virus mixture containing 106 TCID50 IU/mL of WNV. At seven days post-

infection, no mosquito bodies tested positive for WNV in either group (n = 29 mock-injected

and n = 23 BgV-injected), while 15/23 BgV-injected mosquitoes had detectable levels of BgV.

At ten days post-infection, there was no significant difference in the number of mosquito bod-

ies positive for WNV between mock- (10/31) and BgV-infected (8/27) mosquitoes (P>
0.9999), and the titres were not significantly different (P = 0.6019) (Table 4, Fig 3B). Similarly,

there was no significant difference in WNV dissemination rates between the two groups (9/10

mock-injected and 8/8 BgV-injected) (P> 0.9999) (Table 4). However, fewer mosquitoes had

detectable amounts of WNV in their saliva in the BgV-infected group (1/8) compared to the

mock-infected group (6/10) (Table 4), although the difference was not significant (P = 0.0656).

The single BgV-infected mosquito with WNV detected in saliva had a WNV saliva titre at the

limit of detection, (101.97 TCID50 IU/mL), which was lower than the average for WNV-positive

saliva of mock-injected mosquitoes (104.42 TCID50 IU/mL) (Fig 3B).

Discussion

The results from experiments performed in Culex mosquitoes provide evidence that BgV is

likely transmitted and maintained in the environment using a classical arbovirus transmission

cycle. This cycle comprises ingestion of an infectious blood-meal, replication in various tissues

Fig 1. BgV titres in intrathoracically injected (IT) and blood-fed (BF) mosquito bodies and saliva. Error bars

represent the standard deviation and middle bars represent the mean. The results were analysed with a parametric

unpaired t-test. ns = not significant (P> 0.05), � = P< 0.05, �� = P< 0.01, ���� = P< 0.0001.

https://doi.org/10.1371/journal.pntd.0006886.g001
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and transmission via the saliva of the infected mosquito. The localization of BgV in various

mosquito tissues was consistent with the classical model for flavivirus dissemination in mos-

quitoes but in contrast to what we have previously reported for Australian insect-specific flavi-

viruses, which appear to be restricted to the midgut of their mosquito hosts [19, 26]. Despite

Fig 2. Detection of BgV in blood-fed and injected Cx. annulirostris infected with BgV using IHC. The mosquito

sections were immunolabeled using a cocktail of BgV-reactive mAbs which enabled identification of (A) positive

mosquitoes showing presence of BgV antigen in red (arrows) in the midgut epithelial cells and the neuronal cells in the

head ganglia, and negative mosquitoes (B) with no specific signal.

https://doi.org/10.1371/journal.pntd.0006886.g002
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this confirmation that BgV could be part of a classical arbovirus transmission cycle, the rela-

tively low proportion of Cx. annulirostris mosquitoes which could transmit the virus (5.6%)

suggested that Culex mosquitoes were not highly competent vectors of BgV as they are of other

vertebrate-infecting flaviviruses such as WNV or JEV (> 50% transmission rate for both) in

Australia [3, 17, 43]. Indeed, Cx. annulirostris and Cx. sitiens appeared to express a midgut

infection barrier, with less than 25–30% of mosquitoes infected following ingestion of an infec-

tious blood-meal of BgV. Cx. annulirostris did not appear to express a midgut escape barrier,

as all infected mosquitoes had a disseminated infection and 50% of these transmitted the virus.

Although numbers were relatively low, none of the infected Cx. sitiens had a disseminated

infection, suggesting the presence of a midgut escape barrier in this species. Further evidence

for the presence of these various barriers was provided by the results of the IT inoculations,

whereby all mosquitoes from both species possessed a disseminated infection and the majority

Fig 3. Super-infection interference in vitro and in vivo. (A) Viral titres of super-infecting viruses MVEV, WNV and

RRV in C6/36 cells with primary mock or BgV infection. The super-infecting viruses were titrated on Vero cells to

prevent further interference from BgV. ND = not detected. Error bars stand for the standard deviation. The results

were analysed with a parametric unpaired t-test. ns = not significant (P> 0.05), �� = P< 0.01, ��� = P< 0.001, ���� =

P< 0.0001. (B) WNV titres in the bodies and saliva of Culex mosquitoes mock- or BgV-injected, and subsequently

exposed to WNV in an infectious blood-meal. Error bars represent the standard deviation and middle bars represent

the mean.

https://doi.org/10.1371/journal.pntd.0006886.g003
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of these transmitted the virus. The viral titres recovered from the injected mosquito samples

(bodies and saliva) were similar to what has been found for WNV-injected Culex mosquitoes

[26], while the titres in the blood-fed mosquito samples (bodies and saliva) were lower than for

WNV in Culex mosquitoes [26, 43].

We conducted our in vivo experiments with Cx. annulirostris and Cx. sitiens, as these spe-

cies belong to the Cx. sitiens group, which are the only taxonomic group that have yielded

detections of BgV. It is possible that members of other mosquito genera may be more efficient

vectors of BgV and may play a greater role in maintaining the virus in nature. Indeed, the

infection and transmission rates of Culex-associated flaviviruses such as WNV or JEV are

much lower in Aedes mosquitoes (<35% infection; <15% transmission and 27% infection;

25% transmission respectively) than in Culex (>70% infection; >50% transmission and>90%

infection; >50% transmission respectively), and more similar to what was observed for BgV in

Culex [3, 17]. Additionally, the virus may have been present in other genera during the time

these collections were undertaken, but remained undetected. The preponderance for BgV to

be detected only in Cx. sitiens subgroup mosquitoes could be an artefact of the emphasis placed

on processing Culex spp. which are the primary vectors of JEV, during investigations of this

virus in northern Australia [29]. Other genera were discarded and so were underrepresented

in the original study that yielded BgV. Further evidence that BgV may be transmitted by other

mosquito species is provided by the phylogenetic position of BgV in the YFV group, in which

the viruses are thought to be Aedes-associated rather than Culex-associated. Finally, in

immuno-assays with anti-dsRNA mAbs, BgV can only be detected in cells that have been fixed

in 100% acetone, as opposed to our standard fixative buffer with 20% acetone for ELISA,

which has previously been demonstrated for DENV serotypes 1 and 2, indicating that BgV

may share a similar mode of replication with these two Aedes-associated flaviviruses in vitro
[28]. Collectively, this suggests that even though BgV can be horizontally transmitted by Culex
mosquitoes and has only ever been isolated from Culex mosquitoes, it might be preferentially

Aedes-associated rather than Culex-associated. Clearly, further in vivo experiments with other

genera, particularly Aedes spp., are needed to incriminate other mosquito species that could

serve as vectors of BgV.

We attempted to address the underrepresentation of other mosquito genera by screening

an additional 811 archival and recent pools from a wide range of species, collected from a

broad geographical range in Australia and Papua New Guinea. No BgV isolates could be

Table 4. Infection, dissemination and transmission rates of WNV and BgV in Culex mosquitoes primarily mock- or BgV-injected and super-infected with WNV

via bloodfeeding. NT = Not tested.

Primary Virus tested Day post exposure % Infectiona % Disseminationb % Dissemination

/WNV infectionc
% Transmissiond % Transmission

/WNV disseminatione

BgV BgV 7 65.2 (15/23) NT NT NT NT

WNV 7 0 (0/23) NT NT NT NT

Mock WNV 7 0 (0/29) NT NT NT NT

BgV BgV 10 100 (27/27) NT 100 (8/8) NT 87.5 (7/8)

WNV 10 29.6 (8/27) 29.6 (8/27) 100 (8/8) 3.7 (1/27) 12.5 (1/8)

Mock WNV 10 32.3 (10/31) 29.0 (9/31) 90 (9/10) 19.4 (6/31) 60 (6/10)

aPercentage of mosquitoes containing virus in their bodies (number positive/number tested)
bPercentage of mosquitoes containing WNV in their legs+wings (number positive/number tested)
cPercentage of infected mosquitoes containing virus in their legs+wings (number positive/number WNV infected)
dPercentage of mosquitoes containing WNV in their expectorate collected in capillary tubes (numbers positive/number tested)
ePercentage of mosquitoes with a disseminated infection containing virus in their expectorate collected in capillary tubes (number positive/number WNV disseminated)

https://doi.org/10.1371/journal.pntd.0006886.t004

Bamaga virus horizontal transmission by Culex and interference with West Nile virus

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006886 October 24, 2018 13 / 19

https://doi.org/10.1371/journal.pntd.0006886.t004
https://doi.org/10.1371/journal.pntd.0006886


recovered from these pools, despite the tested mosquitoes being from a wide geographical

(Australian states of New South Wales, Queensland, Northern Territory, Western Australia, as

well as Papua New Guinea) and temporal (1973 to 2018) distribution. The low prevalence

observed for BgV in Australasian mosquitoes is not unusual for a vertebrate-infecting flavivi-

rus [44, 45], with many thousands of mosquitoes often yielding a single positive sample only.

This low prevalence is reflective of the intricate virus transmission cycle between specific

amplifying vertebrate hosts and competent mosquito vectors. Such a low number of positive

samples, found only in one mosquito species and one location, Cx. annulirostris from Cape

York Peninsula, indicates a small ecological niche for this virus. It is possible that BgV has a

cryptic vertebrate host found only in certain parts of Australia, which would also fit with its

apparent host-restriction in some vertebrate cells [18]. There could also be a discrepancy

between the optimal amplifying vertebrate host of BgV and the feeding preferences of its opti-

mal mosquito vector, resulting in low incidence rates in Australasian mosquitoes. Indeed, the

most competent mosquito vector species may not include the best BgV amplifying vertebrate

host in its blood feeding patterns. This phenomenon has been shown to potentially reduce JEV

transmission in certain areas, as Cx. annulirostris preferentially feeds on cattle and wallabies,

while the virus is not amplified to sufficient levels in these animals to be transmitted [45, 46]. It

should however be noted that the sample size for each mosquito population tested here was

relatively small. Thus, further assessment of the prevalence of BgV in mosquito species col-

lected in the Cape York region should be undertaken, along with assessment of the prevalence

of BgV-specific antibodies in major vertebrate species in the area, such as agile wallabies, in

order to confirm the primary vector and vertebrate host of BgV. These considerations will help

better understand its ecology, host-restriction, evolution and potential to emerge as a virus

capable of causing disease in humans or other animals.

Considering that flaviviruses have previously been shown to interfere with the replication

of related viruses in vitro and in vivo, and that BgV was isolated in a cohort of samples that also

yielded several other flavivirus isolates, super-infection interference studies were performed

[18, 29]. In our laboratory setting, it was clear that BgV could interfere with the replication and

transmission of pathogenic flaviviruses both in C6/36 Ae. albopictus cells in vitro and in Culex
mosquitoes in vivo. The data generated here demonstrated that primary infection with BgV

completely prevented replication of MVEV in C6/36 cells, strongly suppressed replication of

WNV, but had no significant effect on the alphavirus RRV, suggesting the interference was

specific to flaviviruses. Additionally, it was shown that while BgV did not seem to interfere

with WNV replication or dissemination in Culex mosquitoes, WNV transmission was inhib-

ited in the presence of BgV. Indeed, there was no difference in the number of mosquitoes posi-

tive for WNV or in the WNV titres in the bodies of mock- and BgV-injected WNV-blood-fed

mosquitoes. These results suggested that for BgV, the midgut was not the main site for interfer-

ence. However, it was clear that BgV interfered with WNV after the virus had escaped the mid-

gut barrier, since the number of WNV-positive mosquito saliva and the WNV titre in these

saliva samples were lower in BgV-injected mosquitoes than in mock-injected mosquitoes.

These data were similar to what was found with lineage II insect-specific flavivirus, Nhumirim

virus, interfering with WNV in Cx. quinquefasciatus mosquitoes [47], but differ from what was

found for Australian lineage I insect-specific flavivirus Palm Creek virus, which seemed to

interfere with WNV replication in the midgut epithelial cells of infected mosquitoes [26].

However, it should be noted that in each study, intrathoracic inoculation was used to infect

the mosquitoes with the primary virus, in this case BgV. While it was shown that BgV was

present in detectable levels in the midgut epithelial cells of injected mosquitoes (Fig 2), more

BgV was present in the midgut of mosquitoes orally infected with BgV. This is consistent with

the midgut epithelium being the first cells encountered by a virus in an infectious blood-meal.
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Thus, mosquitoes orally infected with BgV, presumably the natural route of infection, may

provide more resistance to subsequent infection of the midgut. In most instances and in accor-

dance with our in vitro data, reports suggest that flaviviruses do not interfere with the replica-

tion of viruses from other families or genera such as alphaviruses, parvoviruses, or

baculoviruses [48–54]. However, other authors have reported that an interfering interaction

between flavivirus and other virus families such as rhabdoviruses, parvoviruses or alphaviruses

can occur [55–58]. These discrepancies are most likely due to experimental design differences,

such as the virus species used, the order of infections or whether the experiment is a co-infec-

tion or a super-infection. Even though these interactions can happen in laboratory models, in
vitro or in vivo, they may not actually occur in nature, since the prevalence of arthropod-borne

viruses in mosquito populations is quite low, as mentioned above.

In conclusion, we have successfully shown that the flavivirus BgV can be transmitted hori-

zontally by Cx. annulirostris, a member of the Cx. sitiens subgroup, from which all BgV isolates

have been obtained, and thereby be included in a classical arbovirus transmission cycle. We

have also demonstrated that BgV can interfere with Culex-associated WNV transmission in
vivo. Further investigations could include vector competence studies of Aedes mosquitoes for

BgV to draw comparisons with the data presented here, as well as super-infection interference

experiments with Aedes-associated flaviviruses. Future work should also comprise studying

the other side of the transmission cycle: the host-restriction of BgV in vertebrates. Overall, the

presented data contribute to elucidating the ecology of an Australian flavivirus and help to fur-

ther the understanding of mechanisms of interference between flaviviruses in mosquitoes.
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