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Abstract

Parallel evolution, defined as identical changes arising in independent populations, is often attributed to similar selective

pressures favoring the fixation of identical genetic changes. However, some level of parallel evolution is also expected if

mutation rates are heterogeneous across regions of the genome. Theory suggests that mutation and selection can have

equal impacts on patterns of parallel evolution; however, empirical studies have yet to jointly quantify the importance of

these two processes. Here, we introduce several statistical models to examine the contributions of mutation and selection

heterogeneity to shaping parallel evolutionary changes at the gene-level. Using this framework, we analyze published data

from forty experimentally evolved Saccharomyces cerevisiae populations. We can partition the effects of a number of

genomic variables into those affecting patterns of parallel evolution via effects on the rate of arising mutations, and those

affecting the retention versus loss of the arising mutations (i.e., selection). Our results suggest that gene-to-gene hetero-

geneity in both mutation and selection, associated with gene length, recombination rate, and number of protein domains

drive parallel evolution at both synonymous and nonsynonymous sites. While there are still a number of parallel changes that

are not well described, we show that allowing for heterogeneous rates of mutation and selection can provide improved

predictions of the prevalence and degree of parallel evolution.
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Introduction

Documenting patterns of parallel evolution during the adap-

tive divergence of populations or during repeated bouts of

adaptation in populations maintained in the lab is becoming

increasingly feasible. Beyond the fascination for the pattern of

repeatable evolution, an outstanding open question is to un-

derstand which underlying processes are driving the pattern

of molecular evolution during adaptation. Theory makes clear

cut predictions: in the absence of selective interference be-

tween beneficial mutations (the so called strong selection

weak mutation, or SSWM, domain), heterogeneity in muta-

tion rates, and selection coefficients between loci are

expected to have the potential for equal influence on patterns

of parallel evolution (Chevin et al. 2010; Lenormand et al.

2016). In a regime where clonal interference occurs, the rel-

ative influence of heterogeneity in selection coefficients may

increase, however, mutation heterogeneity still has the poten-

tial to play an important role (Bailey et al. 2017). It is known

that mutation rate can vary across the genome (e.g., yeast:

Lang and Murray 2008, 2011; E. coli: Lee et al. 2012), and it is

very clear that selection coefficients vary across the genome,

thus, we expect that in most populations both mutation and

selection heterogeneity will play a role in driving patterns of

parallel evolution, however, the balance of these two pro-

cesses is still not clear. So far, very few empirical studies

have attempted to jointly quantify the relative importance

of mutation and selection in shaping patterns of parallel

evolution in genetic data. One study has explored this in-

directly by quantifying the contribution of these two pro-

cesses in shaping the parallel evolution of heritable traits

that are assumed to be associated with parallel genetic

changes (Streisfeld and Rausher 2011). Recent work by

Bailey et al. (2017) outlines an approach for quantifying

the effects of mutation and selection heterogeneity in

driving parallel evolution in experimental evolution data,

but this alternate approach cannot identify potential ge-

nomic drivers of that heterogeneity, as we do here. Other

previous studies looking explicitly at parallel genetic
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changes have focused on the impacts of either selection

or mutation separately.

Parallel evolution is an identical change in independently

evolving lineages, and the similar process, convergent evolu-

tion, occurs when different ancestral states change to the

same descendant state in independently evolving lineages

(Zhang and Kumar 1997). These kinds of evolutionary

changes are studied across many different levels of biological

organization from nucleotides to genes to pathways and

more. In this study, we focus on parallel evolution at the level

of the gene.

Parallel, along with convergent, evolution has previously

been considered strong evidence of selection. A number of

studies have examined gene-level mutation counts, looking

for levels of parallel evolution that exceed what one would

expect in the absence of selection (Woods et al. 2006;

Caballero et al. 2015; Marvig et al. 2015), according to

some null model, with an aim to identify genes that are under

selection. For example, Caballero et al. (2015) calculated the

probability of instances of gene-level parallel evolution in

whole genome sequences of Pseudomonas aeruginosa re-

peatedly sampled over the course of a year from the sputum

of a cystic fibrosis patient assuming uniform resampling of

�150 mutation events across the �6,000 genes in the ge-

nome. The authors were able to identify 19 different genes

for which there was significant deviation from their null

model, and that pattern was interpreted as evidence for se-

lection acting on these genes. However, this study and other

similar approaches do not account for the possibility of het-

erogeneity in mutation rate from gene-to-gene, a process

that can generate false positives when using “abnormal”

levels of parallel evolution as a means to detect selected

genes.

Others have compared instances of parallel and conver-

gent evolution across species (see Christin et al. 2010 for a

review and examples). These studies also aim to identify genes

under selection by searching for genes that exhibit a higher

than expected number of instances of parallel evolution

according to a specified null model for evolution. Many

cross-species comparative studies report instances of parallel

molecular evolution and readily interpret these as being driven

by positive selection (Jost et al. 2008; Castoe et al. 2009; Liu

et al. 2010; Feldman et al. 2012). However, Zou and Zhang

(2015) show that in this type of analysis the choice of null

model is crucial and suggest that many previously reported

instances of parallel evolution driven by selection could in fact

have resulted simply from mutation biases and mutational

heterogeneity in the absence of selection.

In contrast to studies aimed at identifying selection, other

work has focused on examining how heterogeneity in muta-

tion rate can affect the distribution of mutations across a

genome, and so the probability of parallel evolution. These

studies focus exclusively on either those mutations that are

assumed to be to a first approximation neutral

(e.g., synonymous mutations, Maddamsetti et al. 2015) or

mutations arising in the course of experiments where selec-

tion is minimal (e.g., mutations arising in a mutation accumu-

lation experiment; Ness et al. 2015). On the whole, these

studies suggest substantial gene-to-gene heterogeneity in

mutation rate and this can arguably also generate differences

in the distribution of mutations across the genome (although

studies differ in the factors identified that drive that hetero-

geneity). However, it is not clear what the relative contribution

of mutation rate heterogeneity is when the mutations of in-

terest also have the potential to be under varying degrees of

selection.

In this study, we aim to explore the effects of both muta-

tion and selection in generating the mutations that are ob-

served across the genome. By identifying and quantifying the

processes that give rise to mutations and how those vary from

gene-to-gene, we can then begin to understand and predict

patterns of parallel evolution at the gene-level. To do this, we

propose a framework that explicitly considers drivers of both

selection and mutational heterogeneity. Using both Poisson

and negative binomial regression models, we analyze gene-

level mutation count data obtained from whole genome se-

quencing of a large set of yeast (Saccharomyces cerevisiae)

experimental populations that were adapted in parallel to

identical environmental conditions in the lab (Lang et al.

2013). We choose to work at the gene level with these

data as this is more appropriate than a nucleotide level anal-

ysis given the sparsity of mutations and resolution of genomic

covariates. We find that the best predictor of parallel muta-

tions at the gene-level is simply the length of the gene, and

along with this, a few other genomic covariates—namely the

number of protein domains and the rate of recombination,

and so it is variation in these variables that drives patterns of

parallel evolution in this system.

Models for Identifying Processes
Underlying Parallel Evolution

We are interested in quantifying heterogeneities in mutation

rate and selection, and how these in turn are driving patterns

of parallel evolution, and identifying genomic variables that

predict how the processes of mutation and selection vary

from gene-to-gene. To accomplish this, we need a framework

that can explicitly separate the effects of variation in mutation

rate and variation in selection. We do this by examining sep-

arately the observed synonymous and nonsynonymous muta-

tions, making the assumption (which we then explore) that

gene-to-gene variation in the rate at which synonymous

mutations rise to observable frequencies is driven solely by

variation in the mutation rate per gene, while gene-to-gene

variation in the rate at which nonsynonymous mutations have

arisen may be driven by heterogeneity in both mutation

and selection processes. We describe the number of

mutations observed in gene i during the course of an
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experiment, as Xi ¼ XS
i þ XN

i , where XS
i and XN

i denote the

synonymous and nonsynonymous mutation counts, respec-

tively. We assume these mutations are Poisson distributed

with rates ki
S and ki

N, respectively. For synonymous muta-

tions, this Poisson rate can be modeled as follows:

kS
i ¼ M0l0Lip0 (1)

Here, M0 is a parameter that absorbs both time and popula-

tion size at which the evolution occurred and that is constant

across the genome, l0 is the per-nucleotide mutation rate

that we assume (and check) is constant across the genome,

Li is the length of gene i in nucleotides, and p0 is the proba-

bility of a synonymous mutation rising to an observable fre-

quency in the population (we assume that synonymous

mutations are selectively neutral and so this probability is as-

sumed to be constant across the genome). For nonsynony-

mous mutations,

kN
i ¼ kS

i pi ; (2)

where pi is a scalar that incorporates the effects of selection

on the rate of fixation of nonsynonymous mutations arising in

gene i. Specifically, pi, is a function of the mean selection

coefficient of gene i, si, and under strong-selection-weak-

mutation (SSWM) conditions, pi / si (Gillespie 1984).

Outside of SSWM conditions, in a clonal interference regime,

the reality is more like pi / (si)
c, where c� 1 and increases

with increased clonal interference (Bailey et al. 2017). Thus, we

caution that while predictors of pi identified using this regres-

sion approach are, indeed, predictors of variation in selection,

they may be either linear or nonlinear predictors, depending

on the conditions of the experiment from which data were

obtained. We assume that the mean selection coefficient for

nonsynonymous mutations in a given gene can range from

deleterious, to neutral, to beneficial. The type of data used and

the underlying assumptions are summarized in figure 1.

Given these underlying assumptions about the processes

giving rise to observable mutations in the experimental se-

quence data, we can then use Poisson and negative binomial

(NB) regression to identify potential genomic variables that

significantly explain variation in ki
N and ki

S, and thus ultimately

in the mutation and selection processes from gene-to-gene.

The Poisson regression is used to explore counts of rare events

(i.e., the observed mutations) that have a fixed probability of

being observed, while for a NB regression, the rate of those

rare events is itself a random variable that is gamma-

distributed. A NB regression incorporates an extra parameter

beyond a Poisson rate, known as the dispersion parameter

(here denoted by h), reflecting the amount of underlying var-

iation in the rate of observed mutations from gene-to-gene

and governs the “extra” variance of the NB distribution rela-

tive to a Poisson distribution with identical mean. If there is no

heterogeneity among the rate of observed mutations from

gene-to-gene, the dispersion parameter h goes to zero and

we recover a Poisson regression model. Therefore, the Poisson

regression model is a special case of the NB regression model,

as NB(ki, h) reduces to Poisson(ki) at the limit of h! 0 (see for

instance Zuur et al. 2009). As a consequence, the Poisson and

NB models are “nested” and their relative fit can be com-

pared using a likelihood ratio test when exploring the fit of

both types of regression models in this study.

More precisely, we use the models Xi� Poisson (ki) or Xi�
NB(ki, h), fitting the following regression:

log ðkÞ ¼ constantþ a1A1 þ a2A2 þ � � � þ ajAj; (3)

where k ¼ (k1, . . ., ki, . . ., kn) are the Poisson rates for all n

genes, A1 . . . Aj are the j potential genomic explanatory var-

iables, and a1 . . . aj, the estimated regression coefficients for

those j variables. Thus, in the case of the synonymous muta-

tions, constant ¼ log (M0 p0 l0), A1 ¼ log (Li) setting a1 ¼ 1.

For nonsynonymous mutations, a2 A2þ . . . þ aj Aj¼ log (pi).

Details of the implementation of these models is provided

below.

Materials and Methods

The Data

Evolution Experiment Data

We analyzed data obtained from whole genome resequenc-

ing of forty populations of S. cerevisiae adapted in parallel in

FIG. 1.—Schematic showing how the mutation counts data are gen-

erated and general assumptions underlying these data.
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the lab (Lang et al. 2013). In this experiment, clonal haploid

yeast populations were grown in 128ll of liquid YPD media

and transferred every 12–24 h to fresh media for �1,000

generations (see Lang et al. 2013) for more details on the

experiment protocol). In our analysis, we focus on all detected

genic mutations (718 out of the total 1,020 in the data set)

from forty sequenced populations, that is, all genic mutations

that were able to escape drift and so rise to frequencies of at

least �10% in the populations (mutations below this fre-

quency could not reliably be detected, see Lang et al.

2013). The mutations included in the data set consisted of

SNPs and small indels. Mutations were grouped by gene

across all forty populations and categorized as synonymous

(SYN) or nonsynonymous (NS), that is, those that do not con-

fer amino acid changes, and those that do, respectively.

Comparative Genomics Data

We used a set of orthologuous gene alignments spanning

four distinct yeast species (S. cerevisiae, Saccharomyces para-

doxus, Saccharomyces bayanus, and Saccharomyces mikatae;

available from www.yeastgenome.org/download-data/geno-

mics; Cliften 2003; Kellis et al. 2003) to infer the gene-to-

gene heterogeneity of the substitution rates at synonymous

sites and nonsynonymous sites, hereafter dS and dN, respec-

tively. To do so, we first realigned the gene sequences using

ClustalW (Larkin et al. 2007) on the translated protein se-

quence data and then applied a number of filters to the

data with an aim at removing those gene alignments that

might result in inaccurate codon substitution model predic-

tions. We removed alignments for those genes where sequen-

ces were not available from all four species, alignments for

which at least one sequence had<30% overlap with the one

of the other three sequences, and alignments for which at

least one sequence was <300 bp in length. We then used a

maximum likelihood codon based method (CodeML in the

PAML software package; Yang 2007) to infer dS and dN,

for each gene in our data set. We used a codon table model

(i.e., seqtype ¼ 1; CodonFreq ¼ 3) with a fixed tree topology

(i.e., runmode ¼ 0). A comparison of AICs among alternative

codon-based models indicated this was the most appropriate

model for the data set.

Additional Genomic Data

We included eight additional genomic variables in our analysis

that we expected could have the potential to affect the prob-

ability of a gene to harbor mutations. Our collection of vari-

ables is not meant to be exhaustive, but simply meant to

illustrate the potential for additional genomic information to

improve our predictions of which genes bear mutations across

the genome. For each gene, we consider: gene length, % GC

content, multifunctionality, degree of protein–protein interac-

tion (PPI), codon adaptation index (CAI), number of domains,

level of expression (in the same environment at the evolution

experiment), local recombination rate, and essentiality of the

gene. We expect some of these variables may capture het-

erogeneity in the per-gene mutation rates, for example: gene

length, which likely captures variation in a gene’s mutational

target size, and local recombination rate, which has been

shown to be associated with mutability in yeast (Strathern

et al. 1995; Holbeck and Strathern 1997). We expect other

variables may capture heterogeneity in selection from gene-

to-gene, for example: multifunctionality and PPI, which may

characterize aspects of how pleiotropic a given gene is and so

the level of evolutionary constraint it is under. We expect still

other genomic variables may capture heterogeneity in both

mutation and selection. For example, level of expression of a

gene may be correlated with gene-to-gene variation in selec-

tion as highly expressed genes have been shown to be more

highly conserved, both specifically in yeast (P�al et al. 2001;

Drummond et al. 2005) and as a more general phenomenon

across species (Drummond and Wilke 2008). On the other

hand, level of expression of a gene has also been shown to

be positively correlated with mutability (Ness et al. 2015).

Descriptions of the variables used in this study and sources

from which the data were obtained are provided in table 1.

For the purposes of our analysis, we only used mutations in

genes for which we were able to obtain a full set of comple-

mentary genomic variables (393 of the total 718 genic muta-

tions inLangetal.2013).Thisfinaldatasetdoesnotcontainany

examples of multiple mutations within the same gene on the

same genome and so we consider each mutation to be an in-

dependent mutational event. A data set integrating the muta-

tioncountsoriginallymadeavailableby Langetal. (2013) (from

their supplementary table S1, Supplementary Material online)

and all the genomic covariates that we aggregated for this

study, as well as the gene alignments used for estimating dN

and dS are available on Dryad (doi:10.5061/dryad.329b0m6).

Regression Models

Regression Models and Explanatory Variables Tested

We used the Poisson and negative binomial regression models

described in the “Models” section above to examine how

much of the variation in our explanatory variables could ac-

count for patterns of variation in mutation counts per gene.

We used the “glm” and “glm.nb” functions in R (R

Development Core Team 2014) to implement these models.

We fit a series of models to synonymous and nonsynonymous

mutation count data separately. To start, we fit the synony-

mous mutations (model MS), testing our assumptions that

rate of observed mutations per gene (totaled over all 40 pop-

ulations in the data set) is proportional to number of nucleo-

tide sites in the gene (Li), and the per nucleotide mutation rate

does not vary significantly across the genome—that is, a

model assuming l0 is a fixed parameter (Poisson regression)

fits the data better than a model where l0 for each gene is
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drawn from a gamma distribution (NB regression). We also

tested for significance of each of the genomic variables in-

cluded in this study by adding each of them to the Poisson

model and checking if the model fit is significantly improved.

After these assumptions were checked, we moved on to fit

the nonsynonymous mutation data (MN), testing the 11 ge-

nomic variables listed in table 1. We then examined an alter-

nate model (MPC
N ), fitting the nonsynonymous mutations

using the principal components of the 11 genomic variables

in place of the raw variables. The reason we explore this

model is that many genomic variables tend to be correlated

(for correlations between the particular variables used in this

study, see supplementary table S1, Supplementary Material

online), and one approach to reducing potential problems

with collinearity is to transform the raw variables into their

principal components and use the resulting uncorrelated com-

posite variables for the regression analysis. We performed a

principal component analysis on 11 genomic variables using

the “prcomp” function in R to obtain 11 principal compo-

nents (PCs).

Model Selection and Significance of Variables

For each variable and parameter of interest, we tested signif-

icance by comparing versions of the models with and without

that variable or parameter of interest through a likelihood-

ratio test (LRT). Significance testing for LRTs was done using

permutation tests instead of relying on asymptotic distribution

of the LRTs. Permutation was performed by resampling the

mutation data, refitting the models with and without the

genomic variable or parameter of interest and then calculat-

ing the LRT of those refitted models. This procedure allowed

us to approximate null distributions and obtaining P values by

calculating the frequency of permutations that resulted in a

likelihood-ratio greater than or equal to the true observed

value. Variables found to significantly improve model fit

were retained in the final “best” model. We choose to test

significance using permutations given that asymptotic results

on the distribution of the likelihood ratio test may break down

as the reduced model—the Poisson regression—lies at the

boundaries of the parameter space for h, included in the NB

regression (see for instance Self and Liang 1987). In practice,

1,000 permutations were used to approximate the null and

obtain P values on each variable (more permutations might be

required if needed to approximate P values that are much

smaller than 10�3).

The two nonsynonymous mutation models MN and MPC
N

were compared with each other using Akaike information

criterion (AIC; Akaike 1973), and the proportion of variation

explained (pseudo-R2) was estimated as the R2 obtained from

a linear regression (using “lm” in R) between the observed

and predicted mutation counts for a given model. Note that

this statistic is not used for any formal goodness-of-fit but as

an illustrative way to report how much of the whole variation

is accounted for by any model we fit to the mutation count

data.

Table 1

Genomic Variables Used in This Study

Variable Name Description Reference

dS Number of synonymous substitutions per synonymous site, estimated

from gene alignments of S. cerevisiae, S. paradoxus, S. bayanus, and

S. mikatae (Cliften 2003; Kellis et al. 2003).

Estimated for this study.

dN/dS Number of nonsynonymous substitutions per nonsynonymous site,

estimated from S. cerevisiae, S. paradoxus, S. bayanus, and S. mikatae

(Cliften 2003; Kellis et al. 2003).

Estimated for this study.

Gene length (L) The number of nucleotides. (Cherry et al. 2012)

% GC content (GC) Percentage of nucleotides in the gene sequence that are either guanine

or cytosine.

(Cherry et al. 2012)

Multifunctionality (multifunc) Number of different GO slim categories assigned to a gene. (Cherry et al. 2012)

Degree of protein–protein interaction (PPI) The number of physical interactions reported by BioGRID (Stark 2006). (Koch et al. 2012)

Codon adaptation index (CAI) A measure of bias in the usage of synonymous codons, based on a

comparison between codon frequencies in the gene and frequencies

observed in a set of highly expressed genes (Sharp and Li 1987).

(Koch et al. 2012)

Number of domains (num.dom) The number of regions that Pfam (Punta et al. 2012) has identified as

domains in the protein sequence of each gene.

(Koch et al. 2012)

Level of expression (expr) A measure of mRNA level for each gene when grown in standard lab

conditions.

(Holstege et al. 1998)

Local recombination rate (r) Mean recombination rate for a given gene calculated from recombination

rate estimate at 0.5 kb intervals using LDhat (McVean 2004).

(Illingworth et al. 2013)

Essential genes (essential) A true/false indicator variable denoting whether or not a gene is essential,

based on growth assays of deletion strains.

(Winzeler 1999)
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Predicting the Degree of Parallelism

We used the resulting best-fit parameters and distributions

from the regression models to simulate mutations for 40 pop-

ulations and calculated the mean proportion of shared genes

bearing mutations for all pairwise combinations of those 40

populations using the Jaccard Index, JG1;G2 ¼ jG1\G2j
jG1[G2j

� �
. This

measure of parallelism has been used in a number of previous

empirical comparisons (Wong et al. 2012; Bailey et al. 2017).

We compared the simulated distribution of J values to the

distribution calculated from the real data set in order to assess

the accuracy of the regression models in predicting the degree

of parallel evolution in this system. This can be used as a

predictive check for our model.

All statistical analyses were implemented in R (R

Development Core Team 2014) and an example script for

implementing our model framework and hypothesis testing

is available on Dryad (doi:10.5061/dryad.329b0m6).

Results

The Data

Mutation Counts Data

We used experimental data comprising all mutations detected

at a frequency over 10% in the forty evolved S. cerevisiae

populations described in Lang et al. (2013). The mutations

contained in this data set include many instances of parallel

evolution at the gene level that cover a range of biological

processes, the most common being negative regulation of Ras

(part of a glucose signaling pathway; Santangelo 2006), cell

wall biogenesis/assembly, and mating (see table 1 in Lang

et al. 2013 for a comprehensive summary). After removing

genes for which we had incomplete or unreliable data (see

Materials and Methods), we were left with 2,891 genes out of

a total of 6,603. The filtered data set contained 357 non-

synonymous mutations distributed across 267 genes, and

58 synonymous mutations distributed across 57 genes. The

genes removed by our filtering rules had disproportionately

more mutations compared with those genes that were

retained in the data set (v2 ¼ 50.57, df ¼ 1, P< 0.001).

This is not unexpected as highly divergent genes are more

likely to be filtered out due to alignment issues, and it is not

surprising that highly divergent genes would tend see more

mutations than average, whether it be as a result of mutation

and/or selection mechanisms. This bias in the filtering means

that our results are likely conservative in terms of detecting

significant relationships between long-term (from compara-

tive genomics data) and short-term (from experimental evo-

lution data) measures of divergence.

Genomic Variables

We used codon substitution models comparing four yeast

species to estimate dS and dN/dS for each gene. Estimates

for dS ranged widely, from 0.21 to 68.7, however, the vast

majority of dS estimates (�95%) were <4. Estimates for

dN/dS ranged from 0.00010 to 0.43, and these values are

weakly negatively correlated with dS (r ¼ �0.043,

P¼ 0.021). We collated and/or calculated nine other genomic

variables with the potential to affect the mutation and selec-

tion processes in this system and estimated correlation coef-

ficients between all pairs of explanatory variables used in this

study (supplementary table S1, Supplementary Material on-

line). While the correlations between these variables tend to

be quite weak, many are, in fact, significant due to the large

number of observations in the data set.

Mutation Counts Analysis

Synonymous Mutations

We used regression models to test our assumption that gene-

level mutation rate can be adequately described as simply

being directly proportional to gene length. Restricting the

data to the synonymous mutations, we compared Poisson

regression models with and without gene length included

as an explanatory variable (MS0.P: kS ¼ constant and

MS1.P: kS ¼ constant�(Li)a1, respectively), and a Poisson re-

gression model where rate is restricted to be directly propor-

tional to gene length (i.e., MS2.P: kS ¼ constant�Li). We also

compared with negative binomial versions of these model to

look for the possibility of additional unexplained variation in

the rate k. A summary of the results of these comparisons is

shown in table 2. Model MS2.P was the best model according

to a comparison of AICs. The fits of these models to the dis-

tribution of synonymous mutation counts per gene are visu-

alized in figure 2A. We also compared a series of Poisson

models, each containing one of the genomic variables in-

cluded in this study (see supplementary table S2,

Supplementary Material online). Two variables do significantly

improve model fit—dN/dS and CAI, but very modestly, help-

ing to explain only 0.24% and 0.11% of the total variance,

respectively. Taken together, these tests suggest that the

assumptions of neutral selection at synonymous sites and a

constant mutation rate across nucleotides are reasonable sim-

plifications for these data.

Table 2

“MS” Models Testing Assumptions with the Synonymous Mutation Data

Model Log-lik. No. param. AIC

MS0.P: Pois (kS ¼ constant) �283.0 1 568.2

MS0.NB: NB (kS ¼ constant, hS) �283.0 2 569.9

MS1.P: Pois (kS ¼ constant � La1

i ) �273.9 2 551.8

MS1.NB: NB (kS ¼ constant � La1

i ; hS) �273.9 3 553.8

MS2.P: Pois (kS ¼ constant�Li) �274.0 1 549.9

MS2.NB: NB (kS ¼ constant�Li, hS) �274.0 2 551.9

NOTE.—Log-likelihoods and AIC values are provided. The best model as deter-
mined by the lowest AIC with the fewest parameters is MS2.P.
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Nonsynonymous Mutations

We fit regression models to the nonsynonymous mutation

data, including eleven genomic variables, trying to identify

which of those variables could significantly explain variation

in the number of observed mutations per gene (totaled over

all 40 populations in the data set). We found that gene length

(L), number of domains in the encoded protein (num.dom),

and recombination rate (r) were significant in our model (see

model MN.NB in table 3).

When we fit regression models using the principal compo-

nents of the genomic variables in place of the raw variables,

we found that only a single principal component, PC10, was

significant in the model (see model MN.NBPC in table 3). PC10

is fairly evenly loaded with a number of genomic variables (see

fig. 3), however, the three significant genomic variables from

MN.NB (L, num.dom, and r) are among the variables more

heavily loaded on PC10, so the two models seem to be

roughly in agreement. Further, these models both explain

�16% of the variance (as calculated from pseudo-R2 esti-

mates, see Materials and Methods). A comparison of

Poisson and negative binomial regression models, as well as

models including the raw genomic variables versus the trans-

formed principal component variables, suggests that the best

model for these nonsynonymous mutation count data is a

negative binomial regression using the raw genomic variables

(see AIC values in table 4). The fits of these models to the

A B

FIG. 2.—Distribution of (A) synonymous and (B) nonsynonymous mutations per gene (totaled over all 40 populations in the data set) and predicted

model distributions from M0.P (gray circles), M1.P (black points), M2.P (green triangles), and MN.NB (blue squares), and MN.NBPC (orange diamonds).

Table 3

“MN” Models Parameter Estimates (constant, a1, a2, etc.) and P-values for

Those Estimates

MN.NB: NB (kN5constant 3 Li 3 La1

i 3 num:doma2

i 3 ra3

i ; hN)

Estimate P value

kN � L a1¼ 0.4405 0.001

num.dom a2 ¼ �0.4511 0.004

r a3¼ 0.1029 0.041

constant 8.084�10�6 <0.001

hN 0.3806 <0.001

MN.NBPC: NB (kN ¼ constant � Li � exp ðPC10iÞa1 ; hN)

Estimate P-value

kN � exp(PC10) a1 ¼ 0.2984 <0.001

constant 8.846�10�5 <0.001

hN 0.3988 <0.001

NOTE.—Only those variables that significantly improved model fit are included.
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FIG. 3.—Loadings of the 11 genomic variables on PC10—the only

principal component that significantly explains variation in nonsynony-

mous mutation counts. Genomic variables are ordered from largest to

smallest in terms of the absolute value of their loading.
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distribution of nonsynonymous mutation counts per gene are

visualized in figure 2B.

Predicted Parallelism

Using the predicted rates and distributions from the best-fit

regression models for both the synonymous and nonsynon-

ymous mutations (MS2.P and MN.NB, respectively), we simu-

lated mutations for a set of 40 populations and calculated the

Jaccard index (J) as a measure of gene-level parallelism be-

tween all pairs of those simulated populations. We performed

the same calculations with the 40 populations from the real

data. Figure 4 shows a comparison of those J values from the

simulated and real data. While the simulated data from our

model does quite well at capturing the range of J values, it

does not do a great job of capturing the shape of the

distribution.

Discussion

Here, we present a modeling framework to infer what geno-

mic variables may underlie gene-to-gene variation in mutation

rate and intensity of selection. We use these models to pro-

vide evidence that parallel evolution at both nonsynony-

mous and synonymous sites is driven by nontrivial

amounts of gene-to-gene heterogeneity in mutation, se-

lection, and the combination of the two processes. Using

our modeling approach, we identified a number of geno-

mic variables that can significantly improve models pre-

dicting the distribution of mutations observed across

genes in experimentally evolved populations of S. cerevi-

siae (Lang et al. 2013). We are also able to classify geno-

mic variables into those that have affected mutation

counts 1) through their effect on the mutation rate (var-

iables that significantly predict synonymous mutations),

and/or 2) through their effect on the probability of a mu-

tation being either observed/lost due to selection (varia-

bles that significantly predict nonsynonymous mutations).

Out of all the variables tested, we found that gene length

explained the most variation in both synonymous and

nonsynonymous mutation counts per gene—plainly

speaking, longer genes accumulate more mutations.

However, number of domains and recombination also

had significant effects. Below, we discuss in detail these

genomic variables and their potential contributions to the

probability of parallel evolution via the processes of mu-

tation and selection.

Longer Genes Harbor More Mutations

By far, the variable having the largest effect on variation in the

number of synonymous and nonsynonymous mutations ob-

served was gene length. More specifically, gene length posi-

tively affected the rate of mutation at the gene-level, meaning

genes comprising more nucleotides were more likely to har-

bor mutations. This result is not surprising and is in agreement

with analysis of synonymous mutation counts from Lenski’s

long-term evolution experiment with E. coli (Maddamsetti

et al. 2015).

Long-Term Divergence Does Not Predict Short-Term
Mutation Counts

Our model for synonymous mutation counts suggests that

divergence estimates from long-term evolutionary compari-

sons at the species level do not provide insight into expected

mutation counts on the shorter time scale of evolution in the

lab, also in agreement with recent analysis of E. coli data

(Maddamsetti et al. 2015). Maddamsetti et al. found that

their proxy for long-term per gene mutation rate, hS (a

measure of within-species nucleotide diversity), did not

explain gene-to-gene variation in synonymous mutation

counts in their data. The authors argued that horizontal

gene transfer (HGT) is therefore likely a more important

process driving gene-to-gene variation in long-term diver-

gence between naturally occurring E. coli strains, and

since HGT did not occur in their evolution experiment, it

is not surprising that the experiment’s synonymous muta-

tion counts did not correlate with hS. However, rates of

HGT tend to be higher in bacteria, and in particular E. coli,

as compared with yeast and other eukaryotes (Boto

2010). Furthermore, a recent mutation accumulation ex-

periment with the eukaryote Chlamydomonas reinhardtii

showed a positive correlation between a proxy for long-

term mutation rate (hS) and per site mutability (Ness et al.

2015). Thus, it is somewhat surprising that we do not see

a significant relationship between dS and dN/dS and

counts of synonymous and nonsynonymous mutations,

respectively, in our examination of the S. cerevisiae data

used in this study. One possibility might also be that dS

and dN/dS are noisy to estimate at the gene level and that

tends to downplay their predictive power in our analysis of

counts in an evolve and resequence experiment.

Table 4

Log-Likelihoods, and AIC Values for the “MN” Models

Model Log-lik. No. param. AIC

MN0.P: �1,159.9 1 2,321.7

MN0.NB: �1,022.5 2 2,048.9

MN2.P: �1,050.3 1 2,102.7

MN2.NB: �956.6 2 1,917.3

MN.P �1,021.4 4 2,050.8

MN.PPC �1,013.0 2 2,030.1

MN.NB �944.8 5 1,899.7

MN.NBPC �947.9 3 1,901.8

NOTE.—The best model as determined by the lowest AIC with the fewest param-
eters is MN.NB.
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Nonsynonymous Mutation Counts Show Evidence of
Selection Heterogeneity

As expected (Lenormand et al. 2016), we report strong evi-

dence that the distribution of nonsynonymous mutations

across the genome was driven in part by gene-to-gene het-

erogeneity in selection. Of those genomic variables tested, we

found three that were significant predictors of nonsynony-

mous mutation counts, suggesting that those variables may

drive or are correlated with processes that modulate the in-

tensity of selection across genes. The significant variables

were gene length, recombination rate, and number of protein

domains.

We found that gene length predicts nonsynonymous mu-

tation count via selection, over and above its effects on per

gene mutation rate—as estimated from models aimed at

explaining the synonymous mutation count only. While one

might not expect gene length to have direct effects on selec-

tion, we suggest that gene length may show a significant

effect here because it is correlated with other attributes of

the genome that could have important effects on selection,

for example, gene expression levels and multifunctionality.

Because of these correlations, it could be that gene length

acts as a kind of summary variable for these covariates and

other unidentified factors we have not captured in these

models. In fact, it is almost certainly the case that to some

degree all the significant variables in our model summarize

variation from additional unknown factors we have not in-

cluded in our data set.

In contrast to the positive relationship between gene

length and number of nonsynonymous mutations, we also

found that the number of protein domains that a gene codes

for (a variable that is positively correlated with gene length;

supplementary table S1, Supplementary Material online) ac-

tually negatively predicts the number of nonsynonymous

mutations. In other words, the more domains in the encoded

protein of a gene, the fewer mutations that gene is expected

to incur in the course of the yeast evolution experiment ana-

lyzed here. The mechanism behind this effect is not clear, but

certainly protein structure has previously been reported to

have significant impacts on evolutionary rates in yeast

(Bloom et al. 2006) and one can also posit that genes encod-

ing proteins with multiple domains and thereby involved in

more numerous interactions are—all else being equal—more

severely constrained by purifying selection. It is interesting that

this effect can be observed in the course of relatively short

time span (relative to between species divergence times)

through the relative paucity of nonsynonymous mutations

in these genes.

Our analysis also showed that recombination rate is a sig-

nificant predictor of the observed number of nonsynonymous

mutations observed in a given gene in these data. Genes with

higher recombination rates are more likely to bear nonsynon-

ymous mutations. We expect recombination rate to be corre-

lated with mutation, as previous studies in yeast have shown

that recombinational repair of double strand breaks substan-

tially increases the frequency of point mutations in nearby

intervals (Strathern et al. 1995; Holbeck and Strathern

1997). However, it is not clear why regions of the genome

with high recombination rates would be correlated with se-

lection in this data set. The recombination rate data used in

our analysis comes from work that inferred recombination

using crosses of natural yeast populations (Illingworth et al.

2013). The experimental yeast populations in this data set

where propagated asexually so recombination is unlikely to

be directly impacting evolution in this system, but instead

variation in recombination rate must be associated with other

processes that drive selection in this data set. Another non-

exclusive possibility might be the fact that biased gene con-

version might vary from gene to gene and also—like

selection—affect the probability of detecting variants in

evolve and resequence experiments. However, if this was

the case, we might expect GC content to be a significant
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predictor of both synonymous and nonsynonymous muta-

tions in our models, and it is not (S: P¼ 0.125, NS:

P¼ 0.221). We might also expect to see a bias toward GC

in the observed mutations, however, this was not the case—

only 33% of the SNPs in this data set were a change to G or C.

Factors Driving Mutation and Selection Are Complex

It is difficult to obtain any additional insights from models that

include principal components of the genomic covariate data,

however, there is at least some level of agreement between

those variables that are significant (i.e., length, recombina-

tion, and number of domains) and ones that are heavily

weighted in PC10—the principal component that was found

to be significant (see fig. 3). The local properties of the ge-

nome do appear to drive some heterogeneity in the selection

processes, and in turn, shape the patterns of parallel evolu-

tion, however, individual effects that can be ascribed to indi-

vidual variables are not easy to parse out.

We want to stress that while we were able to identify a

number of factors affecting the count of mutations observed

in this evolution experiment data set, the total explained var-

iance is still low: 1% and 16.0% in the synonymous and

nonsynonymous models, respectively (calculated from

pseudo-R2 estimates of the “best” models, see Materials

and Methods). While the models do capture the general dis-

tribution of mutation counts (fig. 2) and so the degree of

parallel evolution, accurately predicting on which genes those

mutations will fall is still very difficult. This is not surprising

given the amount of stochasticity involved in both the origin

of new mutations and their evolutionary fate through drift

and selection. A clearer picture might emerge when using

our modeling approach in a meta-analysis approach where

several evolve and resequence experiments are considered

together (see Bailey et al. 2017 for a similar approach on

summary statistics of the amount of parallel evolution at the

gene level across a wide range of experimental studies in yeast

and bacteria).

While we do find a number of genomic variables that sig-

nificantly affect the distribution of mutations across the ge-

nome, it is noteworthy that these models are still unable to

capture the more extreme patterns of parallel evolution ob-

served in this data set. For example, one gene (IRA1) saw

mutations in over 50% of the populations sequenced in this

experimental data set (discussed in more detail in Lang et al.

2013). Such a mutation count is completely out of the range

of likely outcomes predicted by our models. Some of this

discrepancy may be because of the simplifying assumptions

made about the process of selection. Our framework models

the process of mutation and its heterogeneity but while we

account for the fact that newly arising mutations may have

different probabilities of reaching an observable frequency,

the modeling of that process could be made more precise

by incorporating an explicit underlying distribution of fitness

effects of new mutations at each gene. Incorporating a selec-

tion process that allows for different amounts of both positive

and negative selection, as well as further details about the

selection pressures in the particular environment of inter-

est—something we do not consider at all in this study—

would likely improve prediction for some of these more

extreme events.

It is also important to note that the methods used in this

study are focused on parallelism in SNPs and small indels.

While this focus is appropriate for the data set used here, it

may not be appropriate for other systems. For example, in an

experimental evolution study with E. coli, (Tenaillon et al.

2012) saw that much of the parallelism seen between pop-

ulations was the result of IS elements and large scale duplica-

tion and deletions. It may be important to try to account for

this more diverse range of mutational event types when trying

to identify the drivers of parallel evolution other systems.

Can we use this modeling framework to predict parallel

evolution? To some degree, yes—the measures of parallel

evolution between populations simulated using our model

predictions span a similar range to those calculated from

the real population data (see fig. 4). However, while this con-

gruence suggests, we are on the right track, the shapes of the

real and simulated distributions are still quite different. For

example, there is, on an average, more parallelism between

the real populations compared with populations simulated

from our models, and in particular, there seems to be a sub-

stantial discrepancy between the number of real population-

pairs and simulated population-pairs that have a low level of

parallelism (e.g., note the difference between real and simu-

lated when J ranges from 0.025 to 0.05 in fig. 4B). This is

further evidence suggesting that although our current models

may be useful to some extent, we are still missing some im-

portant factors driving heterogeneity in mutation and selec-

tion across these genomes.

Advantages of This Regression Framework

Relying on the assumption that synonymous mutations are

selectively neutral (which does appear to be appropriate for

these data), the regression models we use in this study allow

us to distinguish between genomic variables influencing the

observed distribution of mutations across a genome through

their potential effects on both gene-to-gene heterogeneity in

mutation rate and gene-to-gene heterogeneity in selection.

The great advantage of this is that it allows us to begin to

break down the importance of these two processes in shaping

patterns of parallel evolution we see and move closer to the

goal of predicting which genes will be involved in evolution

when organisms adapt to new environments. It will be inter-

esting to apply this model framework to other data sets of this

type, as they become available, to see how general these

patterns are across different organisms and selection environ-

ments (Bailey and Bataillon 2016).
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Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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