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Abstract

We describe a novel and practical activity recognition system for dynamic and complex medical 

settings using only passive RFID technology. Our activity recognition approach is based on the use 

of objects that are specific for a given activity. The object-use status is detected from RFID data 

and the activities are predicted from the statuses of use of different objects. We tagged 10 objects 

in a trauma room of an emergency department and recorded RFID data for 10 actual trauma 

resuscitations. More than 20,000 seconds of data were collected and used for analysis. The system 

achieved a 96% overall accuracy with a 0.74 F-score for detecting use of 10 common resuscitation 

objects and 95% accuracy with a 0.30 F Score for activity recognition of 10 medical activities.
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I. Introduction

We present a novel approach for activity recognition in fast-paced and team-based clinical 

work. Activity recognition in medical settings has been challenging due to potential 

interference by tracking devices, privacy concerns, and environmental limitations. Trauma 

resuscitation, the initial management of critically injured patients in the emergency 

department, is a complex process performed by a medical team under time pressure. 

Providing real-time decision support in trauma resuscitation requires strategies for tracking 

workflow and alerting teams to errors. Our work has focused on activity recognition as a key 

component in developing these strategies.

Previous work on activity recognition has used a range of techniques, including computer 

vision for identifying body posture, movement, and location related to different activities [1]

[2]. Most previous approaches, however, are not practical in clinical settings. The use of 

RGB cameras can lead to privacy concerns, visual occlusion, and problems caused by 

variable illumination. Active wearable sensors require batteries and may hinder work. To 

address these limitations, we developed an activity recognition approach based on detecting 

object use. It relies on a common finding that an object or a combination of objects are 
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related to specific activities (e.g., a thermometer is used only for measuring temperature). By 

tracking object use, our method allows activity recognition without cameras or wearable 

devices.

Our system accomplishes activity recognition in two steps. First, the use status of different 

objects is determined based on the RFID information, such as signal strength. Second, 

activities are predicted based on the use status of objects. For object-use detection, we used 

small, inexpensive, battery-free passive RFID tags attached to medical objects and fixed 

reader antennas. We placed tags on 10 object types commonly used in trauma resuscitation. 

Data from these tags were collected by eight RFID-reader antennas installed in the trauma 

room in the emergency department of a trauma center. By reviewing videos, medical experts 

of our team coded object-use data and a synchronized medical activity log from trauma 

resuscitations. We used these data to build our activity recognition model.

We have tested our approach using data from actual trauma resuscitations. Based on our 

experiments, the system achieved an average accuracy rate of 96% for detecting 10 different 

object types in 10 trauma resuscitations, with an average F score of 0.74, and a 95% 

accuracy rate for 10 resuscitation activities with an F-score of 0.30. Our system has the 

potential to achieve performance comparable to video-based systems, and can serve as a 

prototype for RFID systems in similar domains. Our contributions to pervasive computing 

are:

1. An object-use-based activity recognition in a dynamic and crowded medical 

setting that does not require human input or any wearable devices.

2. Object tagging strategies and features combinations for object-use classification.

3. System implementation and evaluation in a real-world setting using real-world 

cases.

II. Related Work

A. Object-Use Detection

Object-use detection or human-object interaction has been studied in several areas, including 

computer vision, sensor networks, and machine learning. Past approaches for detecting 

object use, however, have limited application to the unique environment of the trauma room. 

Computer vision largely relies on RGB or RGB-D cameras to identify objects and estimate 

human-object interaction based on body posture or hand gesture. This approach has been 

used in settings such as daily living environment and sports [3], Illumination problems, 

occlusion, camera resolution, identification of small objects, and privacy concerns limit the 

applicability of this approach in trauma resuscitation.

Approaches for human-object interaction detection in complex and crowded environments 

rely on wearable sensors, which may be limiting in a clinical setting [4][5][6]. Although few 

studies have addressed activity recognition or object-use detection in medical settings, 

passive and non-intrusive sensors have been used for tracking clinical tasks.[7]. Recent work 

[8] has used wearable sensors for recognizing surgery phases achieving satisfactory 

performance. Wearing and configuring wearable sensors, however, can be time consuming 
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and inconvenient. Object-use detection and activity recognition have been evaluated in 

simulated trauma resuscitations using passive RFID tags and fixed antennas[9][10]. The 

advantages of ultra-high frequency (UHF) passive RFID systems include the use of fixed 

antennas and small size, battery-free tags that do not hinder work, capacity for use in 

dynamic environments, and cost efficiency. This previous system, however, was only tested 

in simulated resuscitations, which are less complex and less dynamic than actual events [10]. 

To make our system operational in actual resuscitations, we designed new tagging strategies 

for objects varying in size, shape and position. In addition, we implemented, tested, and 

evaluated combinations of features used for classification in prior work [9][10][11][12] and 

selected six features for our system.

B. Activity Recognition

Activity recognition has been based on features such as location, body posture, and work 

role, using video systems and other sensors [13][14]. In trauma resuscitation, posture and 

location of personnel are similar for most tasks and cannot be used to distinguish activities 

(e.g., leaning over the patient while establishing intravenous access, drawing blood or 

listening to breath sounds). Many activities, however, can be recognized by the objects being 

used to perform them, such as a thermometer for measuring temperature. For this reason, we 

focused on objects that are specific to medical activities.

Recent research has suggested that activities can be predicted based on object-use 

information [15][16]. Prior work, however, has focused on experimental settings and 

assumed that any manipulation signifies actual object use [15][16]. This assumption is often 

not observed outside of experimental setting where objects may be manipulated without 

being purposefully used for an activity. For example, a nurse holding a blood-pressure bulb 

may be testing the equipment rather than measuring blood pressure. The complexity of real-

life scenarios increases the difficulty of activity recognition. Because determining if an 

object is used for its intended purpose based on passive RFID is challenging, we leveraged 

the fact that some objects are consistently used together. These combinations of used objects 

helped us make more reliable prediction of current activities.

III. Object-use Detection

A. Data Collection

We collected RFID data in a trauma room using two Alien 9900+ readers (with 4 ports) and 

8 Alien ALR-8696 antennas (Fig.1). The RFID readers were mounted inside the ceiling. 

Antennas 1 to 7 were mounted on the ceiling, facing down, and Antenna 8 was mounted on 

the wall, facing downwards at a 45-degree angle. This arrangement ensured that all 

equipment were covered by at least two antennas. The RFID readers and the computer were 

connected via a router mounted inside the ceiling. To avoid interference among nearby 

antennas, we configured the system to activate a pair of antennas on the opposite sides of the 

room for 1-second each. Because continuous use of the RFID readers caused the hardware to 

overheat, an automatic approach was needed to start the readers only when needed. To 

address this issue, we installed a Honeywell AUROR passive infrared sensor (PIR) (Fig. 1) 
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to monitor movement in the trauma room. If motion is detected, the PIR sensor signals the 

RFID system to start recording and stop recording after no motion is detected.

Both RFID readers were set to collect data with maximum power and sensitivity. The 

collected data were written into a file using the format: [timestamp, reader IP, reader port, 

RSSI]. Each file name was based on timestamp when the RFID reader was activated to allow 

synchronization between the recorded RFID data and the ground-truth data. The ground 

truth was manually coded by medical experts using videos of trauma resuscitations. We 

performed two types of ground-truth coding for each case. The first type was object-use 

ground truth, which contained information about the start and end time of object use, and the 

object name. We also noted whether the object was in actual use or manipulated (i.e., being 

relocated), and if manipulation was related to medical task (Table I). The second type was 

activity ground truth, which focused on medical activities performed by trauma team 

members. We recorded the activity name, start time, and end time for each activity, as well 

as the objects used for that activity, if any (Table II).

B. Objects and Tagging Strategies

We used RFID data from actual trauma resuscitations for object-use detection and activity 

recognition. These resuscitations differ from simulated resuscitations used in previous 

studies because actual resuscitations are not scripted and activities vary from case to case [9]

[10]. Collecting enough data for every object in the trauma room would require thousands of 

cases, an impractical requirement given the time-consuming nature of this analysis. For this 

reason, we focused on 10 medical objects (Table III). These objects are used in most trauma 

resuscitations and may even be used multiple times in a single resuscitation, providing 

sufficient data.

The most common way to detect object use in trauma resuscitation with RFID is to place 

tags on objects and predict object use based on the collected RSSI data. Placing tags on 

different objects in a dynamic environment, however, cannot ensure adequate detection. A 

prior study [10] suggested that increasing the number of tags on irregularly shaped objects 

may lead to better performance and that different tagging methods influence object-use 

detection performance. Increasing the number of tags, however, is not a practical solution for 

many objects. For example, the blood-pressure cuff is wrapped onto itself and placed in a 

tray when not in use. As a result, the RSSI signal of the tag placed on the blood-pressure 

cuff in the tray is not only weak, but also similar to the signal when the cuff is wrapped 

around a patient's arm. Other objects, such as the otoscope, are mounted near the head area 

of the patient bed. People in this area may block or reflect the signal between the reader 

antenna and the tag on otoscope. causing a signal strength decrease similar to that when 

otoscope is held in hand and used, leading to misinterpretation of object use.

To address these issues, we devised four different strategies for tagging different objects 

(Fig. 2):

1. Direct tagging: Place one tag on an object. This method was used for small 

objects that are covered by a hand when in use, such as blood-pressure bulb (Fig. 

2(a)).

Li et al. Page 4

IEEE Int Conf RFID. Author manuscript; available in PMC 2018 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Multi-tag tagging: Place multiple tags with different IDs on an object. This 

method was used for larger objects, such as the thermometer, to ensure that at 

least one tag is covered by a hand when the object is in use (Fig. 2(b)).

3. Holder-slot tagging: Place a tag in the slot that holds the object, as opposed to 

directly tagging the object. This method was used for objects placed into a 

holder, such as the otoscope. When the object is in the holder or not used, the 

tag's signal is blocked by the object. When the object is outside the holder, the 

tag is exposed (Fig. 2(c)).

4. Differential tagging: Place one tag inside and another outside an object. When in 

use, one side of the object will be in contact with the patient. The outside tag is 

used as a reference for the inside tag. When the object is not in use, both tags 

share similar RSSI values. When the object is in use, the inside tag touches the 

person’s body and has a much lower RSSI signal compared to the outer tag. This 

method was used for the BP cuff (Fig. 2(d)).

We tagged 10 objects (Table III). Some objects, such as the non-rebreather mask (adult 

NRB), were disposable and new tags had to be placed on replenished objects.

C. Feature Extraction

We used a 4-second time window ([(n−3) :n] seconds) for feature extraction, as the period 

for antenna switching is 4 secs (each reader has 4 ports and each port is set to record data for 

1 sec). A feature vector was generated every second based on a 4-second time window.

Feature selection is critical for accurate classification. We selected 14 features to extract 

from RFID data [9] [10] [11] [12]. Our hardware was not able to provide other useful data, 

such as the phase angle and Doppler frequency shift, so the related features could not be 

used. Not all features worked well for all 10 objects. We ran the permutation feature 

importance calculation provided by the Azure platform for each object and used both 

precision and recall as the evaluation metrics [17]. We then chose these six features with the 

highest importance score:

(1) Peak RSSI: The RSSI value is the most common feature for RFID-based systems. When 

an object is in use, we can expect a significant change in RSSI values due to different 

tagging strategies (Fig. 3(a)): (i) the RSSI drops for direct tagging and multi-tag tagging 

strategies, (ii) it increases for holder-slot tagging; and (iii) the difference between RSSI from 

inner and outer tags increases for the differential tagging strategy.

We used “peak RSSI” in each time window as an RSSI feature, rather than the “average 

RSSI” value feature because, a tag is always closer to some and remoter to other antennas in 

a room with 8 reader antennas. A tag may be too far from some antennas and the RSSI 

values measured by those antennas may be outliers, thereby falsely bringing down the 

average. For objects with multiple tags, we collected the peak RSSI of each tag and averaged 

them as one of the features.

(2) Time: Time is another important and often underused feature for making object use 

predictions. Medical personnel usually follow a routine sequence of procedures for a given 
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case and the use of many objects often falls into certain time windows. We evaluated the 

discriminative power of the time feature by analyzing the RSSI recordings from 10 objects 

during 38 trauma resuscitations. Based on manual video review, we plotted the distribution 

of object use over time for 10 objects (Fig. 3(b)). The black color at each time point denotes 

that the object was used at that time in more than 50% of cases, while gray color denotes the 

use in less than 50% of cases. The timelines in all 38 cases were synchronized with patient 

arrival time as time zero. Our results support the assumption that use of objects follows 

certain time distributions, which can help us predict their use and associated activities.

(3) Visible Antenna Combination: The visible antenna combination isa set of antennas that 

can identify a tag in a particular time window. We implemented the “zoning positioning” 

method [18] to use the visible antenna combination as a feature roughly representing tag 

position. Objects at different locations in the trauma room can be represented by different 

visible antenna combinations. Our experiments showed that the objects used at the right side 

of the patient bed are more likely to be detected by antennas 4,5,7, and 8, while the objects 

used at the left side are more likely to be detected by antennas 1,2,6, and 8 (Fig.1). These 

results confirm our assumption that objects used at different positions will be detected by 

different antenna combinations.

In our experiments, we used an eight-digit binary number to represent 8 antennas installed in 

the trauma room. If a tag was visible to antenna i, we placed a “1” at the ith digit of the 

binary number a value of “0” if not. Finally, we converted the binary numbers into decimal 

numbers and used them to represent the visible-antenna-combination feature.

(4) Spearman Rank Correlation Coefficient (SRCC): The Spearman Rank correlation 

coefficient is defined as the linear correlation coefficient of the ranks. We divided the RSSI 

data recorded in each 4-second time window into a two-second left window (L) and a two-

second right window (R). Because the reading rate changes rapidly, we interpolated the data 

in L and R to ensure that they had the same length w. Our hypothesis was that when an 

object is not used and is stationary, the RSSI data in the L and R windows should be similar. 

When the object is in use, the tag will be occluded by a hand and the signal partially 

reflected or absorbed by the human body. As a result, the RSSI in the left and right windows 

for an object in use should not correlate well with each other. If we use and Li and Ri to 

denote the ith RSSI value in left and right windows, the SRCC was calculated as [19]:

ρ = 1 −
6 ⋅ ∑i = 1

w Li − Ri

w ⋅ w2 − 1

(5) Entropy: Entropy is a measure of uncertainty and has been used as a feature for RSSI-

based classification [11]. When an object is not in use, the entropy will be small due to small 

variance. When an object is in use, the uncertainty of the data grows. We start by dividing 

the RSSI range into N bins with equal bin length or BL(BL = 100 in this paper); for each 

object at each time window, RSSImax and RSSImin denote the maximum and minimum 

RSSI values, and the total number of bins, N =[(RSSI,max–RSSImin)/BL]. Using the number 
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of RSSI values in the ith bin, xi, we estimated the probability of RSSI values in the ith RSSI 

interval as pi = xi ∑i = 1
N xi. The discrete entropy was calculated as:

Entropy = − ∑N
i = 1pi ⋅ log pi

We calculated the entropy of RSSI for different objects using data from actual resuscitations. 

The calculation results confirmed our hypothesis that the RF signal is more randomly 

distributed when people are present or use objects for work. The entropy becomes higher 

when object is in use (Fig. 3(c)).

(6) Dominant Frequency: The dominant frequency of sensor signal has been previously 

used for activity classification of data from wearable devices [12]. We hypothesized that the 

dominant frequency of received RSSI data will be low for stationary objects as the RSSI 

values for motionless tags that deviate less than those of tags in use or in motion. When an 

object is in use, the RSSI is unstable, leading to higher dominant frequency because of tag 

movement and signal occlusion by the person holding the object (Fig. 3(c)).

For object-use detection, we constructed a feature vector for each of the 10 objects based on 

these two observations:

1. In the trauma room, all objects are clustered in a small area. When people use an 

object, their body may interfere with tag signals from other objects. The changes 

in signal strength of other objects may help with object-use detection.

2. Some activities are performed using more than one object, e.g., measuring blood 

pressure requires blood-pressure cuff and bulb. Using RFID data from several 

objects allows better detection of individual objects during multi-object 

activities.

For each of the 10 objects, a feature vector consisted of the six features, which were then 

used for object-use detection:

RFID_ Feature_Vector = Time, Peak_RSSIobj1:obj10,

Visiable_Antenna_Combinationobj1:obj10,

SRCCobj1:obj10, Entropyobj1:obj10,

D. Object-Use Estimation

We treated the RFID-based object-use detection as a binary classification problem. We used 

the Microsoft Azure Machine Learning toolbox in our experiments [20]. To train the model, 

we used more than 20,000 seconds of raw RSSI data recorded in 10 actual trauma 

resuscitations. Medical objects were used only for a fraction of time relative to the entire 

resuscitation process (Table IV). As a result, instances of object use versus not-use are not 

equally represented in the RSSI data. Randomly selecting 70% of these data would not 

ensure sufficient number of examples for model training when objects were used. By 

referring to the ground-truth data, we randomly selected 70% of the data when an object was 
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in use and 70% of the data when an object was not used. We then extracted features from 

these training subsets and used the remaining 30% of the data to test the model. Using this 

semi-random selection, we ensured balanced representation of both in-use and not-in-use 

classes in the training data.

IV. Activity Recognition Based on Object Use

A. Activity Definition

The 10 objects that our system tracked were associated with 10 medical activities (Table V). 

The activities in trauma resuscitation can be classified based on the overall goal being 

achieved by the activity such as airway control, assessment of breathing, and circulation 

control. Each goal is accomplished with several resuscitation activities. For example, airway 

control includes activities such as “relieve airway obstruction” and “intubation.” A 

resuscitation activity can be further divided into several elementary tasks. For example, the 

task “ear exam” consists of visual examination of the outer ear and otoscope examination of 

the inner ear. It is often difficult to distinguish elementary tasks (e.g., left versus right ear 

examination) based on RFID data. For this reason, in this paper we focused on recognizing 

resuscitation activities (Table V).

B. Activity Recognition

Previous research on activity recognition has focused on daily-living tasks such as meal 

preparation or process-phase detection in the operating room [15] [21]. Little research has 

addressed detailed activity recognition in a highly dynamic teamwork, such as trauma 

resuscitation [9][10]. Prior research has suggested that object-use status can be used for 

activity recognition, by assuming that an activity is performed when a related object is 

detected as used [10]. This assumption, however, does not always hold true during 

resuscitation. When we reviewed the recorded resuscitations for ground truth data, we found 

that a person might manipulate an object without performing the actual task. For example, 

people may relocate an object or prepare it for future work activity. People may also hold 

objects for extended time without meaningful interaction. For these reasons, we divided the 

types of human-object interaction into three categories (Table IV):

1. Object in use: The object is used for its intended work purpose of performing a 

specific task.

2. Object in task-related motion: The object is relocated from its storage place or 

prepared for future use.

3. Object in task-unrelated motion: The object manipulation is not related to any 

task, e.g., fiddling with the object.

We also found that several objects could be used together to complete a task, such as blood-

pressure cuff and bulb to measure blood pressure. At the same time, other people may use 

other objects for different tasks or interact with objects without performing any task. It is 

unlikely, however, that relocation and accidental manipulation will follow any regular 

pattern for task-related use of multiple objects. To detect when an object is used for task 
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performance, we use the combination of use-status of related objects. Manipulation of 

objects that were not related to tasks would appear as “noise” that needs to be addressed.

We treated activity recognition as a classification problem in which object-use detection is 

indicative of activity performance. The object-use status (in-use vs. not-in-use) of all 10 

object types was treated as features, and classifiers made activity recognition predictions. We 

generated a feature vector every second based on object manipulation type as follows:

Object_Feature_Vector = obj1, obj2, …, obj10

where obji denotes the type of manipulation for ith object. We used obji =1 for objects in-use 

and obji, =0 for not-in-use.

To train the activity recognition model, we used the same train-test split of data as before for 

training the object-use detection model. This method ensured that the testing data for object-

use detection was not used as training data for activity recognition, reducing the likelihood 

of over-fitting. We used the object-use status of all 10 object types as a feature for activity 

recognition, and chose a commonly-used Random Forest as our classifier [9]. We did not use 

HMM, which is also commonly used for a similar purpose, because we did not have enough 

data to train the transition matrix. Microsoft Azure cloud computing platform was used for 

classification. A classifier was trained for each activity.

C. System Architecture

We used a two-step approach to medical activity recognition. We first detected when objects 

were in use based on RFID data and then made activity predictions based on the type of 

object manipulation for all 10 objects. To test the system performance, we semi-randomly 

selected 70% and 30% as training and testing data, and repeated the experiments 10 times 

with different seeds to achieve random selection. After the classifier model was trained, 

activity-recognition predictions were made as follows (Fig. 4):

1. The RFID system recorded RFID data from 8 antennas installed in the trauma 

room (Fig. 4(a)).

2. Every second the system extracted 6 features based on RFID data and generated 

a feature vector as described in Section III (Fig. 4(b)).

3. The features were used as inputs in the classifiers for object-use prediction (Fig. 

4(c)).

The object-use prediction results were used as input for activity-recognition classifiers (Fig. 

4(d)).

V. Experimental Results

A. Classifier Selection

We compared the performance of three classifiers that can assign different weights to 

different features: Boosted Decision Tree, Random Forest, and Neural Network. We treated 
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object-use detection as a binary classification problem and trained 10 classifiers for 10 

object types. The object-in-use instances were treated as positive samples, and object-not-in-

use instances were treated as negative samples. We used F-measure and accuracy rate to 

evaluate different classifiers. The maximum height of trees in the Random Forest and 

Boosted Decision-Tree were set to 32 to avoid possible overfitting. The Neural Network was 

set to have a single hidden layer. The final decision thresholds for each classifier were set to 

0.5 and were not tuned to produce unbiased results.

Based on our experiments, Random Forest (RF) achieved the best accuracy, precision, and 

F-score for most objects, while Random Forest and Decision Tree (DT) performed similarly 

on recall (Fig. 5). We chose Random Forest as the classifier for object-use detection.

B. Object Use Detection

To test the system performance for 10 object types, we used three evaluation metrics. We 

initially applied F -measure, which does not account for true negative samples. This is 

acceptable when the positive and negative samples are balanced in testing data. Our data, 

however, had an unbalanced ratio of positive to negative samples because many objects are 

used relatively briefly during resuscitations (Table IV). To address this limitation, we used 

the Informedness, Markedness [22] and the Matthews Correlation Coefficient [23], which 

are commonly used to evaluate data with unbalanced samples.

We applied the Random Forest classifier and repeated the procedure 10 times to avoid 

possible sampling bias, and then calculated the average performance scores for different 

evaluation metrics (Table VI). For each test-data selection, we used different seeds to avoid 

having the same random sequence generated by the computer. We also compared our object-

use detection with previous methods for simulated resuscitations [10], and found that our 

system outperformed the other system (Fig. 6). Because prior research used a different set of 

objects, we cannot perform exact comparison. Our system showed improved performance 

due to three factors. First, we designed tagging strategies for different object types to 

improve RSSI data collection. Second, in addition to RSSI-based features, we introduced 

other feature types and combinations. Third, when predicting the use of individual objects, 

we used features of other currently manipulated objects.

C. Activity Recognition

Object-use detection results served as the input for activity recognition. We first applied the 

object-use ground truth of 70% data to train the activity-recognition model. Each activity-

recognition task was treated as a binary classification. We repeated the training and testing 

phase 10 times with different data splits and manually tuned the decision threshold for 

activity prediction. We used the same evaluation metrics as for the object-use detection (Fig. 

7).

Because the activity-recognition stage follows the object-use detection stage, any errors in 

object-use detection will propagate to activity recognition. To evaluate performance of 

activity recognition with erroneous input data, we compared our activity recognition using 

both ground truth (“perfect input”) data about object use and predictions from the use-

detection stage (“erring input”). The comparison showed a decrease of roughly 20% in F-
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Score, Informedness and Markedness for activity recognition when applying object-use 

predictions as input, instead of object-use ground truth.

Only a few studies have addressed the challenge of activity recognition in medical settings, 

limiting comparison of our work with prior work. One study achieved an accuracy of 82.8% 

for process-phase detection with wearable sensors [8]. Our system achieved comparable 

performance with fixed antennas and required no wearable sensors. Another study achieved 

relatively good prediction results in recognizing four phases of the process using manually 

generated “low-level activity” records [21]. Unlike predictions in that study, our predictions 

were based only on RFID data and did not require human input. In addition, instead of 

predicting a few high-level phases of the process, we predicted activities within the phases, 

which is more challenging and can be more useful for real-world applications such as 

workflow tracking.

VI. Conclusion and Future Work

The paper describes a novel system for activity recognition in trauma resuscitation with 

passive RFID tags and fixed antennas. We tested our approach in a trauma room using actual 

cases, and achieved comparable performance with other activity recognition systems that use 

wearable sensors or manually-entered log of low-level activities. Our research showed that a 

passive RFID system can be used for activity recognition in complex and dynamic 

environments.

Despite its many advantages, RFID technology has limitations, and a system only using 

RFID cannot detect every type of activity conducted in the trauma room. For example, RFID 

tags on fluid bags and metal objects produce poor radio signals, making them difficult to 

recognize when an intravenous fluid bag or a laryngoscope are in use. In addition, activities 

performed without using any objects cannot be detected by our current system. Combining 

different types of sensors and making activity-recognition predictions using multiple sources 

[24][25] may lead to a more robust and accurate system. In addition to other sensors, we 

plan to tag more objects to recognize more activities, as well as to use our current system in 

more resuscitations to further evaluate its performance. Our cascade model for activity 

recognition in which the activity prediction relies on object-use prediction is subject to error 

propagation. Erroneous object-use prediction will directly impact the activity recognition 

results. Finally, training separate classifiers for different activities will encounter scalability 

issues for a large number of activities. Applying deep learning methods and training a deeper 

model will be pursued in our future work.
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Fig. 1. 
The antenna configuration in trauma room we used for data collection. Antennas 1 to 7 are 

mounted on the ceiling and facing down; antenna 8 is mounted on the wall and facing 45 

degrees to the ground.
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Fig. 2. 
(a) Direct tagging on BP Bulb. (B) Multi-tag tagging for thermometer. (c) Holder-slot 

tagging for otoscope. (d) Differential tagging for BP cuff.
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Fig. 3. 
(a) Heat map of RSSI features for different tagging strategies. The RSSI decrease when the 

object with direct-tagging and multi-tag tagging is in use, the RSSI difference between inner 

and outer tag increases when the object with differential tagging strategy is in use. (b) A heat 

map for object-use time distribution for 10 objects used in this paper. Darker color means 

that the object was used in more than half of the resuscitations and lighter color means that it 

was used in less than half of the resuscitations. (c) The entropy and dominant frequency 

features for scenarios when object is in use and not in use.
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Fig. 4. 
Activity recognition system diagram. (a) RFID system data collection from 8 antennas 

installed in the trauma room. (b) Six types of features are extracted from RFID data and 

feature vectors are generated. (c) Object-use detection based on extracted features. (d) 

Activity recognition classification based on object-use detection results.

Li et al. Page 17

IEEE Int Conf RFID. Author manuscript; available in PMC 2018 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Evaluation of classifiers on object-use detection using F-Measure.
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Fig. 6. 
Object-use detection evaluation and comparison between our method and previous research 

in a similar application environment [10].
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Fig. 7. 
Activity recognition evaluation results using ground truth as input and using object use 

detection from sensor data as input.
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TABLE I

THE INFORMATION CONTAINED IN OBJECT-USE GROUND-TRUTH DATA.

Key Definition

Start Time The start time of the object being used

Stop Time The end time of the object being used

Object Name The name of the object being used

Manipulation Status Whether the object is being manipulated or being used or otherwise manipulated

Task Relation If the object manipulation was related to or represented use during an activity

Activity The activity for which the object was used
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TABLE II

THE INFORMATION CONTAINED IN ACTIVITY GROUND-TRUTH DATA.

Key Definition

Start Time The time when the activity starts

Stop Time The time when the activity stops

Activity Name The name of the activity in progress

Related Objects Related objects used for the activity
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TABLE III

MEDICAL OBJECTS USED IN THIS PAPER WITH RELATED TAGGING STRATEGIES. BP BULB STANDS FOR BLOOD PRESSURE BULB, 

BP CUFF STANDS FOR BLOOD PRESSURE CUFF AND NRB STANDS FOR NON-REBREATHER MASK.

Object Tagging Strategy

Ophthalmoscope Holder-slot Tagging

Otoscope Holder-slot Tagging

BP Bulb Direct Tagging

Pulse Oximeter Adapter Direct Tagging

Cardiac Monitoring Adapter Direct Tagging

Small NRB Direct Tagging

Adult NRB Direct Tagging

BP Cuff Differential Taggiing

Bair Hugger Connector Direct Tagging

Thermometer Multi-tag Tagging
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TABLE V

ACTIVITIES AND RELATED OBJECTS. BP BULB STANDS FOR BLOOD PRESSURE BULB, BP CUFF STANDS FOR BLOOD 

PRESSURE CUFF AND NRB STANDS FOR NON-REBREATHER MASK.

Activity Code Related Objects

Pulse Ox Placement BA Pulse Ox Adapter

Oxygen Preparation BC Small NRB/Adult NRB

Blood Pressure Measurement BP BP Bulb, BP Cuff

Cardiac Lead Placement CA Cardiac Monitoring Adapter

Temperature Measurement EA Thermometer

Ear Exam EAR Otoscope

Warm Sheet EC Bair Hugger Connector

Mouth Exam M Otoscope

Nose Exam N Otoscope

Pupils Exam PU Ophthalmoscope/Otoscope
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TABLE VI

EVALUATION SCORE FOR SEVERAL OBJECTS. AFOR ACCURACY, P FOR PRECISION, R FOR RECALL, F FOR F-SCORE, I FOR 

INFORMEDNESS, M FOR MARKEDNESS, MCC FOR MATTHEWS CORRELATION COEFFICIENT, BP FOR BLOOD PRESSURE, 

and NRB FOR NON-REBREATHER MASK.

A P R F I M MCC

Ophthalmo-scope 0.99 0.22 0.50 0.31 0.49 0.22 0.33

Otoscope 0.97 0.73 0.73 0.73 0.71 0.71 0.71

BP Bulb 0.93 0.77 0.86 0.82 0.82 0.75 0.78

Pulse Ox Adapter 0.93 0.94 0.94 0.93 0.86 0.87 0.86

Cardiac Monitoring Adapter 0.94 0.98 0.93 0.95 0.90 0.88 0.89

Small NRB 0.97 0.72 0.84 0.77 0.82 0.71 0.76

Adult NRB 0.97 0.72 0.84 0.77 0.82 0.71 0.76

BP Cuff 0.96 0.56 0.60 0.58 0.57 0.55 0.56

Bair Hugger Connector 0.96 0.95 0.97 0.96 0.91 0.92 0.92

Thermometer 0.98 0.49 0.77 0.60 0.76 0.49 0.61
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