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Abstract

We introduce a simple, interpretable strategy for making predictions on test data when the features 

of the test data are available at the time of model fitting. Our proposal—customized training—

clusters the data to find training points close to each test point and then fits an ℓ1-regularized model 

(lasso) separately in each training cluster. This approach combines the local adaptivity of k-nearest 

neighbors with the interpretability of the lasso. Although we use the lasso for the model fitting, 

any supervised learning method can be applied to the customized training sets. We apply the 

method to a mass-spectrometric imaging data set from an ongoing collaboration in gastric cancer 

detection which demonstrates the power and interpretability of the technique. Our idea is simple 

but potentially useful in situations where the data have some underlying structure.
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1. Introduction.

Recent advances in the field of personalized medicine have demonstrated the potential for 

improved patient outcomes through tailoring medical treatment to the characteristics of the 

patient [Hamburg and Collins (2010)]. While these characteristics most often come from 

genetic data, there exist other molecular data on which to distinguish patients. In this paper 

we propose customized training, a very general, simple and interpretable technique for local 

regression and classification on large amounts of data in high dimension. The method can be 

applied to any supervised learning or transductive learning task, and it demonstrates value in 

applications to real-life data sets.

This paper is motivated by a newly proposed medical technique for inspecting the edge of 

surgically resected tissue for the presence of gastric cancer [Eberlin et al. (2014)]. Gastric is 

the second most lethal form of cancer, behind lung cancer [World Health Organization 

(2013)], and the state-of-the-art treatment for gastric cancer is surgery to remove the 
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malignant tissue. With this surgical procedure, removal of all diseased tissue is critical to the 

prognosis for the patient post-surgery. The new medical technique uses mass spectrometric 

imaging, rather than visual inspection by a pathologist, to more quickly and more accurately 

evaluate the surgical margin of the tissue for the presence of cancerous cells. This new 

technique replaces the procedure wherein the tissue samples are frozen until the pathologist 

is available to manually label the tissue as cancer or normal (see Figure 1).

The data are images of surgical tissue from a desorption electrospray ionization (DESI) mass 

spectrometer, which records the abundance of ions at 13,320 mass-to-charge values at each 

of hundreds of pixels. Hence, each data observation is a mass spectrum for a pixel, as 

illustrated in Figure 2.

The 13,320 ion intensities from the mass spectrum for each pixel were averaged across bins 

of six4 to yield 2220 features. Each pixel has been labeled by a pathologist (after 2 weeks of 

sample testing) as epithelial, stromal or cancer, the first two being normal tissue. Each of 20 

patients contributed up to three samples, from some or all of the three classes. The training 

set comprises 28 images from 14 patients, yielding 12,480 pixels, and the test set has 12 

images from 6 different patients, for a total of 5696 pixels.

In Eberlin et al. (2014) the authors use the lasso (ℓ1-regularized multinomial regression) to 

model the probability that a pixel belongs to each of the three classes on the basis of the ion 

intensity in each bin of six mass-to-charge values. In that study, the lasso performed 

favorably in comparison with support vector machines and principal component regression. 

For a detailed description of the lasso, see Section 2.2. For the purposes of the present paper, 

we collapse epithelial and stromal into one class, “Normal,” and we adopt a loss function 

that assigns twice the penalty to misclassifying a cancer cell as normal (false negative), 

relative to misclassifying a normal cell as cancer (false positive). This loss function reflects 

that missing a cancer cell is more harmful than making an error in the opposite direction. We 

collapse the two types of normal cells into one class because our collaborators are interested 

in identifying only the cancer cells for surgical resection. We find that treating epithelial and 

stromal as separate classes does not meaningfully change our results.

The lasso classifier fit to the data from the 12,480 pixels in the training set (with the 

regularization parameter λ selected via cross-validation; see Section 2.3) achieves a 

misclassification rate of 2.97% when used to predict the cancer/normal label of the 5696 

pixels in the test set. Among cancer pixels the test error rate is 0.79%, and among normal 

pixels the test error rate is 4.16%. These results represent a significant improvement over the 

subjective classifications made by pathologists, which can be unreliable in up to 30% of 

patients [Eberlin et al. (2014)], but the present paper seeks to improve these results further. 

By using customized training sets, our method fits a separate classifier for each patient, 

creating a locally linear but globally nonlinear decision boundary. This rich classifier leads 

to more accurate classifications by using training data most relevant to each patient when 

modeling his or her outcome probabilities.

4The third author’s collaborators decided that six was the appropriate bin size to reflect uncertainty in alignment due to registration 
error.
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1.1. Transductive learning.

Customized training is best suited for the category of problems known in machine learning 

literature as transductive learning, in contrast with supervised learning or semi-supervised 

learning. In all of these problems, both the dependent and the independent variables are 

observed in the training data set (we say that the training set is “labeled”) and the objective 

is to predict the dependent variable in a test data set. The distinction between the three types 

of problems is as follows: in supervised learning, the learner does not have access to the 

independent variables in the test set at the time of model fitting, whereas in transductive 

learning the learner does have access to these data at model fitting. Semi-supervised learning 

is similar in that the learner has access to unlabeled data in addition to the training set, but 

these additional data do not belong to the test set on which the learner makes predictions. 

Customized training leverages information in the test data by choosing the most relevant 

training data on which to build a model to make better predictions. We have found no review 

of transductive learning techniques, but for a review of techniques for the related semi-

supervised problem, see Zhu (2007).

In Section 2 we introduce customized training and discuss related methods. Section 3 

investigates the performance of customized training and competing methods in a simulation 

study. Results on the motivating gastric cancer data set are presented, with their 

interpretation, in Section 4. We apply our method and others to a battery of real data sets 

from the UCI Machine Learning Repository in Section 5. The manuscript concludes with a 

discussion in Section 6.

2. Customized training.

First we introduce some notation. The data we are given are Xtrain, Ytrain and Xtest. Xtrain is 

an n × p matrix of predictor variables, and Ytrain is an n-vector of response variables 

corresponding to the n observations represented by the rows of Xtrain. These response 

variables may be qualitative or quantitative. Xtest is an m × p matrix of the same p predictor 

variables measured on m test observations. The goal is to predict the unobserved random m-

vector Ytest of responses corresponding to the observations in Xtest.

Let f Λ( ⋅ ) denote the prediction made by some learning algorithm, as a function of Xtrain, 

Ytrain, Xtest and an ordered set Λ of tuning parameters. So f Λ (Xtrain, Ytrain, Xtest) is an m-

vector. For qualitative Ytrain, f Λ is a classifier, while for quantitative Ytrain, f Λfits a 

regression. We evaluate the performance of f Λ with L( f Λ(Xtrain, Ytrain, Xtest), Ytest), where 

the loss function L is often taken to be, for example, the number of misclassifications for a 

qualitative response, or squared error for a quantitative response.

The customized training method partitions the test set into G subsets and fits a separate 

model f Λ to make predictions for each subset. In particular, each subset of the test set uses 

only its own, “customized” subset of the training set to fit f Λ. Identifying subsets of the 

training data in this way leads to a model that is locally linear but rich globally. Next, we 
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propose two methods for partitioning the test set and specifying the customized training 

subsets.

2.1. Clustering.

Often test data have an inherent grouping structure, obviating the need to identify clusters in 

the data using unsupervised learning techniques. Avoiding clustering is especially 

advantageous on large data sets for which it would be very expensive computationally to 

cluster the data. For example, in the motivating application for the present manuscript, test 

data are grouped by patient, so we avoid clustering the 5696 test observations in 2220 

dimensions by using patient identity as the cluster membership for each test point.

Given the G “clusters” identified by the grouping inherent to the test data, we identify the 

customized training set for each test cluster as follows: first, for each observation in the 

cluster, find the R nearest neighbors in the training set to that observation, thus defining 

many cardinality-R sets of training observations, one for each test point in the cluster. 

Second, take the union of these sets as the customized training set for the cluster. So the 

customized training set is the set of all training points that are one of the R nearest neighbors 

of any test point in the cluster. R is a tuning parameter that could in principle be chosen by 

cross-validation, but we have found that R = 10 works well in practice and that results are 

not particularly sensitive to this choice.

When the test data show no inherent grouping, customized training works by jointly 

clustering the training and test observations according to their predictor variables. Any 

clustering method can be used; here we apply hierarchical clustering with complete linkage 

to the data (Xtrain
T , Xtest

T )T. Then we cut the dendrogram at some height dG, producing G 

clusters, as illustrated by Figure 3. In each cluster we train a classifier on the training 

observations within that cluster. This model is then used to make predictions for the test 

observations within the cluster. In this case, G is a tuning parameter to be chosen by cross-

validation (see Section 2.3)

2.2. Classification and regression.

The key idea behind our method is the selection of a customized training set for each group 

in the test set. Once these individualized training sets are identified, any supervised 

classification (or regression, in the case of quantitative outcomes) technique can be used to 

fit f Λ and make predictions for the test set. We suggest using ℓ1-regularized generalized 

linear models because of their interpretability. Customized training complicates the model 

by expanding it into a compilation of G linear models instead of just one. But using ℓ1 

regularization to produce sparse linear models conserves interpretability. For an n × p 
predictor matrix X and corresponding response vector y, an ℓ1-regularized generalized linear 

model solves the optimization problem

β0, β ∈ ℝp
min − 1

n ∑ℓ(β0, β ∣ xi, yi) + λ ∥ β ∥1 , (2.1)
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where ℓ(·) here is the log-likelihood function and depends on the assumed distribution of the 

response. For example, for linear regression (which we use for quantitative response 

variables),

yi ∣ xi, β0, β~Normal(β0 + βTxi, σ2),

while for logistic regression (which we use for binary response variabes),

yi ∣ xi, β0, β~Binomial 1, e
β0 + βTxi

1 + e
β0 + βTxi

.

For multiclass qualitative response variables we use the multinomial distribution in the same 

framework. The estimated regression coefficient vector β that solves the optimization 

problem (2.1) can be interpreted as the contribution of each predictor to the distribution of 

the response, so by penalizing ||β||1 in (2.1), we encourage solutions for which many entries 

in β are zero, thus simplifying interpretation [Tibshirani (1996)].

Regardless of the f Λ chosen, for g = 1,…, G, let nk denote the number of observations in the 

customized training set for the kth test cluster, and let Xtrain
k  denote the nk × p submatrix of 

Xtrain corresponding to these observations, with Y train
k  denoting the corresponding responses. 

Similarly, let mk denote the number of test observations in the kth cluster, and let Xtest
k

denote the mk × p submatrix of Xtest corresponding to these training observations, with Y test
k

denoting the corresponding responses. Once we have a partition of the test set into G subsets 

(some of which may contain no test observations), with tuning parameter Λ our prediction 

for Y test
k  is

Y test
k = f Λ(Xtrain

k , Y train
k , Xtest

k ) . (2.2)

Note that if joint clustering is used to partition the test data, the customized training set for 

the kth test cluster may be empty, in which case f Λ(Xtrain
k , Y train

k , Xtest
k ) is undefined. The 

problem is not frequent, but we offer in Section 2.4 one way (of several) to handle it. Once 

we have predictions for each subset, they are combined into the m-vector CTG,Λ(Xtrain, 

Ytrain, Xtest), which we take as our prediction for Ytest.

2.3 Cross-validation.

Because customized training reduces the training set for each test observation, if the 

classification and regression models from Section 2.2 were not regularized, they would run 

the risk of overfitting the data. The regularization parameter λ in (2.1) must be large enough 

to prevent overfitting but not so large as to overly bias the model fit. This choice is known as 
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the bias-variance trade-off in statistical learning literature [Hastie, Tibshirani and Friedman 

(2009)].

The number of clusters G is also a tuning parameter that controls the flexibility of the model. 

Increasing G reduces the bias of the model fit, while decreasing G reduces the variance of 

the model fit. To determine the optimal values of G and Λ, we use standard cross-validation 

to strike a balance between bias and variance. Because transductive methods have access to 

test features at training time, we explain carefully in this section what we mean by standard 

cross-validation.

The training data are randomly partitioned into J approximately equalsized folds (typically J 

= 10). For j = 1,…, J, Xtrain
( j)  denotes the submatrix of Xtrain corresponding to the data in the 

jth fold, and Xtrain
( − j) denotes the submatrix of data not in the jth fold. Similarly, Y train

( j)  denotes 

the responses corresponding to the data in the jth fold, and Y train
( − j) denotes responses not in 

the jth fold.

We consider 𝒢 and A as the sets of possible values for G and Λ, respectively. In practice, we 

use 𝒢 = {1,2,3,5,10}. We search over the grid 𝒢 × A, and the CV-selected parameters G and 

Λ are

(G∗, Λ∗ ) =
G ∈ 𝒢, Λ ∈ A

arg min ∑
j = 1

J
L(CTG, Λ(Xtrain

( − j), Ytrain
( − j), Xtrain

( j) ), Ytrain
( j) ) .

In more detail, the G clusters for CTG, Λ(Xtrain
( − j), Y train

( − j), Xtrain
( j) ) are obtained as described in 

Section 2.1, and the loss for the jth fold is given by

L(CTG, Λ(Xtrain
( − j), Ytrain

( − j), Xtrain
( j) ), Ytrain

( j) ) = ∑
k = 1

G
L( f Λ(Xtrain

( − j)k, Ytrain
( − j)k, Xtrain

( j)k ), Ytrain
( j)k ) .

2.4. Out-of-sample rejections.

As noted in Section 2, when joint clustering is used to partition the test data and identify 

customized training sets, predictions for a particular test subset may be undefined because 

the corresponding customized training subsets do not contain any observations. Using the 

convention of Bottou and Vapnik (1992), we refer to this event as a rejection (although it 

might be more naturally deemed an abstention). The number of rejections, then, is the 

number of test observations for which our procedure fails to make a prediction due to an 

insufficient number of observations in the customized training set.

Typically, in the machine learning literature, a rejection occurs when a classifier is not 

confident in a prediction, but that is not the case here. For customized training, a rejection 

occurs when there are no training observations close to the observations in the test set. This 

latter problem has not often been addressed in the literature [Bottou and Vapnik (1992)]. 
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Because the test data lie in a region of the feature space poorly represented in the training 

data, a classifier might make a very confident, incorrect prediction.

We view the potential for rejections as a virtue of the method, identifying situations in which 

it is best to make no prediction at all because the test data are out-of-sample, a rare feature 

for machine learning algorithms. In practice, we observe that rejections are rare; Table 6 

gives a summary of all rejections in the battery of machine learning data sets from Section 5.

If a prediction must be made, there are many ways to get around rejections. We propose 

simply cutting the dendrogram at a greater height d′ > dG so that the test cluster on which 

the rejections occurred is combined with another test cluster until the joint customized 

training set is large enough to make predictions. Specifically, we consider the smallest d′ for 

which the predictions are defined. Note that we update the predictions only for the test 

observations on which the method previously abstained.

2.5. Related work.

Local learning in the transductive setting has been proposed before [Zhou et al. (2004), Wu 

and SchÖlkopf (2007)]. There are other related methods as well, for example, transductive 

regression with elements of local learning [Cortes and Mohri (2007)] or local learning that 

could be adapted to the transductive setting [Yu, Zhang and Gong (2009)]. The main 

contribution of this paper relative to previous work is the simplicity and interpretability of 

customized training. By combining only a few sparse models, customized training leads to a 

much more parsimonious model than other local learning algorithms, easily explained and 

interpreted by subject-area scientists.

More recently, local learning has come into use in the transductive setting in applications 

related to personalized medicine. The most relevant example to this paper is evolving 

connectionist systems [Ma (2012)], but again our proposal for customized training leads to a 

more parsimonious and interpretable model. Personalized medicine is an exciting area of 

potential application for customized training.

Several methods [Gu and Han (2013), Ladicky and Torr (2011), Torgo and DaCosta (2003)] 

similarly partition the feature space and fit separate classification or regression models in 

each region. However, in addition to lacking the interpretability of our method, these 

techniques apply only to the supervised setting and do not leverage the additional 

information in the transductive setting. Others have approached a similar problem using 

mixture models [Fu, Robles-Kelly and Zhou (2010), Shahbaba and Neal (2009), Zhu, Chen 

and Xing (2011)], but these methods also come with a great computational burden, 

especially those which use Gibbs sampling to fit the model instead of an EM algorithm or 

variational methods.

Variants of customized training could also be applied in the supervised and semi-supervised 

setting. The method would be semi-supervised if instead of test data other unlabeled data 

were used for clustering and determining the customized training set for each cluster. The 

classifier or regression obtained could be used to make predictions for unseen test data by 

assigning each test point to a cluster and using the corresponding model. A supervised 
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version of customized training would cluster only the training data and fit a model for each 

cluster using the training data in that cluster. Again, predictions for unseen test data could be 

made after assigning each test point to one of these clusters. This approach would be similar 

to Jordan and Jacobs (1994).

2.5.1. Alternative methods.

To compare customized training against the state of the art, we apply five other machine 

learning methods to the data sets in Sections 3, 4 and 5.

ST Standard training. This method uses the ℓ1-penalized regression techniques outlined in Section 2.2, training 
one model on all of the Ttraining set. The regularization parameter λ is chosen through cross-validation.

SVM Support vector machine. The cost-tuning parameter is chosen through cross-validation.

KSVM K-means + SVM. We cluster the training data into K clusters via the K-means algorithm and fit an SVM to 
each training cluster. Test data are assigned to the nearest cluster centroid. This method is a simpler, special 
case of the clustered SVMs proposed by Gu and Han (2013), whose recommendation of K = 8 we use.

RF Random forests. At each split we consider p of the p predictor variables (classification) or p/3 of the p 
predictor variables (regression).

KNN k-nearest neighbors. This simple technique for classification and regression contrasts the performance of 
customized training with another “local” method. The parameter k is chosen via cross-validation.

3. Simulation study.

We designed a simulation to demonstrate that customized training improves substantially on 

standard training in situations where one would expect it to do so: when the data belong to 

several clusters, each with a different relationship between features and responses. We 

consider real-valued responses (a regression problem) for the sake of variety. We simulated n 
training observations and m test observations in p dimensions, each observation belonging to 

one of 3 classes. The frequency of the 3 classes was determined by a Dirichlet(2,2,2) random 

variable. The centers c1, c2, c3 of the 3 classes were generated as i.i.d. p-dimensional normal 

random variables with covariance σc
2I p.

Given the class membership zi ∈ {1,2,3} of the ith observation, xi was generated from a 

normal distribution with mean (β
zi)Txi and covariance matrix Ip. The coefficient vector αk 

corresponding to the kth class had p/10 entries equal to one, with the rest being zero, 

reflecting a sparse coefficient vector. The nonzero entries of αk were sampled uniformly at 

random, independently for each class k. Given the class membership zi and coefficient 

vector xi of the ith observation, the response yi had a normal distribution with mean czi
 and 

standard deviation one.

We conduct two simulations, the first with n = m = 300, p = 100 (the low-dimensional 

setting), and the second with n = m = 200, p = 300 (the high-dimensional setting). In each 

case, we vary σC from 0 to 10. Figure 4 shows the results. We observe that in both settings, 

customized training leads to significant improvement in test mean square error as the 

clusters separate (increasing σC). In the high-dimensional setting, the errors are expectedly 
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much larger, but the same pattern is evident. For KSVM in this simulation we fix K = 3, thus 

cheating and giving the algorithm the number of clusters, whereas customized training 

learns the number of clusters from the data. For this reason, the performance of KSVM does 

not improve as the clusters separate. In fact, it is because none of the other methods make an 

attempt to identify the number of clusters that they do not improve as the clusters separate.

4. Results on gastric cancer data set.

We applied customized training to the mass-spectrometric imaging data set of gastric cancer 

surgical resection margins with the goal of improving on the results obtained by standard 

training. As described in Section 2.1, we obtained a customized training set for each test 

patient by finding the 10 nearest neighbors of each pixel in that patient’s images and using 

the union of these nearest-neighbor sets. Table 1 shows from which training patients the 

customized training set came, for each test patient. The patient labels have been ordered to 

make the structure in these data apparent: test patients 1–3 rely heavily on training patients 

1–7 for their customized training sets, while test patients 4–6 rely heavily on training 

patients 9–14 for their customized training sets.

In this setting it is more harmful to misclassify cancer tissue as normal than it is to make the 

opposite error, so we chose to use a loss function that penalizes a false negative (labeling a 

cancer pixel as normal) twice as much as it does a false positive (labeling a normal pixel as 

cancer). We observe that the results are not sensitive to the choice of the loss function (in the 

range of penalizing false negatives equally to five times as much as false positives) in terms 

of comparing customized training against standard training. We compare the results of 

customized training against the results of standard training for ℓ1-regularized binomial 

regression—the method used by Eberlin et al. (2014)—in Table 2.

We observe that customized training leads to a considerable improvement in results. For test 

patients 3 and 4, the test error is slightly higher for customized training than for standard 

training, but for all other patients, the test error for customized training is much lower. 

Overall, customized training cuts the number of misclassifications in half from the results of 

standard training. We focus on the comparison between customized and standard training 

because they are the fastest methods to apply to this large data set, but, indeed, the other 

methods described in Section 2.5.1 are also applicable. We report the overall test 

misclassification error and the run time for all methods in Table 3.

4.1. Interpretation.

A key draw for customized training is that, although the decision boundary is more flexible 

than a linear one, interpretability of the fit is preserved because of the sparsity of the model. 

In this example, there are 2220 features in the data set, but the numbers of features selected 

for test patients 1 through 6 are, respectively, 42, 71, 62, 15, 21 and 54. Figure 5 shows 

which features are used in each patient’s model, along with the features used in the overall 

model with standard training.

We observe that some pairs of patients have more similar profiles of selected features than 

other pairs of patients. For example, about 36% of the features selected for test patient 1 are 
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also selected for test patient 2. And about 39% of the features selected for test patient 3 are 

also selected for test patient 2. This result is not surprising because test patients 1 through 3 

take much of their customized training sets from the same training patients, as observed 

above. Similarly, about 40% of the features selected for patient 4 are also selected for patient 

6, and about 38% of the features selected for patient 5 are also selected for patient 6.

The third author’s subject-area collaborators have suggested that these data may actually 

suggest two subclasses of cancer; given that customized training identifies two different 

groups of models for predicting cancer presence, this subject-area knowledge leads to a 

potentially interesting interpretation of the results.

5. Additional applications.

To investigate the value of customized training in practice, we applied customized training 

(and the alternative methods from Section 2.5.1) to a battery of classification data sets from 

the UC Irvine Machine Learning Repository [Bache and Lichman (2013), Gil et al. (2012), 

Tsanas et al. (2014), Little et al. (2007), Mansouri et al. (2013), Kahraman, Sagiroglu and 

Colak (2013)]. The data sets, listed in Table 4, were selected not randomly but somewhat 

arbitrarily, covering a wide array of applications and values of n and p, with a bias toward 

recent data sets. In Table 5 we present results on all 16 data sets to which the methods were 

applied, not just those on which customized training performed well.

Random forests achieve the lowest error on 8 of the 16 data sets, the most of any method. 

But the method that achieves the lowest error secondmost often is customized training, on 7 

of the 16 data sets, and customized training beats standard training on 11 data sets, with 

standard training coming out on top for only 2 data sets. We do not expect customized 

training to provide value on all data sets, but through cross-validation, we can often identify 

data sets for which standard training is better, meaning that G = 1 is chosen through cross-

validation. The point of this exercise is not to show that customized training is superior to 

the other methods but rather to show that, despite its simplicity, it is at least competitive with 

the other methods.

Table 6 shows all of the rejections that customized training makes on the 16 data sets, for 

any value of G (not just the values of G chosen by cross-validation). For two of the data sets 

(LSVT Voice Rehabilitation and Parkinsons), it is clear that the rejections are just 

artifacts of using a G that is too large relative to the training sample size n. Such a G is not 

chosen by cross-validation. However, in the other data sets, Steel Plates Faults and 

First-order theorem proving, rejections occur for moderate values of G. It seems 

that this rejection is appropriate because the standard training method leads to an error for 

each test point which is rejected. Overall, we observe that rejections are rare.

6. Discussion.

The idea behind customized training is simple: for each subset of the test data, identify a 

customized subset of the training data that is close to this subset and use this data to train a 

customized model. We proposed two different clustering methods for finding the customized 

training sets and used ℓ1-regularized methods for training the models. Local learning has 
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been used in the transductive setting but not in such a parsimonious, interpretable way. 

Customized training has the potential to uncover hidden regimes in the data and leverage this 

discovery to make better predictions. It may be that some classes are over-represented in a 

cluster, and fitting a model in this cluster effectively customizes the prior to reflect this 

overrepresentation. Our results demonstrate superior performance of customized training 

over standard training on the mass-spectrometric imaging data set of gastric cancer surgical 

resection margins, in terms of discrimination between cancer and normal cells. Our approach 

also suggests the possibility of two subclasses of cancer, consistent with a speculation raised 

by our medical collaborators.

In this paper we focused on customized training with ℓ1-regularized methods for the sake of 

interpretability, but, in principle, any supervised learning method may be used, which is an 

area for future work. Another area of future work is the use of different clustering 

techniques. We use hierarchical clustering, but there may be value in other methods, such as 

prototype clustering [Bien and Tibshirani (2011)]. Simulations in Section 3 show that the 

method can struggle in the high-dimensional setting, so it may be worthwhile to consider 

sparse clustering [Witten and Tibshirani (2010)].
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Fig. 1. 
Histopathological assessment of a banked tissue example. This hematoxylin and eosin stain 

has been hand-labeled by a pathologist, marking three regions: gastric adenocarcinoma 

(cancer), epithelium (normal) and stroma (normal).
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Fig. 2. 
DESI mass spectra for one pixel taken from each region in the banked tissue example. The 

result of DESI mass spectrometric imaging is a 2D ion image with hundreds of pixels. Each 

pixel has an ion intensity measurement at each of thousands of mass-to-charge values, 

producing a mass spectrum. The three mass spectra in the image correspond to one pixel 

each. The objective is to classify a pixel as cancer or normal on the basis of its mass 

spectrum.
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Fig. 3. 
A dendrogram depicting joint clustering of training and test data, which is the method 

proposed for partitioning the test data and identifying customized training sets when the test 

data have no inherent grouping. Here the dendrogram is cut at a height to yield G = 3 

clusters. Within the left cluster, the training data (blue leaves) are used to fit the model and 

make predictions for the test data (orange leaves).
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Fig. 4. 
Simulation results. In (a), the low-dimensional setting, as σC increases and the clusters 

separate, the test error for customized training drops, while the test error for other-methods 

remains high. In (b), the test errors are much larger overall, but the same pattern persists: 

customized training leads to improved results as the clusters separate.
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Fig. 5. 
Features selected by customized training for each patient (variables not selected by any 

model are omitted from the x-axis). The first row shows features selected via standard 

training. Visual inspection suggests that patients 1, 2 and 3 have similar profiles of selected, 

variables, whereas patients 4 and 5 have selected-feature profiles that are more similar to 

each other than to other patients. Using hierarchical clustering with Jaccard distance 

between the sets of selected features to split the patients into two clusters, patients 1, 2 and 3 

were in one cluster, with patients 4, 5 and 6 in the other.
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Table 2

Error rates for customized training and standard training on the gastric cancer test data, split by patient and 

true label of the pixel (cancer or normal), with the lower overall error rate for each patient in bold. Each error 

rate is expressed by the percentage of pixels misclassified. Customized training leads to slightly higher errors 

for patients 3 and, 4 but much lower errors for all other patients and roughly half the error rate overall

Test patient 1 2 3 4 5 6 All

Standard training (lasso) Cancer – 2.67 0.21 – – 2.70 1.54

Normal 13.60 0.81 0.13 0.00 6.37 3.63 3.78

Overall 13.60 1.61 0.18 0.00 6.37 3.14 2.98

Customized training (6-CT) Cancer – 1.07 0.11 – – 1.80 0.74

Normal 8.66 0.00 1.44 0.40 0.82 0.66 2.04

Overall 8.66 0.46 0.71 0.40 0.82 1.26 1.58
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Table 3

Overall test error rates and run times for customized training and the five other methods described in Section 

2.5.1

Method ST CT KSVM KNN RF SVM

Misclassification rate 3.05% 1.58% 9.78% 9.18% 2.44% 2.07%

Run time (minutes) 2.1 2.4 6.0 7.6 21.9 197.8
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Table 4

Data sets from UCI Machine Learning Repository [Bache and Lichman (2013)] used in Section 5

Abbrv. Data set name Abbrv. Data set name

BS Balance scale BCW Breast cancer Wisconsin (diagnostic)

C Chess (king-rook vs king-pawn) CMC Contraceptive method choice

F Fertility FOTP First-order theorem proving

LSVT LSVT voice rehabilitation M Mushroom

ORHD Optical recognition of handwritten digits P Parkinsons

QSAR QSAR biodegration S Seeds

SPF Steel plates faults TAE Teaching assistant evaluation

UKM User knowledge modeling V Vowel
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Table 6

A listing of all data sets from Section 5 for which K-CTJ makes a rejection for some K. The error rates in the 

last two columns refer to the error rate of standard training

Data set Method Rejections Error rate on rejections Error rate overall

First-order theorem proving 3-CTJ 3 1 0.518

5-CTJ 3 1

10-CTJ 3 1

LSVT Voice Rehabilitation 10-CTJ 2 0.5 0.142

Parkinsons 10-CTJ 4 0.25 0.154

Steel Plates Faults 3-CTJ 1 1 0.294

5-CTJ 1 1

10-CTJ 1 1
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