Skip to main content
. Author manuscript; available in PMC: 2018 Oct 24.
Published in final edited form as: Ann Appl Stat. 2016 Jan 28;9(4):1709–1725. doi: 10.1214/15-AOAS866

Table 5.

Test error of customized training and the five other methods described in Section 2.5.1 on 16 benchmark data sets. The bold text indicates the best performance for each data set. Customized training is competitive with the other methods and improves on standard training more often than not

ST
CT
SVM
KSVM
RF
KNN
Data n p Error Error G Error Error Error Error k %Imp*
BS 313 4 0.112 0.099 3 0.086 0.131 0.131 0.105 20 11.4
BCW 285 30 0.028 0.035 2 0.035 0.038 0.028 0.056 63 –25
C 1598 38 0.026 0.021 10 0.029 0.046 0.006 0.085 36 18.5
CMC 737 18 0.485 0.440 5 0.479 0.523 0.472 0.523 32 9.2
F 50 9 0.160 0.160 1 0.160 0.160 0.180 0.180 2
FTP 3059 51 0.557 0.530 5 0.489 0.444 0.427 0.508 47 4.7
LSVT 63 310 0.126 0.142 1 0.111 0.365 0.095 0.222 15 –12.5
M 4062 96 0.000 0.000 1 0.001 0.001 0.000 0.001 15
ORHD 3823 62 0.046 0.043 2 0.032 0.049 0.027 0.055 38 6.0
P 98 22 0.268 0.144 3 0.154 0.144 0.082 0.123 5 46.1
Q 528 41 0.176 0.134 5 0.146 0.148 0.140 0.144 19 23.6
S 105 7 0.047 0.047 2 0.066 0.114 0.104 0.066 9
SPF 971 27 0.321 0.278 5 0.273 0.281 0.246 0.357 57 13.3
TAE 76 53 0.720 0.470 10 0.653 0.613 0.506 0.493 1 34.6
UKM 258 5 0.041 0.013 1 0.103 0.213 0.068 0.565 79 66.6
V 528 10 0.610 0.491 2 0.387 0.480 0.409 0.508 1 19.5
*

%Imp: Percent relative improvement of customized training to standard training.