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Abstract

Cutaneous diffuse large B cell lymphomas (DLBCL) are aggressive lymphomas with a poor 

prognosis. To elucidate their genetic bases, we analyzed exome sequencing of 37 cutaneous 

DLBCLs including 31 DLBCL-leg type (DLBCL-LT) and 6 cutaneous DLBCL-not otherwise 

specified (DLBCL-NOS). As reported previously, 77% of DLBCL-LTs harbor NF-κB-activating 

MYD88 mutations. In nearly all MYD88-wild type DLBCL-LTs, we found cancer-promoting 

mutations which either activate the NF-κB pathway through alternative genes (NFKBIE or REL) 
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or activate other canonical cancer pathways (BRAF, MED12, PIK3R1, and STAT3). After NF-κB, 

the second most commonly mutated pathway putatively enables immune evasion via mutations 

predicted to downregulate antigen processing (B2M, CIITA, HLA) or T cell co-stimulation 

(CD58). DLBCL-LTs have little genetic overlap with the genetically heterogeneous DLBCL-

NOSs. Instead, they resemble primary CNS and testicular large B-cell lymphomas (PCNSLs and 

PTLs). Like PCNSLs/PTLs, 40% of DLBCL-LTs (vs. 0% of DLBCL-NOSs) harbored PDL1/
PDL2 translocations, which lead to overexpression of PD-L1 or PD-L2 in 50% of the cases. 

Collectively, these data broaden our understanding of cutaneous DLBCLs and suggest novel 

therapeutic approaches (e.g. BRAF or PI3K inhibitors). Additionally, they suggest novel treatment 

paradigms, wherein DLBCL-LTs can be targeted with strategies (e.g. immune checkpoint 

blockers) currently being developed for genomically similar PCNSLs/PTLs.

INTRODUCTION

Diffuse large B cell lymphomas (DLBCLs) involving the skin include primary cutaneous 

diffuse large B cell lymphoma, leg type (DLBCL-LT) and DLBCL with secondary skin 

involvement (cutaneous DLBCL, not otherwise specified [DLBCL-NOS]). DLBCL-LT is 

the most aggressive primary cutaneous B cell lymphoma subtype and is associated with 

increased risk of extracutaneous spread and poor prognosis (overall 5-year survival of 

~50%) (Kodama et al., 2005). Patients with DLBCL-LT usually present with rapidly 

growing red to violaceous tumors characteristically (but not always) on one or both lower 

legs of elderly patients (median age ~75 years) (Grange et al., 2014). In comparison, 

DLBCL-NOS tends to affect younger patients, with no anatomic preference, are more likely 

to present with advanced stage disease, and are associated with lower median survival than 

DLBCL-LTs (Lee et al., 2016).

DLBCL is a heterogeneous category of B-cell lymphomas that share large-cell morphology, 

and are comprised of distinct subtypes, defined by predilections for specific anatomic sites 

and extranodal tissues (e.g. the mediastinum, central nervous system, skin, etc.) and/or 

distinct molecular/genetic features (Swerdlow et al., 2016). Two groups of DLBCLs have 

been identified on the basis of gene expression profiles corresponding to cell of origin: 

germinal center B cell (GCB) type and activated B cell (ABC) types. Until recently, 

therapeutic strategies for all subtypes of DLBCLs were adapted from therapies originally 

validated in clinical trials for nodal DLBCL in part because of the relative rarity of and 

limited understanding of the differences between DLBCL subtypes (Senff et al., 2008). For 

cutaneous DLBCLs, use of therapies designed for nodal DLBCLs has important limitations 

for patients including a high risk for relapse (>58%) and dose-limiting toxicities (Nabhan et 

al., 2012, Suarez et al., 2013).

Cancer genomics have revolutionized our understanding of the pathophysiology and 

targetability of many cancers (Vogelstein et al., 2013). In part because of its relative rarity, 

our understanding of the genomics of DLBCL-LT and secondary cutaneous involvement by 

DLBCL-NOS remains incomplete. Recent efforts in DLBCL-LT have led to the discovery of 

MYD88, CD79B, and MYC as disease-relevant putative driver genes (Mareschal et al., 

2017, Pham-Ledard et al., 2014a, Pham-Ledard et al., 2014b). However, the full landscape 
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of targetable mutations remains unclear. To identify targetable mutations that can inform 

future therapeutic strategies, we analyzed exome sequencing data on 37 cutaneous DLBCLs 

and report the results of our efforts herein.

RESULTS

Clinical characteristics of cutaneous DLBCLs

We collected tissue from 25 patients with cutaneous DLBCLs. Diagnoses were confirmed by 

expert pathologists (LC, JG, AL). Nineteen patients (12 men, 7 women) had disease 

consistent with DLBCL-LT, with no evidence of systemic involvement at time of diagnosis. 

All DLBCL-LT cases were MUM1+ (100%) and CD10- (100%). The majority were positive 

for BCL2 (85%), BCL6 (92%), and FOXP1 (92%) (Tables 1, S1). This 

immunohistochemical profile was consistent with non-GCB (ABC-type) DLBCL. As 

expected, patients with DLBCL-LT were older (median age 80 years), presented with leg 

involvement (15 of 19, with 4 others appearing on the scalp, arm and abdomen) and had a 

poor prognosis (median survival of 41 months) (Tables 1, S1).

Six patients (4 men, 2 women) were found to have cutaneous disease with concurrent 

systemic involvement at the time of diagnosis, consistent with secondary cutaneous 

involvement by DLBCL-NOS (Table 1). DLBCL-NOS patients were generally younger than 

DLBCL-LT patients, and lesions were found in diverse anatomical locations (Table 1, S1), 

with only one occurring on the leg. Two of three DLBCL-NOS samples with available tissue 

were GCB type on the basis of immunohistochemical stains. Two of six patients died of 

progressive disease. Median survival could not be calculated as >50% of cases were 

censored. Patients in both groups were predominantly treated with radiation therapy or 

rituximab-based multiagent chemotherapy as first-line (Table 1).

Assessment of Copy Number Alterations in DLBCL-LT

Molecular inversion probe array analysis on tumor DNA was performed on six of 19 

DLBCL-LT samples. Genomic alterations including copy-number gains, copy-number 

losses, and loss-of-heterozygosity were observed in all six cases. Clonal burden ranged from 

30–90% (mean 62%) across cases; one case showed clonal diversity. The average number of 

alterations per sample was 26 (range: 16–42) and average proportion of the genome altered 

was 27% (range: 11–70%). Losses accounted for 63% of all calls (n=155), whereas loss-of-

heterozygosity and copy number gains accounted for 14% and 23% of all calls, respectively. 

Homozygous losses accounted for 12% of all copy number calls, whereas high copy number 

gain, defined as >2 copies and consistent with amplification, was observed in only one case 

(2p16.1p15 region). Recurrent large genomic alterations observed in at least two cases 

included gains involving of chromosomes 1q, 7q, 10p, 10q, 11q, 12, 17q, 18, and X, losses 

of 1p, 6q, 8p and loss-of-heterozygosity of 9p and 18. Recurrent focal copy number 

alterations included gains of 2p16p15.1 (REL) and Xq28, and deletions of 2p11.2 (IGKV), 

2q22.3 (ZEB2), 6p21 (HLA, NOTCH4), 8q12, 9p21.3 (CDKN2A), 14q32.33 (IGH locus), 

15q15.1, 17q21.2 (RARA), and 22q11.23 (Figure S1, Table S2). Copy losses of HLA genes 

involved in MHC I/II antigen presentation affected 3 of 6 samples (50%).
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Whole exome sequencing of DLBCL-LT and DLBCL-NOS tissue specimens

We performed whole exome sequencing on 19 DLBCL-LTs (6 with matched tumor-normal 

pairs, 13 without matched normal samples) and 6 DLBCL-NOS (1 matched, 5 unmatched). 

Consistent with previous reports on DLBCLs, the median numbers of mutations in DLBCL-

LT and DLBCL-NOS were 175 mutations per case, with ranges of 46–380 and 90–308, 

respectively (Lohr et al., 2012, Mareschal et al., 2017) (Figure 1a).

The tumor mutation burden (TMB), which correlates with tumor neoantigen burden and 

stratifies cancers based on their likelihood of responding to checkpoint blockade, was 

assessed using an established algorithm (Rizvi et al., 2015) (Johnson et al., 2016). Both 

DLBCL-LT and DLBCL-NOS cases were found to harbor an “intermediate” mutational 

load. suggesting potential therapeutic targetability with immunotherapies (Figure 1b and 1e, 

Table S3-S4).

Identification of putative driver genes in DLBCL-LT

To maximize our ability to detect cancer-promoting mutations, we employed an analytical 

pipeline that identifies putative driver mutations on the basis of the distribution of mutations 

and recurrences, both within our cohort and other published cohorts in the literature (Park et 

al., 2017, Vogelstein et al., 2013) (Tables S5-S13). In total, we analyzed 31 cases (19 cases 

of DLBCL-LT sequenced by us and 12 from publically available data) (Mareschal et al., 

2017) (Table 1).

Using our analytical pipeline, we identified 30 somatic mutations in 21 putative driver genes 

across 8 biologically relevant pathways (Figure 1c). Ten of the mutations were validated 

gain of function mutations in 7 oncogenes (MYD88, CD79B, CARD11, BRAF, STAT3, 
MED12 and CCND3), some of which have been described in nodal DLBCL, but not 

DLBCL-LT (MYD88 p.S243N, CD79B p.L199P, STAT3 p.E616K and CARD11 p.R113Q 

(Figure 2; Table S6)). BRAF, STAT3, MED12, and CCND3 are genes newly implicated in 

DLBCL-LT. The remaining 20 mutations were loss of function or damaging mutations in 10 

known tumor suppressor genes (PIK3R1, FBXW7, CREBBP, KMT2D, NFKBIE, BMF, 
PRDM1, CDKN1B, CDKN2A, CD58, ASXL1, RB1, B2M, and CIITA). Six of these genes 

are newly implicated in DLBCL-LT, but described in nodal DLBCL (PIK3R1, FBXW7, 
NFKBIE, CDKN1B), and other cancer types (BMF, ASXL1) (Bai et al., 2001, Boultwood et 

al., 2010, Hornsveld et al., 2016, Morin et al., 2016, Yao et al., 2017, Zhang et al., 2013) 

(Table 2).

Highlighting the clinical relevance of our findings, at least five signaling pathways with 

mutations in DLBCL-LTs are currently or potentially targetable (Figure 3). These include 

highly prevalent mutations in the NF-κB pathway (MYD88 (77%), CD79B (45%), CARD11 
(3%), and NFKBIE (10%) (Figure 3). 29% have point or copy number mutations in genes 

predicted to affect tumor immune evasion including genes important for antigen presentation 

(HLA genes (50%), B2M (6%), CIITA (6%)) and genes important for T cell co-stimulation 

(CD58 (10%)).

We also found less common mutations in the MAPK pathway (BRAF), the JAK-STAT 

pathway (STAT3), the PI-3K pathway (PIK3R1), cell cycle control pathways (CDKN2A, 
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CDKN1B, CCND3, RB1), and chromatin modification pathways (KMT2D, CREBBP, 
ASXL1) (Figure 3; Tables S6-S12) (Vaque et al., 2014).

MYD88 wild-type tumors harbor targetable mutations

Seven of 31 DLBCL-LT (5 of 19 from our dataset, and 2 of 12 from a previous published 

dataset) did not have gain of function mutations in MYD88. Six of these harbored mutations 

functionally validated in other cancer types. Despite the smaller sample size, we were able to 

recognize distinct patterns. Three samples had mutations in other NF-κB signaling genes. 

One harbored a damaging mutation in tumor suppressor NFKBIE, one harbored copy 

number gains of REL, and one harbored both. Four samples (including 1 with REL 
amplification) had functionally validated mutations in other canonical oncogenic pathways, 

MAPK (BRAF) (Davies et al., 2002), PI3K (PIK3R1) (Jaiswal et al., 2009), JAK/STAT 

(STAT3) (Vallois et al., 2016), or transcriptional control (MED12) (Mittal et al., 2015) 

(Figure 1, Table 2). These non-NF-κB pathway mutations were all mutually exclusive of 

each other.

DLBCL-NOS

Among the DLBCL-NOS cohort, we identified mutations in 11 putative driver genes across 

5 of 6 samples. None of these mutations are recurrent. These encompassed a range of 

signaling pathways including NF-κB (CARD11), JAK/STAT (STAT6), MAPK (KRAS), cell 

cycle control (RB1), immune surveillance (CIITA), DNA damage response (TP53, MSH6) 

and chromatin modification (CREBBP, KMT2D) (Figure 1f).

The CARD11 and STAT6 mutations were previously described in nodal ABC and GCB type 

DLBCLs respectively but not in cutaneous DLBCLs (Reddy et al., 2017). Finally, we found 

seven damaging mutations in tumor suppressor genes previously implicated in nodal 

DLBCL (KMT2D, TNFRSF14, CIITA, TP53, RB1, CREBBP and MSH6) (Cycon et al., 

2009, de Miranda et al., 2013, Reddy et al., 2017) and a damaging mutation in ETNK1, 

previously implicated in atypical chronic myeloid leukemia (Gambacorti-Passerini et al., 

2015) (Table S11, S13) (Figure 1f).

DLBCL-LT versus other nodal and extranodal DLBCL subtypes

In a pan-DLBCL analysis of nodal and extranodal DLBCL subtypes, we assessed and 

compared the distribution of mutations across these DLBCL subtypes. We measured the 

relative prevalence of mutations in DLBCL-LT putative driver genes in other DLBCL 

subtypes (defined as the similarity index; 1= exact correlation and 0 = no correlation; 

Materials and Methods). Our analysis confirmed that the mutational profile of DLBCL-LT 

overlapped with the ABC-subtype of nodal DLBCLs. However, it was most similar to two 

extranodal DLBCLs, primary central nervous system large B-cell lymphoma (PCNSL) 

(similarity index (SI) = 0.73) and primary testicular DLBCL (PTL) (SI=0.71) (Figure S2, 

Table S14). In addition, like PCNSL and PTL, DLBCL-LTs harbored a similarly high 

incidence of concurrent CD79B and MYD88 mutations (Braggio et al., 2015, Chapuy et al., 

2016).

Zhou et al. Page 5

J Invest Dermatol. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DLBCL-NOS had minimal similarity to DLBCL-LT. In fact, it was more similar to the 

GCB-subtype than to the ABC-subtype of nodal DLBCL. However, in general, it had little 

similarity (SI ≤ 0.42) compared to any other DLBCL subtype (Figure S3, Table S15).

PD-L1 and PD-L2 translocations

Given the genetic similarities with PCNSL and PTL, and the high frequency of PDL1/PDL2 
alterations in these entities (Chapuy et al., 2016), we assessed the prevalence in DLBCL-LT 

of structural variants involving the PDL1/PDL2 locus. We performed fluorescent in situ 

hybridization (FISH) targeting the PD-L1/PD-L2 gene locus on 10 DLBCL-LTs and 5 

DLBCL-NOSs with available tissue. Of the 10 DLBCL-LTs, 4 samples (40%) demonstrated 

break-apart translocations of PD-L1 and PD-L2 (Figure 4a). There were no structural 

variants in 5 of 5 DLBCL-NOS tested.

We performed dual immunohistochemistry staining (PDL1/PAX5 and PDL2/PAX5) on 9 

DLBCL-LT samples to determine relative PD-L1 and PDL-2 expression in the tumor and in 

the microenvironment. There was an imperfect correlation between PD-L1/PD-L2 structural 

variants and tumor expression of PD-L1/PD-L2. Among the 4 samples with translocations, 2 

(50%) showed upregulation of PD-L1 or PD-L2 (1 each) in both tumor and 

microenvironment (Figure 4, Table S16). These numbers are consistent with those reported 

in a recent study (Menguy et al., 2017). Among the 6 FISH-negative DLBCL-LT samples, 

there was no tumor expression of PD-L1 or PD-L2. The majority, 7 of 9 examined, had PD-

L1 (7 cases) or PD-L2 expression (1 case) in the microenvironment (Figure 4b-4c). None of 

the DLBCL-NOS samples had evidence of tumor PD-L1 expression, but 4 of 5 had strong 

PD-L1 expression in the microenvironment (Table S16).

DISCUSSION

We performed exome sequencing of the largest cohort of cutaneous DLBCLs to date. We 

identified putative cancer promoting mutations in 21 genes, including 10 whose association 

with DLBCL-LT are, to our knowledge, previously unreported. More than 50% of mutations 

identified have not been previously described in DLBCL-LT.

Highlighting the clinical importance of our findings, our analyses of DLBCL-LT confirm the 

high prevalence of mutations in the potentially targetable NF-κB signaling pathway, with 

validated mutations in MYD88, CD79B, CARD11, or NFKBIE in 79% of tumors. We have 

identified NFKBIE mutations and REL copy gains as potential drivers that reactivate the 

NF-κB pathway in MYD88 wild-type tumors and occur exclusive of other NF-κB pathway 

mutations. Among the other MYD88-wild-type tumors without NF-κB pathway alterations, 

we identified mutations in canonical cancer pathway genes (e.g. BRAF (MAPK pathway), 

PIK3R1 (PI3K), STAT3 (JAK-STAT)) or pathways affecting the transcriptional machinery 

(MED12) that may serve as bypass pathways. These mutations have important clinical 

implications as they suggest that most of these tumors are targetable via inhibitors of these 

pathways and that non-NF-κB pathways can be primary drivers in a subset of DLBCL-LTs.

In addition, we found that DLBCL-LT bore hallmarks of ABC-type DLBCLs whereas 

DLBCL-NOS, if anything, bore hallmarks of GCB-type DLBCLs. These data suggest that 1) 
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genetic tests at the patient bedside may distinguish these entities and 2) cutaneous DLBCL 

subtypes are different diseases with distinct pathophysiological mechanisms that may 

require distinct therapeutic strategies.

Our data highlight the importance of immune evasion in DLBCL-LT pathogenesis. DLBCL-

LTs have sufficient neoantigens to be immunogenic. However, they harbor mutations in 

multiple pathways predicted to enable evasion from immune surveillance. First, PDL1/PDL2 
locus alterations occurred in 40% of DLBCL-LTs. Secondly, we also found that 50% of 

samples harbored copy number deletions in either the MHC Class I or II loci, which have 

been shown to reduce the number of neoantigens that can be presented on the tumor cell 

surface (McGranahan et al., 2017). Lastly, we confirmed previous studies that found rare 

point mutations in genes associated with antigen processing [B2M (6% of samples), CIITA 
(6%)] or T cell co-stimulation [CD58 (10%)]. None of the samples were assessed by all 

three genetic tools (FISH, copy number analysis and exome sequencing). Nonetheless, to the 

extent we can, we infer that these mutations are mutually exclusive, and 50% or more 

DLBCL-LTs harbored mutations in one of these immune evasion pathways.

Lastly, we found broad similarities between DLBCL-LTs with two extranodal DLBCLs 

(PTL and PCNSL). In addition to frequent NF-κB activating mutations, all three DLBCL 

subtypes appear to employ multiple mechanisms in tumor cells and in the tumor 

microenvironment to evade immune surveillance. These data are particularly interesting in 

light of recent data in mice, which suggest that the lower legs, at times, can be an 

immunoprivileged site like the CNS and the testes. In particular, the lower legs support local 

upregulation of Treg cells that inhibit T cell responses in the setting of lymphedema (Garcia 

Nores et al., 2017).

Collectively, our findings suggest a novel therapeutic paradigm wherein patients with 

DLBCL-LT subtype can be included in clinical trials with genomically similar PCNSL and 

PTLs. As an example, our analyses led us to discover that 40% of DLBCL-LT had recurrent 

genetic alterations in PD-L1/PD-L2. This suggests that at least in a subset of these tumors, 

there is therapeutic value in utilizing checkpoint inhibitors and including these patients in 

currently active trials of similar DLBCL, such as nivolumab in relapsed/refractory PCNSL 

and PTL (NCT02857426).

MATERIALS AND METHODS

Sample preparation and sequencing analysis

All studies were approved by the Institutional Review Board (IRB) of Northwestern 

University. The DLBCL-LT samples were de-identified formaldehyde fixed paraffin 

embedded (FFPE) archival specimens from Medical University of Graz (Graz, Austria), 

Northwestern University (Chicago, USA) and Massachusetts General Hospital (Boston, 

MA) and were reviewed by expert dermatopathologists (JG, LC) or hematopathologists (AL, 

AB). Subject consent for this study was not required as all tissue was obtained from archival 

tissue that is IRB/Ethics Committee-approved for research purposes. 2mm cores (with >80% 

tumor cells) were obtained as described (Goh et al., 2016), matched normal skin was used as 

controls in 7 cases. Genomic DNA was prepared/sequenced/analyzed as previously 
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described (Park et al., 2017). Genomic sequencing data were deposited in dbGaP (Accession 

number: phs001645).

Copy Number Aberrations

Genomic DNA was processed for molecular inversion probe array analysis using the 

OncoScan FFPE Assay kit (ThermoFisher, Santa Clara, CA, USA), as described (Paxton et 

al., 2015). Data analysis was performed using Chromosome Analysis software (ChAS) 

version 3.1 (ThermoFisher) and Nexus Express Software for OncoScan version 3.1 

(Biodiscovery, Hawthorne, CA, USA) with reference to assembly GRCh37/hg19, as 

described (Andersen et al., 2017). All cases were processed using the TuScan segmentation 

algorithm except for case MG88, which was re-centered and processed using SNP-FASST2. 

Recurrent genomic alterations were calculated using the aggregate analysis in Nexus 

Express.

Comparison of DLBCL-LT and DLBCL-NOS with other DLBCL subtypes

We compared the frequency of mutations in the genes most commonly mutated in each 

DLBCL subtype with that of the same genes in DLBCL-LT or DLBCL-NOS. Vice-versa, we 

calculated the relative mutation prevalence in other DLBCL subtypes of 17 putative 

DLBCL-LT and 11 putative DLBCL-NOS driver genes. We normalized these values to a 0 

to 1 similarity index scale where 1 would be exact correlation and 0 no correlation.

Tumor Mutation Burden Estimation

To assess relative tumor mutation burden, we quantified all somatic single nucleotide 

variants within 315 genes that are part of the Foundation Medicine panel (Campesato et al., 

2015, Rosenberg et al., 2016). Relative tumor mutation burden cutoffs were ≥20 mutations 

per megabase (high), 6–19 (intermediate), or ≤5 (low).

Fluorescence in situ hybridization (FISH) of PD-1 ligands

Fluorescence in situ hybridization (FISH) was performed in collaboration with Empire 

Genomics (Buffalo, NY) on paraffin-embedded formalin-fixed tissue using probes 

developed to target PD-L1 (CD274, green) and PD-L2 (PDCD1LG2, red) within the 

chromosome 9p24.1 locus, and a control probe targeting the 9q arm (Con 9, yellow). The 

PDL1 probe does not overlap the PDL2 gene and the PDL2 probe does not overlap the 

PDL1 gene. The two probes consistently co-localized in normal metaphase spreads from all 

control tissues (human tonsils and peripheral blood mononuclear cells) tested. Over 90% of 

cells in these cases expressed 2 copies of PD-L1 adjacent to PD-L2.

Slides were hybridized according to established protocols (Empire Genomics) and reviewed 

by a pathologist. 200 cells were counted for all except one sample (100 cells) due to sample 

quality. Break-apart red/green signal pattern >10% of counted cells were considered above 

the threshold for translocation. Counts for amplification, relative copy gain, polysomy and 

normal copy numbers were also noted using criteria previously described (Roemer et al., 

2016).
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Double Immunohistochemistry Staining

Double staining of PD-L1 (1:50; clone E1L3N; Cell Signaling, Danvers, MA) or PD-L2 

(1:50; clone D7U8C; Cell Signaling) and PAX5 (1:100; clone 24; BD Biosciences, San Jose, 

CA) was performed with an automated staining system (Bond III; Leica Biosystems, Buffalo 

Grove, IL) as previously described (Ansell et al., 2015). Stained slides were scored by an 

expert dermatopathologist (JG) and expert hematopathologist (AB), and percentages of both 

tumor PDL-1 or PDL-2 and microenvironment PDL-1 or PDL-2 were calculated by scoring 

100–200 cells in each category. The threshold for PD-L1 and PD-L2 expression was defined 

at 30% for PAX5-positive tumor cells and at 20% for PAX5-negative immune cell 

microenvironment, as reported by others (Kiyasu et al., 2015).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Landscape of somatic alterations in diffuse large B cell lymphoma, leg type (DLBCL-
LT) and cutaneous diffuse large B cell lymphoma, not otherwise specified (DLBCL-NOS).
The number and type of single somatic nucleotide variants (SSNVs) in each sample of 

DLBCL-LT (a) and DLBCL-NOS (d). The tumor mutation burden as determined by the 

Foundation Medicine algorithm (see Methods) in DLBCL-LT (b) and DLBCL-NOS (e). 

Tumor mutation load is divided into three tiers (low, intermediate, and high). Recurrent 

somatic mutations identified by whole-exome sequencing in DLBCL-LT (c) and DLBCL-

NOS (f). Blue denotes recurrent mutations in putative oncogenes; red denotes damaging 

mutations in putative tumor suppressor genes; grey denotes missense mutations that have not 

been functionally validated.
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Figure 2. Schematics of genes annotated with oncogenic missense mutations found in DLBCL-LT 
and DLBCL-NOS.
(a) Mutations marked with blue arrowheads denote validated gain of function missense 

mutations in putative oncogenes. (b) Mutations marked with red arrowheads denote loss of 

function missense mutations in putative tumor suppressor genes. Mutations marked with 

grey arrowheads denote missense mutations that have not been functionally validated.
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Figure 3. Oncogenic pathways mutated in DLBCL-LT.
DLBCL-LT harbors mutations that are predicted to affect pathways downstream of B cell 

activation (a), including MAPK, NF-κB, and PI3K pathways, mutations that affect cell cycle 

control (b), and mutations that affect immune surveillance (c). Blue boxes denote putative 

oncogenes and red boxes denote putative tumors suppressor genes. Frequency (%) of 

somatic mutations in our expanded cohort of 31 DLBCL-LT is noted when relevant. (*) 

Putative oncogenes or tumor suppressors based on copy number data.
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Figure 4. Chromosomal rearrangement of the PD-L1 and PD-L2 in DLBCL-LT.
(a) Break-apart fluorescent in situ hybridization (FISH) assay of DLBCL-LT with PD-L1 in 

red, PD-L2 in green, and chromosome 9 control in yellow. Samples with (+) and without (−) 

translocation are annotated. (b) Dual stain PD-L1 (brown, membranous) and PAX5 (red, 

nuclear) immunohistochemistry (IHC) of normal tonsil control (inset shows light PD-L1 

staining of germinal center antigen-presenting cells), PD-L1 wild-type sample NU03, and 

PD-L1/PD-L2 mutant samples (NU07, AU25). Red PAX5 stains B-cells. (c) Dual stain PD-

L2 (brown, membranous) and PAX5 (red, nuclear) IHC of normal tonsil, PD-L1 wild-type 

NU03, and PD-L1/PD-L2 mutant samples (NU07, AU25). The scale bar represents 25 μm. 

IHC images for AU10 and AU18 are unavailable due to inadequate tissue.
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