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Abstract

Cutaneous diffuse large B cell lymphomas (DLBCL) are aggressive lymphomas with a poor
prognosis. To elucidate their genetic bases, we analyzed exome sequencing of 37 cutaneous
DLBCLs including 31 DLBCL-leg type (DLBCL-LT) and 6 cutaneous DLBCL-not otherwise
specified (DLBCL-NOS). As reported previously, 77% of DLBCL-LTs harbor NF-xB-activating
MYDS88mutations. In nearly all MYD8&wild type DLBCL-LTs, we found cancer-promoting
mutations which either activate the NF-xB pathway through alternative genes (NVFKBIE or REL)
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or activate other canonical cancer pathways (BRAF, MED12, PIK3R1, and STAT3). After NF-xB,
the second most commonly mutated pathway putatively enables immune evasion via mutations
predicted to downregulate antigen processing (B2M, CIITA, HLA) or T cell co-stimulation
(CD58). DLBCL-LTs have little genetic overlap with the genetically heterogeneous DLBCL-
NOSs. Instead, they resemble primary CNS and testicular large B-cell lymphomas (PCNSLs and
PTLs). Like PCNSLs/PTLs, 40% of DLBCL-LTs (vs. 0% of DLBCL-NOSS) harbored PDL 1/
PDL Ztranslocations, which lead to overexpression of PD-L1 or PD-L2 in 50% of the cases.
Collectively, these data broaden our understanding of cutaneous DLBCLSs and suggest novel
therapeutic approaches (e.g. BRAF or PI3K inhibitors). Additionally, they suggest novel treatment
paradigms, wherein DLBCL-LTs can be targeted with strategies (e.g. immune checkpoint
blockers) currently being developed for genomically similar PCNSLs/PTLs.

INTRODUCTION

Diffuse large B cell lymphomas (DLBCLS) involving the skin include primary cutaneous
diffuse large B cell lymphoma, leg type (DLBCL-LT) and DLBCL with secondary skin
involvement (cutaneous DLBCL, not otherwise specified [DLBCL-NOS]). DLBCL-LT is
the most aggressive primary cutaneous B cell lymphoma subtype and is associated with
increased risk of extracutaneous spread and poor prognosis (overall 5-year survival of
~50%) (Kodama et al., 2005). Patients with DLBCL-LT usually present with rapidly
growing red to violaceous tumors characteristically (but not always) on one or both lower
legs of elderly patients (median age ~75 years) (Grange et al., 2014). In comparison,
DLBCL-NOS tends to affect younger patients, with no anatomic preference, are more likely
to present with advanced stage disease, and are associated with lower median survival than
DLBCL-LTs (Lee et al., 2016).

DLBCL is a heterogeneous category of B-cell lymphomas that share large-cell morphology,
and are comprised of distinct subtypes, defined by predilections for specific anatomic sites
and extranodal tissues (e.g. the mediastinum, central nervous system, skin, etc.) and/or
distinct molecular/genetic features (Swerdlow et al., 2016). Two groups of DLBCLSs have
been identified on the basis of gene expression profiles corresponding to cell of origin:
germinal center B cell (GCB) type and activated B cell (ABC) types. Until recently,
therapeutic strategies for all subtypes of DLBCLs were adapted from therapies originally
validated in clinical trials for nodal DLBCL in part because of the relative rarity of and
limited understanding of the differences between DLBCL subtypes (Senff et al., 2008). For
cutaneous DLBCLSs, use of therapies designed for nodal DLBCLs has important limitations
for patients including a high risk for relapse (>58%) and dose-limiting toxicities (Nabhan et
al., 2012, Suarez et al., 2013).

Cancer genomics have revolutionized our understanding of the pathophysiology and
targetability of many cancers (Vogelstein et al., 2013). In part because of its relative rarity,
our understanding of the genomics of DLBCL-LT and secondary cutaneous involvement by
DLBCL-NOS remains incomplete. Recent efforts in DLBCL-LT have led to the discovery of
MYD88, CD79B, and MY C as disease-relevant putative driver genes (Mareschal et al.,
2017, Pham-Ledard et al., 2014a, Pham-Ledard et al., 2014b). However, the full landscape
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of targetable mutations remains unclear. To identify targetable mutations that can inform
future therapeutic strategies, we analyzed exome sequencing data on 37 cutaneous DLBCLs
and report the results of our efforts herein.

RESULTS

Clinical characteristics of cutaneous DLBCLSs

We collected tissue from 25 patients with cutaneous DLBCLSs. Diagnoses were confirmed by
expert pathologists (LC, JG, AL). Nineteen patients (12 men, 7 women) had disease
consistent with DLBCL-LT, with no evidence of systemic involvement at time of diagnosis.
All DLBCL-LT cases were MUM1+ (100%) and CD10- (100%). The majority were positive
for BCL2 (85%), BCL6 (92%), and FOXP1 (92%) (Tables 1, S1). This
immunohistochemical profile was consistent with non-GCB (ABC-type) DLBCL. As
expected, patients with DLBCL-LT were older (median age 80 years), presented with leg
involvement (15 of 19, with 4 others appearing on the scalp, arm and abdomen) and had a
poor prognosis (median survival of 41 months) (Tables 1, S1).

Six patients (4 men, 2 women) were found to have cutaneous disease with concurrent
systemic involvement at the time of diagnosis, consistent with secondary cutaneous
involvement by DLBCL-NOS (Table 1). DLBCL-NOS patients were generally younger than
DLBCL-LT patients, and lesions were found in diverse anatomical locations (Table 1, S1),
with only one occurring on the leg. Two of three DLBCL-NOS samples with available tissue
were GCB type on the basis of immunohistochemical stains. Two of six patients died of
progressive disease. Median survival could not be calculated as >50% of cases were
censored. Patients in both groups were predominantly treated with radiation therapy or
rituximab-based multiagent chemotherapy as first-line (Table 1).

Assessment of Copy Number Alterations in DLBCL-LT

Molecular inversion probe array analysis on tumor DNA was performed on six of 19
DLBCL-LT samples. Genomic alterations including copy-number gains, copy-number
losses, and loss-of-heterozygosity were observed in all six cases. Clonal burden ranged from
30-90% (mean 62%) across cases; one case showed clonal diversity. The average number of
alterations per sample was 26 (range: 16-42) and average proportion of the genome altered
was 27% (range: 11-70%). Losses accounted for 63% of all calls (n=155), whereas loss-of-
heterozygosity and copy number gains accounted for 14% and 23% of all calls, respectively.
Homozygous losses accounted for 12% of all copy number calls, whereas high copy number
gain, defined as >2 copies and consistent with amplification, was observed in only one case
(2p16.1p15 region). Recurrent large genomic alterations observed in at least two cases
included gains involving of chromosomes 1q, 7q, 10p, 10q, 11q, 12, 17q, 18, and X, losses
of 1p, 6q, 8p and loss-of-heterozygosity of 9p and 18. Recurrent focal copy number
alterations included gains of 2p16p15.1 (REL) and Xq28, and deletions of 2p11.2 (/GKV),
2022.3 (ZEB2), 6p21 (HLA, NOTCH4), 8912, 9p21.3 (CDKNZ2A), 14932.33 (/GH locus),
15915.1, 17921.2 (RARA), and 22911.23 (Figure S1, Table S2). Copy losses of HLA genes
involved in MHC I/11 antigen presentation affected 3 of 6 samples (50%).
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Whole exome sequencing of DLBCL-LT and DLBCL-NOS tissue specimens

We performed whole exome sequencing on 19 DLBCL-LTs (6 with matched tumor-normal
pairs, 13 without matched normal samples) and 6 DLBCL-NOS (1 matched, 5 unmatched).
Consistent with previous reports on DLBCLSs, the median numbers of mutations in DLBCL-
LT and DLBCL-NOS were 175 mutations per case, with ranges of 46-380 and 90-308,
respectively (Lohr et al., 2012, Mareschal et al., 2017) (Figure 1a).

The tumor mutation burden (TMB), which correlates with tumor neoantigen burden and
stratifies cancers based on their likelihood of responding to checkpoint blockade, was
assessed using an established algorithm (Rizvi et al., 2015) (Johnson et al., 2016). Both
DLBCL-LT and DLBCL-NOS cases were found to harbor an “intermediate” mutational
load. suggesting potential therapeutic targetability with immunotherapies (Figure 1b and 1e,
Table S3-S4).

Identification of putative driver genes in DLBCL-LT

To maximize our ability to detect cancer-promoting mutations, we employed an analytical
pipeline that identifies putative driver mutations on the basis of the distribution of mutations
and recurrences, both within our cohort and other published cohorts in the literature (Park et
al., 2017, Vogelstein et al., 2013) (Tables S5-S13). In total, we analyzed 31 cases (19 cases
of DLBCL-LT sequenced by us and 12 from publically available data) (Mareschal et al.,
2017) (Table 1).

Using our analytical pipeline, we identified 30 somatic mutations in 21 putative driver genes
across 8 biologically relevant pathways (Figure 1c). Ten of the mutations were validated
gain of function mutations in 7 oncogenes (MYD88, CD79B, CARD11, BRAF, STAT3,
MEDI12and CCNDJ3), some of which have been described in nodal DLBCL, but not
DLBCL-LT (MYD88 p.S243N, CD79B p.L199P, STAT3 p.E616K and CARD11 p.R113Q
(Figure 2; Table S6)). BRAF, STAT3, MED12, and CCND3 are genes newly implicated in
DLBCL-LT. The remaining 20 mutations were loss of function or damaging mutations in 10
known tumor suppressor genes (PIK3R1, FBXW7, CREBBF, KMT2D, NFKBIE, BMF,
PRDM1, CDKN1B, CDKN2A, CD58, ASXL1, RB1, B2M, and CI/TA). Six of these genes
are newly implicated in DLBCL-LT, but described in nodal DLBCL (P/IK3R1, FBXW?7,
NFKBIE, CDKN1B), and other cancer types (BMF, ASXL1) (Bai et al., 2001, Boultwood et
al., 2010, Hornsveld et al., 2016, Morin et al., 2016, Yao et al., 2017, Zhang et al., 2013)
(Table 2).

Highlighting the clinical relevance of our findings, at least five signaling pathways with
mutations in DLBCL-LTs are currently or potentially targetable (Figure 3). These include
highly prevalent mutations in the NF-xB pathway (MYD88 (77%), CD79B (45%), CARD11
(3%), and NFKBIE (10%) (Figure 3). 29% have point or copy humber mutations in genes
predicted to affect tumor immune evasion including genes important for antigen presentation
(HLA genes (50%), B2M (6%), C/ITA (6%)) and genes important for T cell co-stimulation
(CD58(10%)).

We also found less common mutations in the MAPK pathway (BRAF), the JAK-STAT
pathway (S7AT73), the PI-3K pathway (P/K3RI), cell cycle control pathways (CDKNZA,
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CDKN1B, CCND3, RBI), and chromatin modification pathways (KMT2D, CREBBF,
ASXLI) (Figure 3; Tables S6-S12) (Vaque et al., 2014).

MYD88 wild-type tumors harbor targetable mutations

DLBCL-NOS

Seven of 31 DLBCL-LT (5 of 19 from our dataset, and 2 of 12 from a previous published
dataset) did not have gain of function mutations in MYD88. Six of these harbored mutations
functionally validated in other cancer types. Despite the smaller sample size, we were able to
recognize distinct patterns. Three samples had mutations in other NF-xB signaling genes.
One harbored a damaging mutation in tumor suppressor NFKBI/E, one harbored copy
number gains of REL, and one harbored both. Four samples (including 1 with REL
amplification) had functionally validated mutations in other canonical oncogenic pathways,
MAPK (BRAF) (Davies et al., 2002), PI3K (P/K3RI) (Jaiswal et al., 2009), JAK/STAT
(STAT3) (Vallois et al., 2016), or transcriptional control (MED12) (Mittal et al., 2015)
(Figure 1, Table 2). These non-NF-xB pathway mutations were all mutually exclusive of
each other.

Among the DLBCL-NOS cohort, we identified mutations in 11 putative driver genes across
5 of 6 samples. None of these mutations are recurrent. These encompassed a range of
signaling pathways including NF-xB (CARD11), JAK/STAT (STAT6), MAPK (KRAS), cell
cycle control (RBI), immune surveillance (C//TA), DNA damage response ( 7P53, MSH6)
and chromatin modification (CREBBF, KMTZ2D) (Figure 1f).

The CARD11and STAT6 mutations were previously described in nodal ABC and GCB type
DLBCLs respectively but not in cutaneous DLBCLSs (Reddy et al., 2017). Finally, we found
seven damaging mutations in tumor suppressor genes previously implicated in nodal
DLBCL (KMT2D, TNFRSF14, CIITA, TP53, RB1, CREBBPand MSH6) (Cycon et al.,
2009, de Miranda et al., 2013, Reddy et al., 2017) and a damaging mutation in E7NKZ,
previously implicated in atypical chronic myeloid leukemia (Gambacorti-Passerini et al.,
2015) (Table S11, S13) (Figure 1f).

DLBCL-LT versus other nodal and extranodal DLBCL subtypes

In a pan-DLBCL analysis of nodal and extranodal DLBCL subtypes, we assessed and
compared the distribution of mutations across these DLBCL subtypes. We measured the
relative prevalence of mutations in DLBCL-LT putative driver genes in other DLBCL
subtypes (defined as the similarity index; 1= exact correlation and 0 = no correlation;
Materials and Methods). Our analysis confirmed that the mutational profile of DLBCL-LT
overlapped with the ABC-subtype of nodal DLBCLs. However, it was most similar to two
extranodal DLBCLSs, primary central nervous system large B-cell lymphoma (PCNSL)
(similarity index (SI) = 0.73) and primary testicular DLBCL (PTL) (SI1=0.71) (Figure S2,
Table S14). In addition, like PCNSL and PTL, DLBCL-LTs harbored a similarly high
incidence of concurrent CD79B and MYD88 mutations (Braggio et al., 2015, Chapuy et al.,
2016).
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DLBCL-NOS had minimal similarity to DLBCL-LT. In fact, it was more similar to the
GCB-subtype than to the ABC-subtype of nodal DLBCL. However, in general, it had little
similarity (SI < 0.42) compared to any other DLBCL subtype (Figure S3, Table S15).

PD-L1 and PD-L2 translocations

Given the genetic similarities with PCNSL and PTL, and the high frequency of PDL1/PDL2
alterations in these entities (Chapuy et al., 2016), we assessed the prevalence in DLBCL-LT
of structural variants involving the PDL 1/PDI 2locus. We performed fluorescent in situ
hybridization (FISH) targeting the PD-L1/PD-L2 gene locus on 10 DLBCL-LTs and 5
DLBCL-NOSs with available tissue. Of the 10 DLBCL-LTs, 4 samples (40%) demonstrated
break-apart translocations of PD-L 1 and PD-L2 (Figure 4a). There were no structural
variants in 5 of 5 DLBCL-NOS tested.

We performed dual immunohistochemistry staining (PDL1/PAX5 and PDL2/PAX5) on 9
DLBCL-LT samples to determine relative PD-L1 and PDL-2 expression in the tumor and in
the microenvironment. There was an imperfect correlation between PD-L 1/PD-L 2 structural
variants and tumor expression of PD-L1/PD-L2. Among the 4 samples with translocations, 2
(50%) showed upregulation of PD-L1 or PD-L2 (1 each) in both tumor and
microenvironment (Figure 4, Table S16). These numbers are consistent with those reported
in a recent study (Menguy et al., 2017). Among the 6 FISH-negative DLBCL-LT samples,
there was no tumor expression of PD-L1 or PD-L2. The majority, 7 of 9 examined, had PD-
L1 (7 cases) or PD-L2 expression (1 case) in the microenvironment (Figure 4b-4c). None of
the DLBCL-NOS samples had evidence of tumor PD-L1 expression, but 4 of 5 had strong
PD-L1 expression in the microenvironment (Table S16).

DISCUSSION

We performed exome sequencing of the largest cohort of cutaneous DLBCLS to date. We
identified putative cancer promoting mutations in 21 genes, including 10 whose association
with DLBCL-LT are, to our knowledge, previously unreported. More than 50% of mutations
identified have not been previously described in DLBCL-LT.

Highlighting the clinical importance of our findings, our analyses of DLBCL-LT confirm the
high prevalence of mutations in the potentially targetable NF-xB signaling pathway, with
validated mutations in MYD88, CD79B, CARD11, or NFKBIE in 79% of tumors. We have
identified NFKB/E mutations and REL copy gains as potential drivers that reactivate the
NF-xB pathway in MYD88 wild-type tumors and occur exclusive of other NF-xB pathway
mutations. Among the other M YD88wild-type tumors without NF-xB pathway alterations,
we identified mutations in canonical cancer pathway genes (e.g. BRAF (MAPK pathway),
PIK3R1 (PI13K), STAT3 (JAK-STAT)) or pathways affecting the transcriptional machinery
(MED12) that may serve as bypass pathways. These mutations have important clinical
implications as they suggest that most of these tumors are targetable via inhibitors of these
pathways and that non-NF-xB pathways can be primary drivers in a subset of DLBCL-LTSs.

In addition, we found that DLBCL-LT bore hallmarks of ABC-type DLBCLSs whereas
DLBCL-NOS, if anything, bore hallmarks of GCB-type DLBCLSs. These data suggest that 1)
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genetic tests at the patient bedside may distinguish these entities and 2) cutaneous DLBCL
subtypes are different diseases with distinct pathophysiological mechanisms that may
require distinct therapeutic strategies.

Our data highlight the importance of immune evasion in DLBCL-LT pathogenesis. DLBCL-
LTs have sufficient neoantigens to be immunogenic. However, they harbor mutations in
multiple pathways predicted to enable evasion from immune surveillance. First, PDL1/PDL2
locus alterations occurred in 40% of DLBCL-LTs. Secondly, we also found that 50% of
samples harbored copy number deletions in either the MHC Class | or 11 loci, which have
been shown to reduce the number of neoantigens that can be presented on the tumor cell
surface (McGranahan et al., 2017). Lastly, we confirmed previous studies that found rare
point mutations in genes associated with antigen processing [ B2M (6% of samples), C//TA
(6%)] or T cell co-stimulation [CD58 (10%)]. None of the samples were assessed by all
three genetic tools (FISH, copy number analysis and exome sequencing). Nonetheless, to the
extent we can, we infer that these mutations are mutually exclusive, and 50% or more
DLBCL-LTs harbored mutations in one of these immune evasion pathways.

Lastly, we found broad similarities between DLBCL-LTs with two extranodal DLBCLSs
(PTL and PCNSL). In addition to frequent NF-xB activating mutations, all three DLBCL
subtypes appear to employ multiple mechanisms in tumor cells and in the tumor
microenvironment to evade immune surveillance. These data are particularly interesting in
light of recent data in mice, which suggest that the lower legs, at times, can be an
immunoprivileged site like the CNS and the testes. In particular, the lower legs support local
upregulation of Treg cells that inhibit T cell responses in the setting of lymphedema (Garcia
Nores et al., 2017).

Collectively, our findings suggest a novel therapeutic paradigm wherein patients with
DLBCL-LT subtype can be included in clinical trials with genomically similar PCNSL and
PTLs. As an example, our analyses led us to discover that 40% of DLBCL-LT had recurrent
genetic alterations in PD-L 1/PD-L 2. This suggests that at least in a subset of these tumors,
there is therapeutic value in utilizing checkpoint inhibitors and including these patients in
currently active trials of similar DLBCL, such as nivolumab in relapsed/refractory PCNSL
and PTL (NCT02857426).

MATERIALS AND METHODS

Sample preparation and sequencing analysis

All studies were approved by the Institutional Review Board (IRB) of Northwestern
University. The DLBCL-LT samples were de-identified formaldehyde fixed paraffin
embedded (FFPE) archival specimens from Medical University of Graz (Graz, Austria),
Northwestern University (Chicago, USA) and Massachusetts General Hospital (Boston,
MA) and were reviewed by expert dermatopathologists (JG, LC) or hematopathologists (AL,
AB). Subject consent for this study was not required as all tissue was obtained from archival
tissue that is IRB/Ethics Committee-approved for research purposes. 2mm cores (with >80%
tumor cells) were obtained as described (Goh et al., 2016), matched normal skin was used as
controls in 7 cases. Genomic DNA was prepared/sequenced/analyzed as previously
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described (Park et al., 2017). Genomic sequencing data were deposited in dbGaP (Accession
number; phs001645).

Copy Number Aberrations

Genomic DNA was processed for molecular inversion probe array analysis using the
OncoScan FFPE Assay kit (ThermoFisher, Santa Clara, CA, USA), as described (Paxton et
al., 2015). Data analysis was performed using Chromosome Analysis software (ChAS)
version 3.1 (ThermoFisher) and Nexus Express Software for OncoScan version 3.1
(Biodiscovery, Hawthorne, CA, USA) with reference to assembly GRCh37/hg19, as
described (Andersen et al., 2017). All cases were processed using the TuScan segmentation
algorithm except for case MG88, which was re-centered and processed using SNP-FASST2.
Recurrent genomic alterations were calculated using the aggregate analysis in Nexus
Express.

Comparison of DLBCL-LT and DLBCL-NOS with other DLBCL subtypes

We compared the frequency of mutations in the genes most commonly mutated in each
DLBCL subtype with that of the same genes in DLBCL-LT or DLBCL-NOS. Vice-versa, we
calculated the relative mutation prevalence in other DLBCL subtypes of 17 putative
DLBCL-LT and 11 putative DLBCL-NOS driver genes. We normalized these values to a 0
to 1 similarity index scale where 1 would be exact correlation and 0 no correlation.

Tumor Mutation Burden Estimation

To assess relative tumor mutation burden, we quantified all somatic single nucleotide
variants within 315 genes that are part of the Foundation Medicine panel (Campesato et al.,
2015, Rosenberg et al., 2016). Relative tumor mutation burden cutoffs were =20 mutations
per megabase (high), 6-19 (intermediate), or <5 (low).

Fluorescence in situ hybridization (FISH) of PD-1 ligands

Fluorescence in situ hybridization (FISH) was performed in collaboration with Empire
Genomics (Buffalo, NY) on paraffin-embedded formalin-fixed tissue using probes
developed to target PD-L1(CD274, green) and PD-L2(PDCDI1LGZ2, red) within the
chromosome 9p24.1 locus, and a control probe targeting the 9q arm (Con 9, yellow). The
PDL 1 probe does not overlap the PDL2gene and the PDL2 probe does not overlap the
PDL 1 gene. The two probes consistently co-localized in normal metaphase spreads from all
control tissues (human tonsils and peripheral blood mononuclear cells) tested. Over 90% of
cells in these cases expressed 2 copies of PD-L1 adjacent to PD-L2.

Slides were hybridized according to established protocols (Empire Genomics) and reviewed
by a pathologist. 200 cells were counted for all except one sample (100 cells) due to sample
quality. Break-apart red/green signal pattern >10% of counted cells were considered above
the threshold for translocation. Counts for amplification, relative copy gain, polysomy and
normal copy numbers were also noted using criteria previously described (Roemer et al.,
2016).
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Double Immunohistochemistry Staining

Double staining of PD-L1 (1:50; clone E1L3N; Cell Signaling, Danvers, MA) or PD-L2
(1:50; clone D7USC; Cell Signaling) and PAX5 (1:100; clone 24; BD Biosciences, San Jose,
CA) was performed with an automated staining system (Bond I11; Leica Biosystems, Buffalo
Grove, IL) as previously described (Ansell et al., 2015). Stained slides were scored by an
expert dermatopathologist (JG) and expert hematopathologist (AB), and percentages of both
tumor PDL-1 or PDL-2 and microenvironment PDL-1 or PDL-2 were calculated by scoring
100-200 cells in each category. The threshold for PD-L1 and PD-L2 expression was defined
at 30% for PAX5-positive tumor cells and at 20% for PAX5-negative immune cell
microenvironment, as reported by others (Kiyasu et al., 2015).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Landscape of somatic alterationsin diffuse large B cell lymphoma, leg type (DLBCL -
LT) and cutaneous diffuse large B cell lymphoma, not otherwise specified (DLBCL-NOS).

The number and type of single somatic nucleotide variants (SSNVs) in each sample of
DLBCL-LT (a) and DLBCL-NOS (d). The tumor mutation burden as determined by the
Foundation Medicine algorithm (see Methods) in DLBCL-LT (b) and DLBCL-NOS (e).
Tumor mutation load is divided into three tiers (low, intermediate, and high). Recurrent
somatic mutations identified by whole-exome sequencing in DLBCL-LT (c) and DLBCL-
NOS (f). Blue denotes recurrent mutations in putative oncogenes; red denotes damaging
mutations in putative tumor suppressor genes; grey denotes missense mutations that have not

been functionally validated.
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Figure 2. Schematics of genes annotated with oncogenic missense mutationsfound in DLBCL-LT
and DLBCL-NOS.

(a) Mutations marked with blue arrowheads denote validated gain of function missense
mutations in putative oncogenes. (b) Mutations marked with red arrowheads denote loss of
function missense mutations in putative tumor suppressor genes. Mutations marked with
grey arrowheads denote missense mutations that have not been functionally validated.
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activation (a), including MAPK, NF-xB, and PI3K pathways, mutations that affect cell cycle
control (b), and mutations that affect immune surveillance (c). Blue boxes denote putative
oncogenes and red boxes denote putative tumors suppressor genes. Frequency (%) of
somatic mutations in our expanded cohort of 31 DLBCL-LT is noted when relevant. (*)
Putative oncogenes or tumor suppressors based on copy number data.
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Figure 4. Chromosomal rearrangement of the PD-L1 and PD-L2 in DLBCL-LT.
(a) Break-apart fluorescent in situ hybridization (FISH) assay of DLBCL-LT with PD-L1in

red, PD-L2in green, and chromosome 9 control in yellow. Samples with (+) and without (=)
translocation are annotated. (b) Dual stain PD-L1 (brown, membranous) and PAXS5 (red,
nuclear) immunohistochemistry (IHC) of normal tonsil control (inset shows light PD-L1
staining of germinal center antigen-presenting cells), PD-L 1 wild-type sample NUO3, and
PD-L 1/PD-1 2 mutant samples (NUO7, AU25). Red PAX5 stains B-cells. (c) Dual stain PD-
L2 (brown, membranous) and PAX5 (red, nuclear) IHC of normal tonsil, PD-L1 wild-type
NUO03, and PD-L 1/PD-L2 mutant samples (NUO7, AU25). The scale bar represents 25 pum.
IHC images for AU10 and AU18 are unavailable due to inadequate tissue.
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