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Abstract

Objective: Naltrexone has been shown to attenuate craving and the subjective effects of 

methamphetamine. Although naltrexone has modulatory effects on neural activity at dopaminergic 
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synapses, the effect on striatal connectivity is unclear. As methamphetamine use is associated with 

greater resting-state functional connectivity (RSFC) in the dopaminergic system, we examined 

whether extended-release naltrexone (XR-NTX) can normalize striatal connectivity and whether 

changes in RSFC are associated with changes in craving and methamphetamine use.

Methods: Thirty-seven participants in or seeking treatment for methamphetamine use disorder 

took part in this clinical trial at a university-based research clinic between May 2013 and March 

2015 (Clinicaltrials.gov NCT01822132). Participants were randomized by a random number 

generator to a single four-week injection of XR-NTX or placebo. Functional magnetic resonance 

imaging (fMRI) and self-reported measures of craving and methamphetamine use were conducted 

before and after double-blinded randomization.

Findings: There was a significant reduction in methamphetamine use in the naltrexone group and 

a significant treatment-by-time interaction on RSFC between the ventral striatum, amygdala, 

hippocampus, and midbrain. Connectivity was significantly reduced over time in participants 

randomized to naltrexone but unchanged in those randomized to placebo (p < 0.05, whole-brain 

corrected). Interactions between treatment and changes in connectivity show that significant 

reductions in connectivity were associated with reductions in methamphetamine use.

Conclusions: Neurobiological deficits associated with methamphetamine use may undermine 

the efficacy of pharmacotherapies that directly target the dopamine reward system. Naltrexone, via 

antagonism of indirect mu-opioid effects on dopamine neurons, may attenuate reward system 

connectivity and aid in methamphetamine use treatment.
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1. Introduction

Behavioral approaches are the main treatments for methamphetamine (MA) use disorder, 

and although they can be effective, many patients relapse (Vocci and Appel, 2007). Despite a 

number of clinical trials testing the efficacy of agents including dopamine partial agonists 

and GABAergic and serotonergic agents, there are no approved pharmacological treatments 

for MA use disorder (Elkashef et al., 2008; Karila et al., 2010). Early abstinence from MA is 

accompanied by intense drug craving and high levels of cognitive impairment (Potvin et al., 

2018; Zorick et al., 2010), which are important factors in the maintenance of addiction and 

may undermine treatment efficacy. Medications that interact with neural systems to attenuate 

craving and improve cognitive control may serve as a useful adjunct by enhancing the 

effectiveness of behavioral therapies.

The striatolimbic circuitry plays a central role in drug reinstatement and craving for 

stimulants (Garavan et al., 2000; McFarland et al., 2004; Volkow et al., 2008; Wong et al., 

2006), underscoring the importance of the striatal dopamine system and its interactions with 

other transmitters in craving and susceptibility to substance use (London et al., 2015). There 

is considerable evidence of an interaction between the dopamine and opioid systems in 

which dopamine receptor agonists increase and antagonists decrease striatal mu-opioid 

receptors in animal models (Azaryan et al., 1996a). Similarly, administration of cocaine, a 
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dopamine receptor agonist, increases mu-opioid receptor expression in the nucleus 

accumbens and amygdala (Azaryan et al., 1996b). Evidence of the effects of stimulants on 

the opioid system also come from human studies using positron emission tomography with 

[11C]Carfentanil to index endogenous opioid release through mu-opioid receptor binding. 

Administration of damphetamine increases endogenous opioid release in dorsal and ventral 

striatum and prefrontal cortex (Colasanti et al., 2012; Mick et al., 2014), and in people who 

use cocaine, greater muopioid receptor binding is positively correlated with craving for 

cocaine (Gorelick et al., 2005).

Naltrexone has shown promise for treating alcohol dependence, perhaps through opioid 

modulation of dopaminergic systems. Naltrexone exerts pharmacological effects primarily as 

a competitive mu-opioid receptor antagonist and modulating tonic GABAergic inhibition of 

midbrain dopaminergic neurons, thereby decreasing downstream dopamine release within 

the nucleus accumbens (Tambour and Quertemont, 2007). Greater dopamine release and 

metabolic activity in the ventral striatum is associated with an increase in amphetamine self-

administration in rodents (Piazza et al., 1991). Naltrexone may, therefore, attenuate craving 

and subjective effects of MA in humans (Ray et al., 2015; Roche et al., 2017) and 

sensitization in animals (Chiu et al., 2005) by modulating neural activity at ventral striatal 

dopaminergic synapses. Although naltrexone has been shown to strengthen connectivity 

between the VTA and dorsal striatum but not the ventral striatum during a cue-processing 

task, this study aimed to investigate how extended release naltrexone (XR-NTX) affects the 

intrinsic activity of the ventral striatum at rest and the interactions with clinical outcomes 

such as craving and MA use in individuals with MA-use disorder. As MA use is associated 

with greater mesolimbic and striatolimbic resting-state functional connectivity (RSFC) 

(Kohno et al., 2018; Kohno et al., 2014; Kohno et al., 2016), we hypothesized that XR-NTX 

would reduce RSFC, MA craving, and MA use.

2. Materials and methods

This randomized clinical trial took place between May 2013 and March 2015. Participants 

were recruited from community-based treatment programs and primary care clinics in 

Portland, Oregon, U.S.A. Participants were eligible if they met DSM-IV criteria for 

Methamphetamine Dependence, had no other substance dependence except tobacco and/or 

nicotine dependence, no history of psychiatric disorder except depression and/or post-

traumatic stress disorder, aspartate transaminase (AST) and alanine transaminase (ALT) < 5 

times the upper limit of normal, were age 18 to 55 years, right handed, English-speaking, 

and free of drugs and alcohol > 72 hours prior to study assessments. Exclusion criteria 

included: opioid use in the last 30 days or opioid dependence in the past 5 years, a sensitivity 

to naltrexone, PLG (polylactide-co-glycolide) carboxymethylcellulose, or any other diluent 

components, a potential need for opioid analgesics during study period, pregnancy, magnetic 

resonance imaging (MRI) contraindications, or serious medical illness in the past 30 days.

2.1 Study design

All subjects provided written informed consent as approved by the Oregon Health and 

Science University and Veterans Affairs Portland Healthcare System Joint Institutional 
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Review Board. Following consent, baseline resting-state functional MRI, survey 

assessments, and a negative urine toxicology screen for opioids (Visit 1) were acquired. A 

computerized random number generator was used to randomize participants to a single four-

week injection of XR-NTX (Vivitrol, Alkermes) (n=19) versus identical-appearing placebo 

injection (n=18), both donated from the manufacturer. XR-NTX was chosen over daily-

dosed oral naltrexone to ensure adherence to study medication and to allow reasonably 

sufficient time to observe potential changes in brain function following a single dose. 

Participants and study staff were blinded to randomization assignment. Survey and imaging 

assessments were repeated three weeks following injection (Visit 2).

2.2 Neuropsychiatric assessment

Participants were interviewed and rated by an experienced research assistant with the Mini 

International Neuropsychiatric Interview (MINI) (Sheehan et al., 1998) to confirm substance 

dependence diagnoses and detect psychiatric disorders. Past 30-day substance use was 

assessed using the Addiction Severity Index-lite (ASI-lite) (Cacciola et al., 2007; McLellan 

et al., 1992). MA craving was assessed using a visual analogue scale (VAS) ranging from 0 

(no craving) to 100 (most intense craving possible) (Hamilton et al., 2011).

2.3 MRI imaging acquisition

Imaging was performed on a 3 Tesla Siemens TIM Trio MRI scanner. A localizer scan was 

acquired in order to guide slice alignment during anatomical and functional scans. A 

T2*weighted image was acquired using an echo planar imaging scheme (EPI) (24 slices, 4 

mm thick, gap width = 1 mm, TR/TE/α = 2,000 ms/38 ms/80°, matrix = 128×128, FOV = 

240×240 mm, 170 volumes, in-plane pixel size of 1.875 mm2) while subjects stared at a 

white cross on a black screen for six minutes. One high-resolution T1-weighted magnetically 

prepared rapid acquisition gradient echo (MPRAGE; 144 slices 1 mm thick, TR/TE/TI/α = 

2,300 ms/4.38 ms/1,200 ms/12°, FOV = 208×256 mm) was acquired for co-registration with 

functional images and statistical overlay.

2.4 Resting-state fMRI analysis

Image analysis was performed using FSL 5.0.2.1 (www.fmrib.ox.ac.uk/fsl). Images were 

realigned to compensate for motion with regression of three translational and three rotational 

parameters (Jenkinson et al., 2002). Data were skull-stripped, spatially smoothed (5 mm 

FWHM Gaussian kernel), and band-pass temporal filtered (.01–0.1 Hz). Further pre-

processing included additional nuisance regressors: average signal of cerebrospinal fluid and 

white-matter and two metrics of motion-related artifact, specifically motion scrubbing with 

frame-wise displacement (FD) and a combination of the temporal derivative of the time 

series and root-mean-squared variance over all voxels (Power et al., 2011). To ensure no 

significant group differences in head movements, a t-test was used to compare groups on FD 

for each scan separately (Scan 1: p = 0.895; Scan 2: p = 0.984). Global signal regression was 

not applied. EPI images were registered to the MPRAGE and then into standard Montreal 

Neurological Institute space using a 12parameter affine transformation. An anatomically-

defined region of interest from the Harvard-Oxford Subcortical atlas of the ventral striatum 

was used as a seed and transformed into each subject’s native space by applying the inverted 

transformation matrix of EPI to MPRAGE to standard space. The mean time series across all 
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voxels within the ventral striatum seed from preprocessed images were used as a regressor in 

separate whole-brain, voxel-wise resting-state analyses. For a repeated measures group 

analysis, a two-way mixed effects analysis of variance (ANOVA) tested the main effect of 

time and the interaction of treatment and time on ventral striatal RSFC. To minimize false 

positives (Eklund et al., 2016), FSL’s local analysis of mixed effects (FLAME) was used 

where implicit estimation of variance is calculated using a Bayesian approach. All whole-

brain RSFC statistics were corrected for multiple comparisons by using the Gaussian 

random fields theory with cluster-corrected statistics of voxel height threshold of Z > 2.3 and 

cluster significance of p < 0.05 (Worsley et al., 2011). This approach has been considered 

conservative, likely reducing false positives by incorporating first-level variances at the 

group level compared to standard random effects analysis including FSL’s ordinary least 

squares (OLS), standard SPM, and AFNI’s 3dttest++ where sphericity is assumed at the 

group level (Eklund et al., 2016).

2.5 Statistical analysis

Student’s t-tests and Fisher’s exact tests, where appropriate, were used to compare groups in 

baseline demographic and clinical variables (Table 1). Repeated measures ANOVA were 

used to examine the effects of XR-NTX on craving and MA use. The main effect of 

treatment (XRNTX or Placebo) and time (Visit 1 or Visit 2) and the interaction of treatment 

and time were examined on each measure separately. Following a significant group × time 

interaction with ventral striatal RSFC to the hippocampus and amygdala, a functionally-

defined volume of interest of the hippocampus/amygdala cluster was used to extract average 

parameter estimates (β-values) from ventral striatal RSFC contrast maps, which correspond 

to the strength of functional connectivity with the ventral striatum as a function of treatment 

and time. An analysis of covariance was conducted to examine how changes in RSFC and 

treatment relate to changes in craving and MA use between visits using SPSS version 24 

(IBM, Armonk, NY, USA). The analysis included and tested the main effect of group and 

the interaction between group and RSFC on changes in outcome measures of craving and 

MA use in two separate models.

3. Results

3.1 Participant characteristics

Research assistants pre-screened 220 individuals, 104 of whom were eligible for 

participation (Figure 1). The most common reasons for exclusion at pre-screening were 

polysubstance use, abstinence from MA for over six months, and MRI contraindications. Of 

the 104 eligible participants, 52 were randomized (50% of those who were eligible [23.6% 

of those screened]). Three eligible participants declined randomization. Of those 

randomized, 37 completed baseline and follow-up assessments that were available for 

analysis. Reasons for exclusion from analysis of those randomized included scheduling 

conflicts/no-shows and MRI confounds.

At baseline, groups were well-matched on demographic variables (Table 1). There were no 

significant differences in mean age (Placebo: 36.47 years; XR-NTX: 38.56 years, p = 0.523) 

or sex (Placebo: 73.7% men; XR-NTX: 77.8% men, p = 0.772). Both groups were similar in 
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education and smoking status; a minimum of a high school or equivalent education was 

obtained in 94.4% and 100% of participants in the XR-NTX and Placebo group, respectively 

(p = 0.783), and cigarette smokers accounted for 77.8% of participants in the XR-NTX 

group and 89.5% of the Placebo group (p = 0.335).

There were no significant group differences in MA use in the 30 days prior to study 

enrollment (Placebo: 3.56 days; XR-NTX: 5.06 days, p = 0.505) or craving for MA indexed 

by the VAS (Placebo: 23.84; XR-NTX: 32.83, p = 0.327). HIV-positive participants 

accounted for 27.8% and 21.1% of the XR-NTX and Placebo group, respectively (p = 

0.634). Among HIVpositive patients, the mean CD4 count was 408.75 ± 369.11 in the XR-

NTX group compared to 701.5 ± 426.44 in the Placebo group (p = 0.339). One HIV-positive 

subject in each group had no current or past history of taking stable antiretroviral therapy, 

but all other HIV-positive patients were taking stable antiretroviral therapy prior to and 

during the study. CD4 and antiretroviral therapy information was not available for one 

subject in the XR-NTX Group.

3.2 Methamphetamine use and craving

Mean number of days in the past 30 days of self-reported MA use decreased from 5.06 to 

1.56 in the XR-NTX group and from 3.56 to 2.74 in the Placebo group. The repeated 

measures ANOVA resulted in a significant Time x Treatment interaction (p = 0.042), with 

the XR-NTX group showing greater significant reductions in MA use compared to the 

Placebo group (Figure 2). Mean craving scores decreased from 32.83 to 20.06 in the XR-

NTX group and from 23.84 to 18.86 in the Placebo group. There was a significant main 

effect of time on craving scores (p = 0.043) and no significant Time x Treatment interaction 

(p = 0.384).

3.3 Resting-state functional connectivity

Whole-brain voxel-wise analysis revealed a main effect of time where there was an increase 

in connectivity across both groups between the ventral striatum and right middle and inferior 

frontal gyri, right ventral anterior insula, and right superior and inferior temporal gyri. There 

was also a significant interaction of time and treatment on RSFC, where the XR-NTX group 

but not the Placebo group exhibited a significant reduction in connectivity between ventral 

striatum, midbrain, left hippocampus, and amygdala between scans (p = 0.05, whole-brain 

corrected) (Figure 3).

3.4 Relationship between RSFC and clinical outcome measures

A significant main effect of RSFC (p = 0.003) and a group interaction (p = 0.039) between 

changes in RSFC of striatolimbic regions and changes in MA use was found: reduced RSFC 

was associated with a reduction in MA use. There were no significant main effects (p = 

0.495) or group interactions (p = 0.388) between changes in RSFC and changes in craving.

4. Discussion

Neuroimaging studies of alcohol use disorder demonstrate the effects of naltrexone on brain 

function and connectivity (Lukas et al., 2013; Mann et al., 2014; Morris et al., 2017; 
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Spagnolo et al., 2014). We extend these results to individuals with MA use disorder and 

show a reduction in striatolimbic RSFC in the XR-NTX group compared to a Placebo group. 

Although we find no significant group differences in the reduction of craving for MA, there 

is significant reduction in MA use in the XR-NTX group.

Endogenous opioid blockade has been used to treat impulsivity disorders such as eating 

disorders (Marrazzi et al., 1995; O’Malley et al., 2007), pathological gambling (Kim and 

Grant, 2001), kleptomania (Grant et al., 2009), and compulsive sexual behavior (Raymond et 

al., 2010) and facilitates relapse prevention for alcohol (Garbutt et al., 2005) and opioid 

(Krupitsky et al., 2011) dependencies. Early phase trials suggest that naltrexone, a potent mu 

opioid receptor antagonist, may decrease MA use. In a 12-week trial of naltrexone vs. 

placebo in 80 MA-dependent patients, those receiving once daily oral naltrexone achieve a 

greater mean percent of MA-negative urine drug screens (65.2% vs. 47.7%, p < 0.05) and 

report fewer days of MA use (5.5% vs. 16.1%, p < 0.05) (40). Urine testing of naltrexone 

metabolite 6-β-naltrexol demonstrated 62.5% adherence among patients assigned to 

naltrexone. Naltrexone efficacy would be expected to increase through use of XR-NTX, a 

once a month intramuscular injection. In a second study, 20 MA-dependent patients pre-

treated with oral naltrexone experienced attenuated subjective effects and decreased craving 

when given dextroamphetamine, suggesting the subjective effects of MA may be partly 

mediated through the endogenous opioid system (Jayaram-Lindstrom et al., 2008a). A third, 

smaller study of 31 MA-dependent patients randomized to oral naltrexone vs. placebo 

demonstrated a non-significant trend toward reductions in MA craving or use during 8-

weeks of follow-up but did not report information regarding adherence (Grant et al., 2010). 

Although our study shows a greater reduction in craving in the XR-NTX group, the effects 

do not meet statistical significance. This is similar to a recent study showing no effect of 

XR-NTX on MA craving among men who have sex with men (Coffin et al., 2018). The 

majority of participants from that trial were in residential treatment, which may explain why 

they found no reduction in MA use while our results show significant reductions with XR-

NTX.

The XR-NTX group shows greater reduction in striatolimbic RSFC and in MA use than the 

Placebo group. These results are in line with studies of alcohol use disorder, where 

individuals who abstain from alcohol exhibit less RSFC in the reward/salience networks 

(Kohno et al., 2017). The reduction in striatolimbic RSFC extends findings of heightened 

RSFC between amygdala and hippocampus (Dean et al., 2014) and among regions of the 

mesocorticolimbic system (Kohno et al., 2014; Kohno et al., 2016) in MA use disorder and 

show that antagonizing mu-opioid receptors can reduce striatolimbic functional connectivity.

Dopamine signaling in the striatum is considered a key factor in the maintenance of 

stimulant use (Volkow et al., 2006; Wong et al., 2006). Evidence comes from reports that 

greater dopamine release and metabolic activity of the striatum and dopamine transmission 

in the nucleus accumbens is associated with an increase in amphetamine self-administration 

in rodents (Piazza et al., 1991). In addition, functional connectivity during a cue-reactivity 

paradigm is increased in the ventral tegmental area and dorsal striatum and decreased in the 

precuneus with naltrexone (Courtney et al., 2016). Neuroimaging studies also highlight the 

role of the ventral striatum in alcohol use disorder. Greater cue-induced activation of the 
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striatum is associated with subsequent relapse in abstinent alcohol dependent subjects 

(Grusser et al., 2004). Furthermore, naltrexone decreases alcohol-cue induced activation of 

the ventral striatum (Myrick et al., 2008). Recently detoxified alcohol-dependent individuals 

exhibit greater activation of the ventral striatum when presented with alcohol-associated 

visual and olfactory cues (Braus et al., 2001; Grusser et al., 2004). Naltrexone reduces the 

subjective effects of amphetamines (Jayaram-Lindstrom et al., 2008b), perhaps through the 

downregulation of connectivity in striatolimbic dopaminergic regions, which may account 

for the greater reduction in drug use behavior in the XR-NTX group. This is consistent with 

the notion that the nucleus accumbens and amygdala play a substantial role in the 

reinstatement of drug-seeking behavior (Feltenstein and See, 2008) and that reactivity of 

amygdalar pathways may predict relapse and treatment efficacy (Koob and Volkow, 2010). 

Overall, these results collectively suggest that the reinstatement of drug-seeking behavior 

following exposure to discrete or contextual drug-associated cues involves DAergic and 

glutamatergic interactions between the NAcc core and the BLA and dmPFC.

The XR-NTX group shows greater reductions in craving compared to the Placebo group; 

however, the differences are not statistically significant. Furthermore, the XR-NTX-induced 

reductions in striatal RSFC with dopaminergic terminal regions are not associated with 

changes in craving. Although there is strong evidence for a relationship between dopamine 

signaling and drug craving, the association is often between cue-induced dopamine release 

with cue-induced craving: dopamine receptor occupancy or dopamine release is associated 

with cocaine cues and subsequent craving (Volkow et al., 2006; Wong et al., 2006). As 

changes in dopamine release alone do not induce craving unless paired with drug cues 

(Volkow et al., 2008), it is possible that the lack of significant findings with XR-NTX are 

due to measuring craving without drug cues in a laboratory setting. One study showed, 

however, that naltrexone affects functional connectivity during a cue-reactivity paradigm in a 

number of brain regions including dorsal striatum but not ventral striatum (Courtney et al., 

2016). The lack of a relationship with ventral striatal resting-state connectivity is perhaps 

due to a stronger role of dorsal striatum in naltrexone-induced changes in craving. Future 

studies may consider examining the relationship between cue-induced craving and XR-NTX 

mediated changes in resting-state functional connectivity using different seed regions.

4.1 Limitations

Our findings should be interpreted in light of the following potential limitations. First, we 

enrolled a relatively small sample of participants with limited baseline MA use. Larger 

studies are needed to confirm and expand the current findings. In this study, we examined 

craving intensity using the VAS, a self-report measure of craving, but little is known about 

the temporal dynamics of these symptoms (Drummond, 2001). Also, the groups included 

HIV-positive individuals, and although groups were matched and almost all were on 

antiretroviral therapy prior to and during the study, HIV status could potentially confound 

the results. Lastly, this study was underpowered to examine sex by treatment interactions on 

RSFC and clinical variables. Sex differences, however, have been shown in incidence, 

prevalence, and outcomes for treatment (Hartung et al., 2002), and examining how sex may 

mediate differences in the effects of naltrexone on RSFC, craving, and MA use is important 

for future studies.
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5. Conclusion

Naltrexone administration has been shown to reduce MA use in human clinical studies (Ray 

et al., 2015; Roche et al., 2017), and this study provides new evidence that naltrexone 

reduces striatolimbic RSFC in MA use disorder. We also highlight how naltrexone interacts 

with striatolimbic RSFC to reduce the use of MA, which is consistent with the hypothesis 

that engagement of the amygdalar pathway is necessary for subsequent drug reinstatement 

(Kalivas and McFarland, 2003; McFarland et al., 2004; Volkow et al., 2008). Future studies 

identifying the mechanism by which opioid antagonists alter the intrinsic connectivity of the 

striatolimbic system may aid in the development of adjunctive treatments for 

methamphetamine use disorder.
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Highlights

• Naltrexone reduces methamphetamine (MA) use in those with MA use 

disorder.

• Naltrexone reduces resting-state functional connectivity in striatolimbic 

networks.

• Interactions show that reductions in connectivity relates to reductions in MA 

use.
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Figure 1. Study design.
Research assistants pre-screened 220 individuals, 104 of whom were eligible for 

participation. The most common reasons for exclusion at pre-screening were polysubstance 

use, clean from methamphetamine for too long, and MRI contraindications. Of the 104 

eligible participants, 52 were randomized. Three eligible participants declined 

randomization. Of those randomized, 37 completed baseline and follow-up assessments that 

were available for analysis. Reasons for exclusion from analysis of those randomized 

included scheduling conflicts/no-shows and MRI confounds (artifacts, motion, did not 

complete task, etc.).
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Figure 2. Group by time interaction on methamphetamine use.
A two-way repeated measures ANOVA was conducted to examine whether any change in 

MA use is the result of an interaction between two factors: Treatment Group (placebo group 

or naltrexone group) and Time (Visit 1 or Visit 2). MA use was the dependent variable and 

the main effect of Group (Placebo group, XTR-NTX group) and Time (visit 1, visit 2) and 

the interaction of Group and Time was tested. The Group x Time interaction shows that 

these two factors interact to produce changes in MA use, where the XTR-NTX group shows 

reductions in MA use from Visit 1 to Visit 2 (F(2,35)=4.80, p =0.04.
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Figure 3. Treatment by time interaction on ventral striatal RSFC.
The naltrexone group exhibited reduced connectivity between ventral striatum, amygdala, 

hippocampus and midbrain between scan 1 and scan 2 (p < 0.05, whole-brain corrected). 

Parameter estimates (regression β-values) were extracted from the functional ROI of the 

amygdala and hippocampus.
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Figure 4. Relationship between change in ventral striatal RSFC and change in MA use.
Scatter plot shows the relationship between changes in RSFC between ventral striatum and 

amygdala/hippocampus and changes in days of MA use across all subjects. An increase in 

RSFC was associated with an increase in the number of days of MA use.
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Table 1.

Participant Characteristics

Placebo (n = 19) XR-NTX (n= 18) p-value 
c

Age (years) 
a 36.47 ± 10.06 38.56 ± 9.55 0.523

Sex (M/F) 
b 14/5 14/4 0.772

Education (yrs.) 12.63 ± 0.83 12.78 ± 2.13 0.783

      Craving (VAS) 23.84 ± 27.27 32.83 ± 27.69 0.327

MA use

   Days in the last 30 3.56 ± 6.42 5.06 ± 6.93 0.505

Smoking

Number of smokers 
b 17 14 0.335

Cigarettes per day 12.66 ± 7.16 8.14 ± 7.30 0.066

Positive HIV Status 
b 4 5 0.634

a
Data shown are means ± Standard Deviations

b
Data analyzed with Chi-squared test (X2)

c
No significant group differences in measures tested
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