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Improving Protein Gamma-Turn 
Prediction Using Inception Capsule 
Networks
Chao Fang1, Yi Shang1 & Dong Xu   1,2

Protein gamma-turn prediction is useful in protein function studies and experimental design. Several 
methods for gamma-turn prediction have been developed, but the results were unsatisfactory with 
Matthew correlation coefficients (MCC) around 0.2–0.4. Hence, it is worthwhile exploring new methods 
for the prediction. A cutting-edge deep neural network, named Capsule Network (CapsuleNet), provides 
a new opportunity for gamma-turn prediction. Even when the number of input samples is relatively 
small, the capsules from CapsuleNet are effective to extract high-level features for classification tasks. 
Here, we propose a deep inception capsule network for gamma-turn prediction. Its performance on the 
gamma-turn benchmark GT320 achieved an MCC of 0.45, which significantly outperformed the previous 
best method with an MCC of 0.38. This is the first gamma-turn prediction method utilizing deep neural 
networks. Also, to our knowledge, it is the first published bioinformatics application utilizing capsule 
network, which will provide a useful example for the community. Executable and source code can be 
download at http://dslsrv8.cs.missouri.edu/~cf797/MUFoldGammaTurn/download.html.

Protein tertiary structure prediction has been an active research topic since half a century ago1–3. Because it 
is challenging to directly predict the protein tertiary structure from a sequence, it has been divided into some 
sub-problems, such as protein secondary and super-secondary structure predictions. Protein secondary struc-
tures consist of three elements such as alpha-helix, beta-sheet and coil4. The coils can be classified into tight turns, 
bulges and random coil structures5. Tight turns can be further classified into alpha-, gamma-, delta-, pi- and beta 
-turns based on the number of amino acids involved in forming the turns and their features6. The tight turns play 
an important role in forming super-secondary structures and global 3D structure folding.

Gamma-turns are the second most commonly found turns (after beta-turns) in proteins. By definition, a 
gamma-turn contains three consecutive residues (denoted by i, i + 1, i + 2) and a hydrogen bond between the 
backbone COi and the backbone NHi+2 (see Fig. 1). There are two types of gamma-turns: classic and inverse7. 
Gamma-turns account for 3.4% of total amino acids in proteins8. They can be assigned based on protein 3D struc-
tures by using PROMOTIF software9. There are two types of gamma-turn prediction problems: (1) gamma-turn/
non-gamma-turn prediction10–12, and (2) gamma-turn type prediction13–15.

The previous methods can be roughly classified into two categories: statistical methods and machine-learning 
methods. Early predictors10,11,16 built statistical models and machine-learning methods to predict gamma-turns. 
For example, Garnier et al.17, Gibrat et al.18, and Chou13 applied statistical models while Pham et al.12 employed 
support vector machine (SVM). The gamma-turn prediction has improved gradually, and the improvement came 
from both methods and features used. Chou and Blinn14 applied a residue-coupled model and achieved prediction 
MCC 0.08. Kaur and Raghava11 used multiple sequence alignments as the feature input and achieved MCC 0.17. Hu 
and Li19 applied SVM and achieved MCC 0.18. Zhu et al.20 used shape string and position specific scoring matrix 
(PSSM) from PSIBLAST as inputs and achieved MCC 0.38, which had the best performance prior to this study. 
The machine-learning methods outperformed statistical methods greatly. However, the gamma-turns prediction 
performance is still low mainly due to two reasons: (1) gamma-turns are relatively rare in proteins, yielding a small 
training sample size; and (2) previous machine-learning methods have not fully exploited the relevant features of 
gamma-turns. The deep-learning framework may provide a more powerful approach for this problem than previous 
machine-learning techniques, like other deep-learning applications in protein sequence analysis and prediction21–24.
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The recent deep neural networks have achieved outstanding performance in image recognition tasks, using 
methods such as inception networks25. The main components in the inception networks are inception blocks, 
each of which contains stacks of Convolutional Neural Networks (CNNs)25. To further capture the high-level rela-
tionships among features, Sabour et al.26 proposed a novel deep-learning architecture, named Capsule Network 
(CapsuleNet). The main components of CapsuleNet are capsules, which are groups of neuron vectors. The dimen-
sions of a vector represent the characteristics of patterns, while the length (norm) of a vector represents the 
probability of existence. A CapsuleNet was trained for digit classification tasks26 and the length of a digit capsule 
represents the confidence of a certain digit being correctly classified and the dimensions of this digit capsule rep-
resent different features, such as the stroke thickness, skewness, and scale of a digit image.

Although CapsuleNets were primarily developed to capture orientation and relative position information of 
‘entities’ or ‘objects’ in an image, in this paper we apply CapsuleNet to the biological sequence analysis problem 
from a different perspective. The motivation for applying CapsuleNet in gamma-turn prediction is due to its 
good properties: First, the dimension of a capsule can be used to reflect certain sequence properties of forming 
a gamma-turn. The capsule length also gives the confidence or prediction reliability of a predicted gamma-turn 
label. For example, the closer a capsule length (its norm value) is to 1, the more confident a predicted gamma-turn 
label is. Second, CapsuleNet contains capsules, each of which can detect a specific type of entity26. For an MNIST 
digit recognition task, each capsule was used to detect one class of digits, i.e. the first digit capsule detects 1’s; sim-
ilarly, in this work, each capsule will be used to detect whether it is a classical turn, an inverse turn or non-turn. 
Also, compared to CNN, which has the invariance property, CapsuleNet has the equivariance property. The equi-
variance property means that a translation of input features results in an equivalent translation of outputs, which 
enables the network to generate features from different perspectives and hence requires a smaller sample size to 
train than previous CNN architectures. This is useful for many bioinformatics problems: even when the labelled 
data are scarce and limited, CapsuleNet can detect some high-level features and use them for robust classification. 
Third, the dynamic routing in CapsuleNet is similar to the attention mechanism27. The routing by agreement 
mechanism will let a lower-level capsule prefer to send its output to higher-level capsules whose activity vectors 
have a big scalar product with the prediction coming from the lower-level capsule. In other words, the capsules 
can “highlight” the most relevant features for a classification task, in this case, gamma-turn classification.

Here, we proposed a deep inception capsule network (DeepICN), which combines CapsuleNet with inception 
network for protein gamma-turn prediction. First, we performed extensive experiments to test the DeepICN 
performance under different conditions. Next, we show that the proposed network outperformed previous pre-
dictors utilizing traditional machine-learning methods such as SVM on public benchmarks. Last but not least, 
we further explored the features learnt by capsules and connected them back to the protein sequence to discover 
useful motifs that may form a gamma turn.

Experimental Results
In this section, extensive experimental results of the proposed DeepICN with different hyper-parameters were 
tuned and tested using CullPDB and five-fold cross-validation results on GT320. The performance comparison 
with existing methods is presented.

Experiment data set. 

	(1)	 CullPDB28 was downloaded on November 2, 2017. It originally contained 20,346 proteins with percentage 
cutoff 90% in sequence identity, resolution cutoff 2.0 Å, and R-factor cutoff 0.25. This dataset was pre-
processed and cleaned up by satisfying all the following conditions: with length less than 700 amino acids; 

Figure 1.  An illustration of gamma-turns. Red circles represent oxygen; grey circles represent carbon; and blue 
circles represent nitrogen.
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with valid PSIBLAST profile29 and HHblits profile30; with shape strings predicted by Frag1D31; and with 
gamma-turn labels retrieved by PROMOTIF9. After this, 19,651 proteins remained and CD-Hit32 with 30% 
sequence identity cutoff was applied on this dataset resulting in 10,007 proteins. We removed proteins with 
sequence identity more than 30% for an objective as most previous predictors did. This dataset was only 
used for experiments to explore deep neural network hyper-parameter tuning and DeepICN configura-
tions. It was not used for comparison with previous predictors. For this dataset, a balanced dataset was 
built: positive gamma-turn labels were kept and an equal size of negative non-gamma-turn labels were 
selected to form a balanced dataset.

	(2)	 The benchmark GT3208 is a common data set used for benchmarking gamma-turn prediction methods. 
GT320 contains 320 non-homologous protein chains in total with 25% sequence identity cutoffs, and res-
olution better than 2.0 Å resolution. This benchmark was used to compare the performance with previous 
predictors. Each chain contains at least one gamma-turn. The gamma-turns were assigned by PROMO-
TIF9. Because all previous predictors applied and used five-fold cross-validation on this dataset, we did the 
same experiment as previous predictors for a fair comparison. It is worth mentioning that CullPDB was 
not used for training the model in this five-fold cross-validation experiment.

Hyper-parameter tuning and model performance.  Tables 1–4 show the exploration of DeepICN with 
different hyper-parameters. This set of experiments was to identify a better configuration of hyper-parameters 
for the deep networks using the CullPDB dataset. Since this network involves many hyper-parameters, only the 
major ones were explored. Table 1 shows how the sliding window size affects the model performance. In this 
experiment, 1000 proteins were randomly selected to form the training set, 500 for the validation set and 500 for 
the test set. Each experiment was performed with five times of data randomization.

Table 1 shows how the sliding window size of the input affects the DeepICN performance. The larger the win-
dow size, the more training time it took for DeepICN. However, MCC may not grow as the window size increases. 
We chose the window size of 17 amino acids based on its peak MCC performance in the experiments. The t-test 
p-values show that the test MCC with a window size 17 compared to other window sizes is statistically significant.

Table 2 shows the dropout can effectively reduce the overfitting effects of DeepICN. If a dropout was not 
used, the network had very high over-fitting and the network cannot generalize well. The dropout rate 0.4–0.5 is 
reasonable as it is a compromise between the training and test prediction performance. We chose dropout 0.5 in 
our study. The p-value between the dropout of 0.5 and any of others was insignificant. Although the dropout of 
0.8 had the highest test average MCC, its standard deviation (±0.0249) is also high, and hence, we did not use it.

Table 3 shows the effects of the training sample size on the DeepICN training speed and performance. More 
training data increased and training time and the model performance. However, after 3000 samples, the MCC 
performance did not improve significantly with more training data. This is consistent with the observation26 that 
CapsuleNet did not need a large dataset for training.

Table 4 shows the effect of number of dynamic routings on the performance. Dynamic routing is used in 
CapsuleNet similar to max-pooling in a CNN, but it is more effective than max-pooling in that it allows neu-
rons in one layer to ignore all but the most active feature detector in a local pool in the previous layer. In this 
experiment, we fixed the other hyper-parameters searched in the above-mentioned experiments and studied how 
number of dynamic routing affected the performance. Considering the training time and the MCC performance, 

Window size Test average MCC Time (hr) P-value on MCC

15 0.4458 (±0.0107) 0.18 (±0.11) 0.0115

17 0.4645 (±0.0062) 0.24 (±0.15) —

19 0.4442 (±0.0049) 0.37 (±0.18) 0.0010

21 0.4548 (±0.0055) 0.43 (±0.20) 0.0499

23 0.4227 (±0.0076) 0.37 (±0.23) 0.0001

25 0.4369 (±0.0076) 0.45 (±0.25) 0.0005

Table 1.  Effect of window size on MCC performance.

Dropout
Train average 
MCC Test average MCC

P-value on 
test MCC

No 0.9974 (±0.0015) 0.4439 (±0.0101) 0.1236

0.3 0.9857 (±0.0154) 0.4454 (±0.0049) 0.0843

0.4 0.9010 (±0.1457) 0.4515 (±0.0047) 0.4294

0.5 0.9377 (±0.0598) 0.4558 (±0.0092) —

0.6 0.9159 (±0.0688) 0.4525 (±0.0111) 0.6647

0.7 0.8371 (±0.0920) 0.4604 (±0.0063) 0.4318

0.8 0.6072 (±0.1033) 0.4646 (±0.0249) 0.5228

Table 2.  Effect of dropout on MCC performance.
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2 routings are suitable, as more dynamic routings do not have significant improvement. The training time did not 
show large variations as the number of dynamic routings increases. This may be because our experiments used 
early stopping.

Prediction confidence: the capsule length.  Since the capsule length indicates the probability that the 
entity represented by the capsule is present in the current input26, the capsule length in the last layer can be used 
for prediction of gamma-turn and assessment of prediction confidence. The longer the turn capsule length is, the 
more confident the prediction of a turn capsule will be. Here, the capsule length in Turn Capsules can be used 
to show how confidence a gamma-turn is predicted. Specifically, a test set (with 5000 proteins containing 19,594 
data samples) was fed into the trained DeepICN to get a capsule length vector. Then the capsule length vector 
that represents positive capsules were kept. Since all the capsule length values fall into the range between 0 and 1, 
they were grouped into bins with the width of 0.05, so that there are totally 20 bins. The precision of each bin can 
be calculated to represent the prediction confidence. Figure 2 shows the fitting curve of precision (percentage of 
correctly predicted gamma-turns, i.e., true positives in the bin) versus the capsule length. A nonlinear regression 
curve was used to fit all the points, yielding the following equation:

= . − . + .y x x1 084 0 203 0 1472

where x is the capsule length and y is the precision.
The fitting-curve can be further used for predicting confidence assessment: given a capsule length, its predic-

tion confidence can be estimated using the above equation.

Training size Test average MCC Time (hr)

500 0.4224 (±0.0035) 0.23 (±0.17)

1000 0.4553 (±0.0098) 0.87 (±0.03)

2000 0.4422 (±0.0204) 1.59 (±0.07)

3000 0.4752 (±0.0111) 2.38 (±0.09)

4000 0.4787 (±0.0147) 3.13 (±0.12)

5000 0.4717 (±0.0165) 3.91 (±0.14)

Table 3.  Effect of training size on training time and MCC performance.

Figure 2.  The fitting curve of precision (percentage of true positive in the bin) versus the capsule length. The 
green line is the fitting curve and the blue line (y = x2) is for reference.

Dynamic 
routing times Test average MCC Time (hr) P-value on MCC

1 0.4454 (±0.0049) 0.44 (±0.16) 0.4644

2 0.4492 (±0.0086) 0.31 (±0.17) —

3 0.4407 (±0.0032) 0.37 (±0.15) 0.1017

4 0.4497 (±0.0045) 0.32 (±0.18) 0.9276

5 0.4487 (±0.0061) 0.41 (±0.14) 0.9502

Table 4.  Effect of dynamic routing on MCC performance.
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Comparison with previous predictors.  For comparing with other predictors, the public benchmark 
GT320 was used. Following the previous studies, a five-fold cross validation was conducted. This GT320 is an 
imbalanced dataset, but for objective evaluation, we did not sample any balanced data from training or testing, as 
done in previous studies. Table 5 shows that the proposed DeepICN outperformed all the previous methods by a 
significant margin.

Extension of DeepICN for classic and inverse gamma-turn prediction.  Many previous gamma-turn 
predictors only predict whether a turn is gamma-turn or not. Here, we also extended our DeepICN model for 
classic and inverse gamma-turn prediction. The experiment dataset is CullPDB, and inverse and classic labels 
were assigned using PROMOTIF9. The same DeepICN (as described in Methods) was applied except the last 
turn capsule layer now has three capsules to predict non-turn, inverse turn or classic turn as a three-class classi-
fication problem. The performance metric Q3 is used which is the accuracy of correct prediction for each class. 
The prediction results are shown in Table 6. Different numbers of proteins were used to build the training set. 
The validation and test set contain 500 proteins each. The CullPDB dataset contains 10,007 proteins which have 
1383 classic turns, 17,800 inverse turns, and 2,439,018 non-turns in total. This is a very imbalanced dataset. In 
this experiment, the balanced training set, validation set, and test set were generated as follows: The inverse turn 
samples were randomly drawn as many as classic turn sample size. For the non-turn samples, they were randomly 
drawn twice as many as classic turn sample size, i.e. the sum of inverse turn samples and classic turn samples. 
The training loss and validation loss curves are shown in Fig. 3. From the loss curve, it shows that after about 75 
epochs, the model learning process was converging. Since the model hyper-parameters had been explored in the 
earlier experiments, during this experiment, we adopted similar values, i.e., the window size was chosen 17 amino 
acids, the filter size is 256, the convolution kernel size was chosen 3, the dynamic routing was chosen 3 iterations 
and the dropout ratio was 0.3.

Visualization of the features learnt by capsules.  In order to verify whether the high-level features 
learnt/extracted from the input data have the prediction power and are generalizable, t-SNE33 was applied to visu-
alize the input features and the capsule features for both the training data and the test data. Figure 4(A) shows the 
t-SNE plot of the input features from the training data before the training. The input data has 45 features (i.e. 45 
dimensions), and t-SNE can project 45 dimensions onto two principal dimensions and visualize it. There was no 
clear cluster in the training data. Figure 4(B) shows the t-SNE plot of the capsule features from the training data. 
The turn capsule contains 16 dimensions, and the t-SNE can similarly project the capsule features to two major 
principal features and visualize it. The clusters were obviously formed after the training. Figure 4(C,D) show the 
t-SNE plots for the input features and the capsule features of the test data. There was no clear cluster for the input 
features in the test data either. The capsule features still tend to be clustered together in the test data, although to 
less extent than the training data.

Figure 5(A) shows the classic turn Weblogo34 and Fig. 5(B) shows the inverse turn Weblogo, with a length of 
19 amino acids. The middle three amino acids (at 9, 10, 11) represent the key positions of an inverse turn or classic 
turn. Eight amino acids are extended to each side of these three amino acids. We randomly selected 300 inverse 
turn, classic turn or non-turn fragments from the training set to plot Weblog. In the two plots, the y axis has the 
same height of 0.8 bits. Both types of turns have some visible features and the classic turn Weblogo contains more 
information content than the inverse turn.

Methods MCC

Our Approach 0.45

Zhu et al.20 0.38

Hu’s SVM 0.18

SNNS 0.17

GTSVM 0.12

WEKA-logistic regression 0.12

WEKA-naïve Bayes 0.11

Table 5.  Performance comparison with previous predictors using the GT320 benchmark. The results of WEKA, 
SNNS were obtained from the paper11, the result of GTSVM was obtained from the paper12 and result of Hu’s 
SVM was from the paper19. Zhu et al.20 is the previous best predictor.

Training size Test average Q3 Time (hr) P-value

5000 0.6839 (±0.0053) 0.25 (±0.20) —

6000 0.6783 (±0.0076) 0.38 (±0.22) 0.2706

7000 0.6864 (±0.0124) 0.34 (±0.16) 0.3057

Table 6.  Non-turn, inverse and classic turn prediction results.
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Ablation study.  To compare the performance between DeepICN and CNN, we designed a set of experiments 
by removing different components in the DeepICN or replacing them with CNN. In particular, we tested the per-
formance of the proposed models without the capsule component, replacing the capsule component with CNN, 
or replacing inception component with CNN. Each ablation experiment was performed using the same allocation 

Figure 3.  Training loss and validation loss curves of DeepICN for classic and inverse gamma-turn.

Figure 4.  t-SNE plots of DeepICN features. (A,B) Are plots of the input features and the capsule features, 
respectively for training dataset (3000 proteins with 1516 turn samples). (C,D) Are plots of the input features 
and the capsule features, respectively for the test dataset (500 proteins with 312 turn samples). Red dots 
represent non-turns, green dots represent inverse turns and blue dots represent classic turns.
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of the data (3000 proteins for training, 500 proteins for validation, and 500 for test) and the same parameter set-
ting: dropout ratio 0.5 and window size 17. From the ablation test result presented in Table 7, we found that the 
capsule component is the most effective component in our network, since the performance dropped significantly 
when removing or replacing the capsule component. The inception component also acts as an important compo-
nent as it can more effectively extract feature maps for capsule components than CNN.

Additional test using CullPDB as training and GT320 as testing.  To further validate the prediction 
performance, we designed a cross-dataset experiment between two datasets, i.e., using CullPDB as the training 
set and the GT320 as the testing set. The CullPDB after preprocessing (see the “experimental data set” section for 
details) contains 10,007 proteins. To perform a strict and objective test, we applied CD-Hit32 with 30% sequence 
similarity cutoff between CullPDB and GT320 to remove similar sequences from CullPDB, leaving 9,837 proteins 
in CullPDB. We randomly selected 800 proteins for training and 200 protein for validation in CullPDB. The train-
ing set contained 188,436 non-turn samples and 1505 turn samples; the validation set contained 47,182 non-turn 
samples and 369 turn samples; the test set contained 79,646 non-turn samples and 892 turn samples. The training, 
validation and testing were carried out using the unbalanced data in the same fashion. The average training time 
was about 5–6 hours. The parameter settings were: dynamic routing three times, window size 17 and dropout rate 
0.5. The average training MCC was 0.5552 and the average validation MCC was 0.5149. The test MCC for GT320 
was 0.4571, which is similar to our result in Table 5 and confirmed the robustness of our model.

Conclusion and Discussion
In this work, the newly proposed deep-learning framework, CapsuleNet, was applied to protein gamma-turn pre-
diction. Instead of applying capsule network directly, a new model called inception capsule network was proposed 
and has shown improved performance comparing to previous predictors. This work has several innovations.

Figure 5.  Weblogo of sequence types. (A) Classic turn; (B) inverse turn; and (C) non-turn.

Model MCC

Replace inception component with CNN 0.4544 (±0.0106)

Replace capsule component with CNN 0.4485 (±0.0056)

Without capsule component 0.4551 (±0.0059)

Proposed Design 0.4752 (±0.0111)

Table 7.  Ablation test.
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First of all, this work is the first application of deep neural networks to protein gamma-turn prediction. 
Compared to previous traditional machine-learning methods for protein gamma-turn prediction, this work uses 
a more sophisticated, yet efficient, deep-learning architecture, which outperforms previous methods. A software 
tool has been developed and it will provide the research community a powerful deep-learning prediction tool for 
gamma-turn prediction. The ablation test was performed, and the importance of capsule component was verified.

Second, this work is the first application of CapsuleNet to protein structure-related prediction, as CapsuleNet 
was just published in 2017. Here, we proposed DeepICN for protein gamma-turn prediction and explored some 
unique characters of capsules. To explore the capsule length, we designed an experiment of grouping each capsule 
length into several bins and discovered the relationship between prediction precision and capsule length. A non-
linear curve can be applied to fit the data and further used for estimating the prediction confidence. In addition, 
the network was extended to inverse turn and classical turn prediction. The inverse turn capsule and classical turn 
capsule were further explored by showing the t-SNE visualization of the learnt capsule features. Some interesting 
motifs were visualized by Weblogo.

Third, new features have been explored and applied to gamma-turn prediction. The features used for network 
training, namely HHBlits profiles and predicted shape strings, contain high information content making deep 
learning very effective. The HHBlits profiles provide evolutionary information while shape strings provide com-
plementary structural information for effectively predicting gamma turns.

Last but not least, previous gamma-turn resources are very limited and outdated. Previous servers are not 
maintained, and no downloadable executable of gamma-turn is available. We will provide a new free tool utilizing 
deep learning and state-of-the-art CapsuleNet for researchers.

While we have obtained encouraging results, we believe the performance can be further improved by using 
different deep neural network models and additional features. For instance, the chemical shift information has 
been used in many protein structure studies35–37. We consider using such information to further improve the 
model performance in the future work.

Methods
Problem formulation.  A protein gamma-turn prediction is a binary classification problem, which can be 
formulated as followed: given a primary sequence of a protein, a sliding window of k residues were used to pre-
dict the central residue turn or non-turn. For example, if k is 17, then each protein is subsequently sliced into 
fragments of 17 amino acids with a sliding window. The reason of using sliding window is that gamma turn is 
very sparse in a protein sequence, which is ineffective to predict if using the whole sequence like deep learning 
prediction for protein secondary structures21,22.

To make accurate prediction, it is important to provide useful input features to machine-learning methods. 
We carefully designed a feature matrix corresponding to the primary amino acid sequence of a protein, which 
consists of a rich set of information derived from individual amino acid, as well as the context of the protein 
sequence. Specifically, the feature matrix is a composition of HHBlits profile30 and predicted protein shape string 
using Frag1D31.

The first set of features comes from the protein profiles generated using HHBlits30. In our experiments, 
HHBlits used the database uniprot20_2013_03, which was downloaded from http://wwwuser.gwdg.de/compbiol/
data/hhsuite/databases/hhsuite_dbs/. A HHBlits profile can reflect the evolutionary information of the protein 
sequence based on a search of the given protein sequence against a sequence database. The profile values were 
scaled by the sigmoid function into the range (0, 1). Each amino acid in the protein sequence is represented as 
a vector of 31 real numbers, of which 30 from HHM profile values and 1 NoSeq label (representing a gap) in the 
last column. The HHBlits profile corresponds to amino acids and some transition probabilities, i.e., A, C, D, E, 
F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, M- > M, M- > I, M- > D, I- > M, I- > I, D- > M, D- > D, Neff, Neff_I, 
and Neff_D.

The second set of features, predicted shape string, comes from Frag1D31. For each protein sequence, Frag1D 
can generate predicted protein 1D structure features: classical three-state secondary structures, and three- and 
eight-state shape strings. Classical three-state secondary structures and three-state shape string labels both con-
tain H (helix), S (sheet), and R (random loop), but they are based on different methods so that they have small 
differences. In this experiment, we used all the features from Frag1D. Eight-state shape string labels contain R 
(polyproline type alpha structure), S (beta sheet), U/V (bridging regions), A (alpha helices), K (310 helices), G 
(almost entirely glycine), and T (turns). The classical prediction of three-state protein secondary structures has 
been used as an important feature for protein structure prediction, but it does not carry further structural infor-
mation for the loop regions, which account for an average of 40% of all residues in proteins. Ison et al.38 proposed 
Shape Strings, which give a 1D string of symbols representing the distribution of protein backbone psi-phi tor-
sion angles. The shape strings include the conformations of residues in regular secondary structure elements; in 
particular, shape ‘A’ corresponds to alpha helix and shape ‘S’ corresponds to beta strand. Besides, shape strings 
classify the random loop regions into several states that contain much more conformational information, which 
we found particularly useful for gamma-turn prediction problem. For the Frag1D prediction result, each amino 
acid in the protein sequence is represented as a vector of 15 numbers, of which 3 from the classical three-state sec-
ondary structures, 3 from the three-state shape strings, 8 from the eight-state shape strings and 1 NoSeq label in 
the last column. The predicted classical three-state secondary structure feature is represented as one-hot encoding 
as followed: helix: (1, 0, 0), strand: (0, 1, 0), and loop: (0, 0, 1). The same rule applies to three- and eight-state shape 
string features. In this work, we also tried the traditional eight-state protein secondary structures. However, the 
prediction result was not as good as the one from the eight-state shape strings. This is probably because the tradi-
tional eight-state secondary structures contain much less structural information for the gamma-turn prediction 
problem.
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Model design.  In this section, a new deep inception capsule network (DeepICN) is presented. Figure 6A 
shows the model design. The input features for DeepICN are HHBlits profiles and predicted shape strings. Since 
the distributions of HHBlits profiles and predicted shape strings are different, we applied convolutional filters 
separately on the two features, then concatenated them. The CNN is used to generate the convolved features. We 
first applied CNN to extract local low-level features from protein profiles and predicted shape strings features. 
This CNN layer will extract local features similar to a CNN used to extract “edge” features of objects in an image39.

After the convoluted feature concatenation, the merged features are fed into the inception module (see Fig. 6B 
for details). The inception network was then applied to extract low-to-intermediate features for CapsuleNet. 
CapsuleNet was originally used for digital image classification26 and the primary capsule layers were placed after 
a convolutional layer. Their network design worked well for digital image recognition with the image dimension 
28-by-28. Considering the complex features of protein HHblits profile and shape strings, it is reasonable to apply 
a deeper network to extract local-to-medium level features so that CapsuleNet can work well on top of those fea-
tures and extract high-level features for gamma-turn classification. The purpose of setting up an inception block 
right after CNN is to extract intermediate-level features.

Figure 6.  (A) DeepICN design. The input features are HHBlits profiles (17-by-30 2D array) and predicted 
shapes string using Frag1D (17-by-15 2D array). Each feature is convolved by a convolutional layer. Both 
convolved features then get concatenated. An inception block is followed to extract low-to-medium features. 
A primary capsule layer then extracts higher level features. The final turn capsule layer makes predictions. (B) 
An inception block. Inside this inception block: Red square Conv(1) stands for convolution operation with 
kernel size 1. Green square Conv(3) stands for convolution operation with kernel size 3. Yellow square stands 
for feature map concatenation. (C) Zoom-in between primary capsules and turn capsules. The primary capsule 
layer contains 32 channels of convolutional 8D capsules. The final layer turn capsule has two 16D capsules to 
represent two states of the predicted labels: gamma-turn or non-gamma-turn. The computation between those 
two layers is dynamic routing.
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Each convolution layer, such as ‘Conv (3)’ in Fig. 6B, consists of four operations in the sequential order: (1) a 
one-dimensional convolution operation using the kernel size of three; (2) the batch normalization technique40 
for speeding up the training process and acting as a regularizer; (3) the activation operation, ReLU41; and (4) the 
dropout operation42 to reduce the overfitting effects by randomly dropping neurons during the deep network 
training process so that the network can avoid co-adapting.

The capsule layers are placed after the inception module to extract high-level features and explore the spatial 
relationships among the local features that are extracted in the above-mentioned layers. The primary capsule layer 
(see Fig. 6C) is a convolutional capsule layer as described in the paper26. It contains 32 channels of convolutional 
8D capsules, with a 9 × 9 kernel and a stride of 2. The final layer (turn capsule) has two 16D capsules to represent 
two states of the predicted label: gamma-turn or non-gamma-turn. The weights between primary capsules and 
turn capsules are determined by the iterative dynamic routing algorithm26. The squashing activation function26 
was applied in the computation between the primary capsule layer and the turn capsule layer as follows:
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where vj is the scaled vector output of capsule j and sj is its total output.
The dynamic routing algorithm26 is as follows:

The evaluation matric for gamma-turn prediction is Matthew Correlation Coefficient (MCC), which is more 
commonly used than accuracy since accuracy only considers the true positives and false positives, not the true 
negatives and false negatives. Another reason is that the gamma-turn dataset is very imbalanced. MCC can eval-
uate how well the classifier performs on both positive and negative labels. MCC can be calculated from the con-
fusion matrix as follows:

=
∗ − ∗

+ + + +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN( )( )( )( )

where TP is the number of true positives, TN is the number of true negatives, FP is the number of false positives 
and FN is the number of false negatives.

Model training.  DeepICN was implemented, trained, and tested using TensorFlow and Keras. Different sets 
of hyper-parameters (dynamic routing iteration times, training data sample size, convolution kernel size, and 
sliding window size) of DeepICN were explored. An early stopping strategy was used when training the models: 
if the validation loss did not reduce in 10 epochs, the training process was stopped. The Adam optimizer was 
used to dynamically change the learning rate during model training. All the experiments were performed on an 
Alienware Area-51 desktop equipped with a Nvidia Titan X GPU (11 GB graphic memory).
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