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Up to 15% of the population have mild to moderate chronic
hypomagnesemia, which is associated with type 2 diabetes mel-
litus, hypertension, metabolic syndrome, and chronic kidney
disease. The kidney is the key organ for magnesium homeosta-
sis, but our understanding of renal magnesium regulation is very
limited. Uromodulin (UMOD) is the most abundant urinary
protein in humans, and here we report that UMOD has a role
in renal magnesium homeostasis. Umod-knockout (Umod�/�)
mice excreted more urinary magnesium than WT mice and dis-
played up-regulation of genes promoting magnesium absorp-
tion. The majority of magnesium is absorbed in the thick
ascending limb. However, both mouse strains responded simi-
larly to the diuretic agent furosemide, indicating appropriate
function of the thick ascending limb in the Umod�/� mice. Mag-
nesium absorption is fine-tuned in the distal convoluted tubule
(DCT) via the apical magnesium channel transient receptor
potential melastatin 6 (TRPM6). We observed decreased apical
Trpm6 staining in the DCT of Umod�/� mice. Applying bioti-
nylation assays and whole-cell patch-clamp recordings, we
found that UMOD enhances TRPM6 cell-surface abundance
and current density from the extracellular space. UMOD phys-
ically interacted with TRPM6 and thereby impaired dynamin-
dependent TRPM6 endocytosis. WT mice fed a low-magnesium
diet had an increased urinary UMOD secretion compared with
the same mice on a regular diet. Our results suggest that
increased urinary UMOD secretion in low-magnesium states
reduces TRPM6 endocytosis and thereby up-regulates TRPM6
cell-surface abundance to defend against further urinary mag-
nesium losses.

Mg2� is often called the “forgotten” cation, although hypo-
magnesemia affects 15% of the general population (1). Overall,
the impact of Mg2� disturbances on public health is underap-
preciated (2–4). Mild to moderate hypomagnesemia does not
cause acute symptoms and remains mostly undiagnosed and
untreated (3). However, chronic hypomagnesemia has been
associated with the development of common metabolic disor-
ders, such as type 2 diabetes mellitus, hypertension, coronary
artery disease, metabolic syndrome, nephrolithiasis, and
chronic kidney disease (CKD)3 (2–21). Hypomagnesemia also
is a significant risk for cardiovascular disease and death (22–
25). The major organ for regulated Mg2� homeostasis is the
kidney. About 10 –25% of the filtered Mg2� is absorbed in the
proximal tubule and 50 –70% in the thick ascending limb (TAL)
of Henle. In the TAL, the positive lumen potential, generated by
the Na�-K�-Cl� cotransporter (NKCC2) and the renal outer
medullary K� channel (ROMK), contribute to the paracellular
absorption of Mg2� (26). The final urinary Mg2� concentration
is determined by an active, transcellular, and regulated trans-
port via the apical epithelial magnesium channel transient
receptor potential melastatin 6 (TRPM6) in the distal convo-
luted tubule (DCT) (27, 28). Recessive mutations in TRPM6
result in severe hypomagnesemia (29, 30). Trpm6�/� mice are
embryonic lethal (31).

The regulation of renal Mg2� homeostasis and TRPM6
remains largely unknown. The majority of TRPM6 channel reg-
ulation occurs either by (i) receptor-dependent pathways via
insulin, epidermal growth factor (EGF), and receptor for acti-
vated protein C kinase 1 (RACK1) altering TRPM6 phosphor-
ylation or (ii) increased channel mRNA expression by estrogen
(32–37). Recently, the ADP-ribosylation factor–like GTPase
15 (ARL15) was also shown to influence Mg2� absorption via
TRPM6 and to modify glucose and lipid metabolism (38). A
new mechanism for renal Mg2� regulation was implied when
mice fed a low-Mg2� diet displayed increased renal Uromodu-
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lin (Umod) gene expression (39). This suggested a role for
UMOD as part of a physiological response to hypomagnesemia
(39). In fact, two different mutant Umod mouse models display
urinary Mg2� wasting (40, 41). UMOD is the most abundant
protein in human urine; it protects against urinary tract infec-
tions and renal calcium crystal formation and is a promoter for
hypertension (42–44). In this study, we wanted to analyze the
role for UMOD in Mg2� regulation and investigate the mech-
anism by which UMOD enhances TRPM6 cell-surface abun-
dance from the extracellular space.

Results

Umod�/� mice display urinary Mg2� wasting and decreased
apical Trpm6 abundance in the DCT

Because up-regulation of UMOD mRNA in hypomagnesic
mice suggested a role for UMOD in Mg2� regulation, we stud-
ied whether Umod�/� mice excreted more urinary Mg2� than
WT animals. Umod�/� mice had almost twice the urinary
Mg2� compared with WT mice when fed a regular diet (Fig.
1A). Whereas there was no significant difference in serum
Mg2� between WT and Umod�/� mice at baseline (Fig. 1B),
Umod�/� mice displayed up-regulated mRNA expression of
Trpm6, Hnf1b (hepatocyte nuclear factor 1b), Egf, Fxyd2b
(Na�-K�-ATPase regulatory protein), and parvalbumin (PV),
all of which promote renal Mg2� absorption (Fig. 1C), which is
consistent with a Mg2�-deficient state. It has been proposed
that Umod�/� mice have a dysfunctional TAL, as they have a
blunted response to furosemide (45, 46). As the majority of
Mg2� is absorbed in the TAL, we tested the TAL of WT and
Umod�/� mice for the response to furosemide. At baseline, we
detected in 9-month-old Umod�/� mice significantly higher
urinary calcium (Ca2�) and Mg2� excretion (Table 1). How-
ever, we found no significant difference between WT and
Umod�/� mice in response to furosemide administration
regarding urine volume, sodium (Na�), potassium (K�), Ca2�,
or Mg2� excretion (Table 1). We also detected appropriate
response of the TAL to furosemide in 5-month-old Umod�/�

mice (Table S1). As the TAL in Umod�/� mice responded well
to furosemide, we wondered about other mechanisms for how
UMOD could affect renal Mg2� regulation. Therefore, we
tested whether a lack of apical Trpm6 localization in the DCT
contributes to renal Mg2� wasting in Umod�/� mice. In WT
and Umod�/� mice, immunofluorescent staining for the Na�-
Cl� cotransporter (Ncc) and calbindin-D28K confirmed
correct identification of the DCT (b and c in Fig. 1D). Ncc
and calbindin-D28K expression appear similar in WT and
Umod�/� animals (b and c versus e and f in Fig. 1D). However,
evaluation of Trpm6 staining in the Ncc– and calbindin-
D28K–positive tubules revealed less apical Trpm6 abundance
in Umod�/� compared with WT mice (a versus d in Fig. 1D),
despite an increase in Trpm6 transcript in Umod�/� animals
(Fig. 1C). Our data point to the DCT as the responsible nephron
segment for urinary Mg2� wasting in Umod�/� mice and sug-
gest a post-transcriptional mechanism for UMOD regulation of
TRPM6.

UMOD increases TRPM6 current density and TRPM6
cell-surface abundance

First, we determined in HEK293 cells whether UMOD increases
TRPM6 mRNA or protein expression. Relative TRPM6 mRNA
and protein expression was not enhanced in cells co-trans-
fected with TRPM6 and UMOD compared with control (Fig. 2,
A and B). UMOD did not increase total TRPM6 protein abun-
dance at 24, 48, or 72 h (Fig. S1). To study whether UMOD has
an effect on TRPM6 channel current density, we co-transfected
HEK293 cells with TRPM6 and control or UMOD. Co-expres-
sion of TRPM6 and UMOD increased TRPM6 current density
significantly by a factor of 4.6 compared with control (Fig. 2, C
and D). For the subsequent experiments, UMOD enhanced
TRPM6 current density in the range of 1.9 – 4.7-fold compared
with control. This variability is most likely due to different
transfection efficiency with each experiment. To test whether
UMOD enhances TRPM6 cell-surface abundance, we per-
formed biotinylation assays. TRPM6 cell-surface abundance
was about 2.7-fold higher in cells co-transfected with UMOD
compared with control plasmid (Fig. 2E). The increase of
TRPM6 cell-surface abundance with UMOD was reasonably
close to the observed increases in TRPM6 current density
recorded for this work. Our data indicate that UMOD increases
TRPM6 current density by enhancing the number of channels
in the plasma membrane.

Extracellular UMOD increases TRPM6 current density in a
dose-dependent fashion

The majority of UMOD is synthesized in the TAL, whereas
TRPM6 is mostly localized in the more distal segment of the
DCT (47–50). Proteolytic cleavage between the UMOD zona
pellucida domain and the glycosylphosphatidylinositol (GPI)
anchor releases UMOD into the ultrafiltrate (51). Therefore, we
tested the hypothesis that UMOD enhances TRPM6 from the
extracellular space. HEK293 cells were transfected either with
control, WT UMOD, or C150S mutant UMOD (a known
human mutation that results in UMOD retention in the endo-
plasmic reticulum and decreased UMOD secretion as previ-
ously shown by us) (52, 53). UMOD- and control-containing
supernatant was harvested after 48 h and transferred onto
TRPM6-expressing cells as described previously (52). After
incubation overnight, WT UMOD– containing supernatant
increased TRPM6 current density significantly compared with
control– or C150S UMOD– containing supernatant (Fig. 3A).
We confirmed an extracellular mechanism for up-regulation of
TRPM6 current density by UMOD by performing a dose-re-
sponse curve applying increasing dosages of purified UMOD.
The half-maximal concentration for UMOD-mediated TRPM6
up-regulation was �1 �g/ml (Fig. 3B). This value is estimated
to be 10-fold lower than estimates of human urinary UMOD
concentration and therefore is within physiological concentra-
tion ranges for UMOD (54, 55). Moreover, the addition of
anti-UMOD antibody to TRPM6-transfected HEK293 cells
incubated with UMOD-containing supernatant abrogated
UMOD-mediated TRPM6 up-regulation (Fig. 3C). Collec-
tively, these results strongly support a model by which UMOD
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enhances TRPM6 current density through an extracellular, api-
cal interaction within tubules.

UMOD up-regulation requires almost all UMOD domains
except the GPI anchor

UMOD secondary structure contains an N-terminal leader
peptide that is crucial for secretion of UMOD, followed by four
EGF-like domains that are important for protein–protein inter-
action, a D8C cysteine-rich sequence of unknown significance,
a zona pellucida (ZP) domain that is crucial for UMOD multi-
merization, and finally a GPI anchor domain (Fig. 4A). To
determine which UMOD domain is required for TRPM6 up-
regulation, we created different UMOD constructs and tested
their effect on TRPM6 current density. Protein expression of
different plasmids was assayed by Western blotting and titrated
so that there was an equivalent amount of UMOD proteins in
each condition. Full-length WT UMOD up-regulated TRPM6,
whereas C150S mutant UMOD did not change TRPM6 current
density compared with control (Fig. 4B). UMOD plasmids
containing the EGF-like domains (L180X) or the EGF-like
domains plus the D8C domains (C297X) had no effect on
TRPM6 current density. However, the UMOD construct
containing the EGF-like, D8C, and ZP domains (R586X)
increased TRPM6 current density significantly (Fig. 4B). The
ZP domain is essential and sufficient for formation of
UMOD polymers (56). Our results show that the EGF-like,
D8C, and ZP domains are required for TRPM6 up-regulation
and suggest that UMOD multimerization may be involved in
TRPM6 up-regulation (Fig. 4B).

UMOD physically interacts with TRPM6

To study whether UMOD interacts physically with TRPM6,
we performed co-immunoprecipitation experiments in HEK293
cells transfected with HA-tagged UMOD, TRPM6, and GFP-
tagged TRPM6. Using anti-HA to immunoprecipitate HA-
tagged UMOD, we co-immunoprecipitated TRPM6 (Fig. 5A).
Conversely, anti-GFP antibody immunoprecipitated GFP-
tagged TRPM6 and co-immunoprecipitated HA-tagged
UMOD (Fig. 5B, fourth lane). Immunoprecipitation of GFP
alone did not show any interaction with UMOD (Fig. 5B, third
lane). These experiments are consistent with a physical inter-
action between UMOD and TRPM6.

UMOD enhances TRPM6 current density by impairing TRPM6
endocytosis

Because our data were in line with an extracellular role of
UMOD in TRPM6 up-regulation, we tested the hypothesis that
UMOD may influence TRPM6 at the cell surface by interfering
with TRPM6 endocytosis by studying the role of dynamin-2, a
crucial protein for protein retrieval from the cell membrane.
Expression of dynamin-2 in the DCT was described (57). When
cells were co-transfected with WT dynamin-2, TRPM6 current
density was up-regulated by UMOD (Fig. 6A). Cells co-trans-
fected with dominant-negative (DN) dynamin-2, which impairs
constitutive endocytosis, displayed enhanced TRPM6 current
density even without UMOD (Fig. 6A). Stimulation of DN
dynamin-2–transfected cells with UMOD did not result in any
further increase of TRPM6 current density, indicating that

Figure 1. Umod�/� mice display urinary Mg2� wasting and decreased tubular apical abundance of TRPM6. A, Umod�/� mice had almost twice the
urinary Mg2� excretion as control mice (WT 17.75 � 8.47 �mol/24 h versus Umod�/� 33.63 � 11.58 �mol/24 h, p � 0.05, n � 6 for each group). The results are
representative of two experiments (see Table 1 with n � 14 for each group). B, despite higher urinary Mg2� excretion in Umod�/� mice they have no lower
serum Mg2� (WT 1.72 � 0.08 mg/dl versus Umod�/� 1.67 � 0.08 mg/dl, not significant (n.s.), n � 6 for each group). The results are representative of two similar
experiments. C, compared with WT mice, in Umod�/� mice, mRNA expression of genes involved in Mg2� regulation, such as Trpm6, Hnf1b, Egf, Fxyd2b, and PV,
were up-regulated, consistent with a Mg2�-deficient state (n � 4 for each group). D, Trpm6, Ncc, and calbindin immunostaining in the mouse renal cortex. a– c,
tubular apical staining of Trpm6 (green), Ncc (red; a marker of DCTs), and cytosolic calbindin-D28K (blue) expression in WT mice. Compared with WT mice,
Umod�/� mice (d–f) had less apical Trpm6 abundance, whereas Ncc and calbindin-D28K expression remain unchanged and confirm the correct location of the
DCT (e and f). Scale bar, 20 �m.

Table 1
Urine and serum chemistries of 9-month-old WT and Umod�/� mice at baseline and after furosemide treatment
WT and Umod�/� mice were kept in metabolic cages. Urine was obtained by bladder massage. Data showing the change after furosemide challenge for WT and Umod�/�

mice (in columns five and six) are shown as percentage from baseline obtained before furosemide challenge and 4 h after furosemide treatment. Data are normalized per
hour. WT and Umod�/� mice did not respond significantly differently to furosemide challenge regarding urine output, urinary Na� excretion, K� excretion, Ca2�

excretion, or Mg2� excretion. Data show mean � S.D., n � 14 for each group. * in Umod�/�column, p � 0.05; # in Umod�/� column, p � 0.01 compared with WT column.
§ in WT � furosemide column, p � 0.005 compared with WT column. $ in WT � furosemide column, p � 0.0001 compared with WT column. $ in Umod�/� � furosemide
column, p � 0.0001 compared with Umod�/� column. § in Umod�/� � furosemide column, p � 0.005 compared with Umod�/� column. Hct, hematocrit. ND, not
determined.

WT Umod�/�
WT �

furosemide
Umod�/�

� furosemide
Change in WT

after furosemide
Change in

Umod�/� after furosemide

% %
Weight (g) 41.1 � 8.6 39.9 � 4.3 38.3 � 8.2 38 � 3.3 �9.1 � 5.5 �9.5 � 4.6
Urine volume (�l/h) 43.6 � 16.2 39.5 � 13.8 621 � 260$ 731 � 233$ 1363 � 308 1654 � 396
Urinary excretion

Na� (�mol/h) 6.4 � 3.7 8.1 � 3.2 75.9 � 25.2$ 98.3 � 32.8$ 1143 � 263 1200 � 186
K� (�mol/h) 11.1 � 4.2 10.5 � 4.5 37.6 � 7.5§ 50.5 � 10.1$ 353 � 186 503 � 155
Ca2� (�mol/h) 0.24 � 0.12 0.42 � 0.1* 2.6 � 0.9$ 4.12 � 1.3$ 1184 � 302 1059 � 324
Mg2� (�mol/h) 0.67 � 0.15 1.45. � 0.38# 7.58. �3.2§ 12.74 � 4.5§ 1139 � 182 893 � 174

Serum
Hct (%) 48.4 � 4.3 49.8 � 5.2 50.5 � 3.8 51.2 � 3.3 ND ND
Na� (mmol/L) 152.3 � 1.6 152.7 � 2.3 ND ND ND ND
K� (mmol/liter) 4.92 � 0.2 5.05 � 0.6 ND ND ND ND
Ca2� (mmol/liter) 2.68 � 0.06 2.74 � 0.18 ND ND ND ND
Mg2� (mmol/liter) 0.8 � 0.09 0.77 � 0.13 ND ND ND ND
Creatinine (mg/dl) 0.066 � 0.014 0.078 � 0.005 ND ND ND ND
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UMOD increases TRPM6 by interfering with dynamin-2– de-
pendent TRPM6 endocytosis. This conclusion is further sup-
ported by experiments using dynasore, an inhibitor of dynamin
GTPase activity and blocker of dynamin-dependent endocyto-
sis (58) (Fig. 6B).

Previously, we have shown that the urinary protein Mucin-1
(MUC1) requires additional urinary proteins, such as galec-

tin-3, a urinary lectin, for MUC1-related stimulation of the
renal calcium channel TRPV5 (59). Galectins form a group of
15 members and bind �-galactosides (60, 61). We tested the
hypothesis that galectin-3 also is a mediator of TRPM6 up-reg-
ulation by UMOD. We used an siRNA knockdown approach
that is efficient in reducing endogenous galectin-3 protein
expression as previously described (59). However, galectin-3
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siRNA had no effect on TRPM6 current density up-regulation
by UMOD, indicating that galectin-3 is not required for UMOD
up-regulation of TRPM6 (Fig. 6C).

Another candidate for TRPM6 regulation by UMOD was
galectin-1, which, like galectin-3, is a constituent of large cross-
linked complexes that form lattice networks (62, 63). Galectin-1
forms homodimers and binds to TRPV5 N-glycan. Klotho, an
antiaging hormone that also functions as a sialidase and modi-
fies a variety of ion channels, enhances TRPV5 current density
in a galectin-1– dependent fashion (63). In previous work (59),
we demonstrated efficient reduction of endogenous galectin-1
protein applying an siRNA approach. We found that knock-
down of galectin-1 abolished the stimulatory effect of UMOD
toward TRPM6, consistent with an important role in UMOD-
mediated TRPM6 up-regulation (Fig. 6D).

Because galectin-1 binds to N-glycans and UMOD-mediated
up-regulation of TRPV5 requires the TRPV5’s N-glycan, we
wondered whether TRPM6 is also N-glycosylated. Using com-
putational tools, we identified 17 potential N-glycosylation sites
within the TRPM6 protein (64). We focused on the TRPM6
Asn-787 N-glycan site because it is the only N-glycan located in
an extracellular loop of TRPM6, thus allowing extracellular
proteins to interact with this N-glycan. We analyzed the effect
of UMOD on WT and N-glycan– deficient TRPM6. In contrast
to its effect on WT TRPM6, UMOD did not enhance current
density of N-glycan– deficient N787A TRPM6, consistent with
a role for the presumed TRPM6 N-glycan in UMOD up-regu-
lation (Fig. 6E).

Urinary UMOD secretion is increased in low-Mg2� states

As UMOD modified TRPM6 current density, we wondered
whether a low-Mg2� state itself could modify urinary UMOD
secretion. In humans, urinary UMOD secretion is modified by
dietary salt intake and antidiuretic and thyroid hormones (65–
68). We placed WT mice first on a regular Mg2� diet for 2
weeks and evaluated 24-h urinary UMOD secretion. Subse-
quently, the same animals were fed a low (50 ppm)-Mg2� diet
for 2 weeks, and 24-h urinary UMOD secretion was measured.
The 24-h urine sample was studied by semiquantitative West-
ern blotting, and tested urine volume was normalized to urine
creatinine. Our studies showed that animals fed a low-Mg2�

diet had a significantly elevated, 2-fold stronger, urinary
UMOD protein band compared with urine obtained on a regu-
lar diet (Fig. 7, A and B). These data are consistent with the
systemic Mg2� state influencing the urinary UMOD secretion
and point toward a feedback mechanism targeting systemic
Mg2� homeostasis.

Discussion

The majority of filtered Mg2� is absorbed in the TAL (50 –
70%) in a paracellular fashion due to the lumen-positive poten-
tial that is created by electroneutral absorption of Na�, K�, and
2 Cl� via NKCC2 and subsequent K� secretion through ROMK
back into the lumen (26). UMOD has been shown to up-regu-
late NKCC2 and ROMK and is therefore thought to contribute
to Mg2� absorption in the TAL (44, 45, 69, 70).

Our data are consistent with an additional role for UMOD in
Mg2� absorption in the DCT. This is the first study to show that
UMOD from the extracellular space can directly stimulate the
cell-surface abundance of TRPM6 channels and thus enhances
TRPM6 current density. In our model, UMOD is secreted from
the TAL and up-regulates TRPM6 channels in the DCT from
the urinary space by forming a carbohydrate lattice with a newly
identified TRPM6 N-glycan (Fig. 8). Lattice formation requires
galectin-1 and interferes with TRPM6 endocytosis, thereby
increasing the TRPM6 cell-surface abundance and allowing for
enhanced tubular Mg2� absorption to compensate for low-
Mg2� states.

Published data on urinary Mg2� excretion in Umod�/� mice
has been ambiguous. Mo et al. (43) showed no increase in uri-
nary Mg2� excretion in 2–3-month-old Umod�/� mice, but
Liu et al. (71) described increased urinary Mg2� excretion at
5– 8 months of age. However, in a recent publication, the same
group reports high urinary Mg2� excretion in 1-month-old
Umod�/� mice and a lower degree of urinary Mg2� wasting in
12-month-old Umod�/� animals (46). It is possible that these
results are conflicting because urinary Mg2� concentration was
assessed rather than a measurement of urinary Mg2� excretion
(e.g. correction for urinary volume and collection time). Our
results, which were performed at 5 and 9 months of age, show
higher urinary Mg2� and Ca2� excretion (e.g. corrected for vol-
ume and time) in the Umod�/� mice compared with control
mice (Fig. 1A, Table 1, and Table S1).

UMOD has been shown to up-regulate NKCC2 and ROMK
in the TAL (44, 45, 69, 70). Mutig et al. (45) and Liu et al. (46)
also demonstrated a blunted response in Umod�/� mice after
furosemide treatment, supporting the hypothesis of a defective
TAL in Umod�/� mice. Therefore, our finding that 9-month-
old WT and Umod�/� mice responded in a similar fashion to
furosemide was unexpected (Table S1 and Table 1). We consid-
ered that there may be a different response to furosemide de-
pendent on the age of the Umod�/� mice, given the fact that
most published furosemide challenges in Umod�/� mice were
performed at 3 months (45, 69, 70). However, 5- and 9-month-

Figure 2. UMOD enhances TRPM6 whole-cell current density and TRPM6 apical cell-surface abundance but not TRPM6 mRNA or protein. A, we
compared TRPM6 mRNA expression in HEK293 cells when co-transfected with control or UMOD using quantitative RT-PCR. TRPM6 mRNA expression was not
increased with UMOD co-transfection. Experiment was repeated in triplicate. B, Western blotting of TRPM6 protein expression at 48 h after co-transfection with
control or UMOD. TRPM6 protein was not increased when co-transfected with UMOD. TRPM6 protein band density relative to �-actin is shown below. The
experiment was repeated in triplicate. C, in HEK293 cells, co-expression of TRPM6-GFP with WT UMOD for 48 h increased the TRPM6 current density compared
with control (196 � 22 pA/pF versus 42 � 13 pA/pF, p � 0.0001). TRPM6 current density (current normalized to cell-surface area, pA/pF; mean � S.D. (error bars))
was evoked by test pulses from �100 to 100 mV, with �20-mV increments for 400 ms. The steady-state current–voltage (I-V) relation curve showed charac-
teristic outwardly rectifying TRPM6 currents in cells co-transfected with TRPM6 with control versus UMOD (n � 5 for each group). The experiment was
performed in triplicate. D, scatter plot shows TRPM6 current density (pA/pF) at �100 mV co-transfected with control or UMOD. E, UMOD effect on TRPM6
cell-surface abundance measured by biotinylation assay. TRPM6 abundance at plasma membrane (top) and total lysates (middle) were analyzed by immuno-
blot analysis using antibody against TRPM6. The antibody did not detect protein signal in the untransfected cells (data not shown). For detection of TRPM6 in
the surface (biotinylated TRPM6, top row) and lysate (lysate TRPM6, second row), 250 and 20 �g of protein were separated by SDS-gel electrophoresis,
respectively. The experiment was repeated in duplicate. N/A, not applicable.
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old WT and Umod�/� animals showed a very similar response
to furosemide, thus limiting the possibility of an age-dependent
furosemide response in Umod�/� mice. A number of other
experimental variables may account for the observed differ-
ences to furosemide in Umod�/� mice, such as genetic back-
ground, different Umod�/� mouse model, mouse strain, furo-
semide dose, urine collection method, and correction for urine
volume or body weight. Consistent with our previous data on
UMOD-mediated enhancement of TRPV5 cell- surface abun-
dance, the 9-month-old Umod�/� mice had hypercalciuria,
and there was a clear trend to higher urinary calcium excretion
in the 5-month-old Umod�/� animals (Table 1 and Table S1)
(52). Including our other experiments, our results are consis-
tent with an effect of UMOD in the DCT. Finally, a recent pub-
lication describes a smaller degree (10 –15% compared with
TAL) of UMOD secretion in the DCT (72).

Galectin-1 expression was demonstrated in the urogenital
tract of mice and humans, and it is a key player for Klotho-
mediated modification of ROMK and TRPV5 cell-surface
abundance (63, 73–75). Klotho functions as a �-2,6-siali-
dase, thereby removing specific terminal sialic acid residues
from the channel’s N-glycan. Galectin-1 then binds to the
underlying disaccharide GlcNAc, thus contributing to lattice
formation. Galectin-1 could either stabilize the UMOD
mulitmerization or promote the interaction between
TRPM6 and UMOD. Similar regulation by urinary proteins
was described for other apical tubular ion channels, such as
ROMK and TRPV5, by UMOD, MUC1, tissue kallikrein, and
Klotho (52, 59, 63, 73, 76).

UMOD is the most abundant protein in urine. Our estimated
EC50 for UMOD-mediated up-regulation of TRPM6 current
density is 10-fold higher than for TRPV5, but significantly
lower than the estimated UMOD concentration in the DCT,
suggesting near-maximally active TRPM6 channels in most
conditions (52). We think that our results are more within
the dynamic range of UMOD concentrations, as UMOD has
to multimerize via the ZP domains (Figs. 4 and 8) to increase
TRPM6 current density, and because we expect the effective
concentration of macromolecular UMOD to be lower than
that of UMOD monomers.

Interestingly, although serum Mg2� concentration in
Umod�/� mice was not appreciably changed, several genes
promoting Mg2� absorption were up-regulated (Fig. 1C).
Measurement of serum Mg2� is known to be an insensitive
marker of systemic Mg2� status, as only about 1% of total body
Mg2� is in the extracellular fluid, with the remainder equally
distributed in bone and soft tissue (77–80). Our results are sim-
ilar to those of another study showing up-regulated colonic
Trpm6 mRNA but no effect on serum Mg2� concentration in
mice fed omeprazole, a proton pump inhibitor that causes
Mg2� deficiency, or a low-Mg2� diet (81, 82). A recent publi-
cation (38) suggested that urinary Mg2� excretion in humans
may be a better marker of disturbed Mg2� homeostasis. One
may wonder how the Umod�/� mice maintain a normal serum

Figure 3. UMOD enhances TRPM6 current density from the extracellular
space in a dose-dependent fashion. A, HEK293 cells were transfected with
control, WT UMOD, or C150S UMOD (a human UMOD mutation that reduces
urinary UMOD secretion as previously shown by us (52)). 48 h later, the super-
natant containing control, WT UMOD, or C150S UMOD was collected. The
harvested supernatant was placed on separately cultured cells transfected
with TRPM6 and cultured overnight. The scatter plot shows TRPM6 current
density at �100 mV for supernatant containing control, WT UMOD, and
C150S UMOD (75 � 21 versus 216 � 47 versus 56 � 42 pA/pF, p � 0.001) (n �
5 for each group). B, increasing concentrations of purified UMOD (final con-
centration in the medium is shown) enhanced TRPM6 current density in a
dose-dependent fashion. TRPM6-transfected cells were treated with purified
UMOD overnight. C, effect of anti-UMOD antibody (anti-UMOD Ab) on TRPM6
up-regulation by purified UMOD. Anti-UMOD antibody was added to culture

medium of cells transfected with TRPM6 and treated with control or purified
UMOD (n � 5 for each group). All experiments in Fig. 3 were performed in
triplicate. Error bars, S.D.
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Mg2� concentration despite increased urinary Mg2� excretion.
Probably, there are redundant renal and nonrenal mechanisms
to ensure Mg2� homeostasis in Umod�/� mice, as Trpm6 is

also localized in the cecum and colon (34, 81). Therefore, frank
hypomagnesemia may only occur with the challenge of a low-
Mg2� diet. Mg2� depletion alone was reported to enhance
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important for proper secretion of UMOD; four (I–IV) EGF-like domains, which are crucial for protein–protein interaction; a D8C domain, which is enriched
with cysteine residues and of unknown significance; and the ZP domain, which is required for UMOD multimerization. For UMOD secreted into urine, all
three protein domains could be important, as UMOD is cleaved at the C terminus between the ZP domain and the GPI anchor. We created deletion
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model for the protein domains. B, co-transfection of TRPM6 and WT UMOD confirmed the up-regulation of TRPM6 current density in contrast to control
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was able to increase TRPM6 current density in a significant fashion. Protein expression of different plasmids was assayed by Western blotting and
titrated so that there was an equivalent amount of UMOD proteins in each condition (n � 5 for each group). The experiment was performed in duplicate.
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renal Trpm6, PV, and Hnf1b mRNA expression in WT mice
(34, 82). Increased mRNA gene expression of these genes points
toward a compensatory mechanism to cope with a low-Mg2�

state.
It is tempting to consider that some of the complications of

chronic hypomagnesemia could be due to TRPM6 dysregula-
tion caused by insufficient UMOD secretion in low-Mg2�

states. Remarkably, similar to hypomagnesemia, either low
serum or urinary UMOD concentrations have been associated
with a higher risk of cardiovascular disease, type 2 diabetes
mellitus, and nephrolithiasis (21, 83– 85). Interestingly, the
degree of UMOD secretion depends on specific SNPs in UMOD
and the UMOD promoter (44, 86, 87). Individuals carrying
SNPs resulting in a reduced baseline UMOD secretion may
have an impaired ability to respond appropriately to low-Mg2�

states with increased urinary UMOD secretion. This would

expose carriers of such UMOD SNPs to chronic, mild to mod-
erate hypomagnesemia and subsequent complications.

Experimental procedures

Materials and DNA constructs

UMOD purified from human urine was purchased from
SunnyLab (Sittingbourne, UK). The rabbit polyclonal anti-
GFP-peroxidase antibody was obtained from Invitrogen/
Molecular Probes, Inc. (Eugene, OR). Human TRPM6 was
cloned into the bicistronic vector pCINeo/IRES-GFP (32).
TRPM6 N787A was obtained from WT TRPM6 using the XL
site-directed mutagenesis kit from Agilent (Santa Clara,
CA). To test the predicted N787A TRPM6 N-glycan site, WT
and N787A TRPM6 were subcloned into pcDNA DEST53,
which contains a GFP tag (Thermo Fisher Scientific). Protein
G immobilized on agarose, mouse monoclonal anti-HA anti-
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is shown above each panel (CoIP). Immunoprecipitated proteins were identified using Western blotting (WB) and specific antibodies as shown on the right. Cell lysate
is shown at the left of each immunoprecipitation experiment. 400 �g of lysate was used for immunoprecipitation, and 4 �g of protein was loaded for input. TRPM6 is
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antibodies as shown on the right. 400 �g of lysate was used for immunoprecipitation, and 8 �g of protein was loaded for input. Cell lysate is shown at the left of each
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other. Therefore, they are separated by white bars. Both experiments were performed in duplicate.
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body, and mouse monoclonal anti-�-actin-peroxidase anti-
body were purchased from Sigma. Cappel antibody against
human uromucoid (Tamm–Horsfall glycoprotein) from goat
was purchased from MP Biochemicals (Solon, OH). Donkey
antibody against goat IgG was obtained from Santa Cruz
Biotechnology, Inc. (Dallas, TX).

Cell culture and transfection

HEK293 cells were cultured as described (88). Cells were tran-
siently transfected using Lipofectamine 2000� reagent (Thermo
Fisher Scientific) with plasmids (2 �g per well in a 6-well plate)
containing GFP-TRPM6, WT UMOD, or C150S mutant UMOD

Figure 6. UMOD up-regulates TRPM6 together with endogenous galectin-1 by impairing dynamin-2– dependent TRPM6 endocytosis. A, UMOD
increases TRPM6 current density by impairing dynamin-2– dependent endocytosis of the channel. Whereas cells transfected with WT dynamin-2
showed the expected up-regulation of TRPM6 current density with UMOD (for WT dynamin-2: 87 � 13 pA/pF with control versus 254 � 40 pA/pF with
UMOD, p � 0.0001), cells transfected with DN dynamin-2 displayed increased TRPM6 current density at baseline, indicating constitutive TRPM6
endocytosis by dynamin-2. In these cells, no further increase of TRPM6 activity was found with UMOD (for DN dynamin-2: 246 � 13 pA/pF with control
versus 265 � 31 pA/pF with UMOD, not significant (n.s.)), indicating that TRPM6 up-regulation by UMOD occurs by impairing dynamin-2– dependent
endocytosis. B, confirmation of UMOD up-regulation of TRPM6 by impairing dynamin-dependent TRPM6 endocytosis using dynasore. Using the
dynamin GTPase inhibitor dynasore, which blocks dynamin-dependent endocytosis, we confirmed the lack of UMOD effect on TRPM6 current density
(no dynasore: 86 � 8 pA/pF with control versus 245 � 29 pA/pF with UMOD, p � 0.0001; plus dynasore: 238 � 30 pA/pF with control versus 267 � 20
pA/pF with UMOD, not significant). C, galectin-3 is not required for TRPM6 up-regulation by UMOD. Knockdown of galectin-3 using siRNA (performed
as previously described by us (59)) did not impair the response of TRPM6 current density to UMOD (control siRNA: 69 � 21 pA/pF with control versus
207 � 33 pA/pF with UMOD, p � 0.001; galectin-3 siRNA: 69 � 38 pA/pF with control versus 235 � 14 pA/pF with UMOD, p � 0.001). D, knockdown of
galectin-1 (performed as previously described by us (59)) abrogates up-regulation of TRPM6 current density by UMOD (control siRNA: 47 � 23 pA/pF
with control versus 223 � 37 pA/pF with UMOD, p � 0.01; galectin-1 siRNA: 34 � 11 pA/pF with control versus 39 � 14 pA/pF with UMOD, not significant).
Efficiency of siRNA for galectin-1 and galectin-3 was shown previously (59). E, the predicted Asn-787 N-glycan of TRPM6 is required for up-regulation by
UMOD. WT TRPM6 responded to UMOD co-transfection (relative current WT TRPM6: 0.92 � 0.29 with control versus 1.88 � 0.78 with UMOD, p � 0.05),
whereas N-glycan– deficient (N787A) TRPM6 did not react to UMOD stimulation (relative current N787A TRPM6: 1 � 0.42 with control versus 0.97 � 0.45
with UMOD, not significant). For experiments shown in A–D, sample size was n � 5 for each group, and experiments were performed in triplicate. For the
experiment shown in E, sample size was n � 8 for each group, and the experiment was performed in triplicate. Error bars, S.D.
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and WT or dominant-negative (K44A) rat dynamin II or control vec-
tors, as indicated, in each experiment. In each experiment, the total
amount of DNA for transfection was balanced by using empty vec-
tors. For galectin-1 and galectin-3 siRNA (Dharmacon, Lafayette,
CO) transfections, we utilized 40 and 20 nmol, respectively (59).

Quantitative RT-PCR studies

Total RNA was isolated from kidneys from WT and
Umod�/� mice using miRNeasy Mini kits from Qiagen (Ger-

mantown, MD). First-strand cDNA was synthesized by an
iScriptTM cDNA synthesis kit (Bio-Rad). Relative transcript
expression was measured by quantitative real-time PCR
using iTaqTM Universal SYBR� Green Supermix (Bio-Rad).
Samples were run on a CFX96 real-time PCR detection sys-
tem (Bio-Rad). 18S RNA was used to normalize for expres-
sion of mRNA. Primers for quantitative RT-PCR were
described previously (82). Data were analyzed using the Bio-
Rad CXF software.

Figure 7. Urinary Umod is increased in mice fed a low-Mg2� diet. A, mice fed with low-Mg2� diet for 2 weeks excreted more urinary UMOD than animals fed
with a regular diet. Studied urine volume was normalized to urine creatinine (n � 6 for each group). B, comparison of UMOD protein band density in WT animals
fed a regular diet and low-Mg2� diet. Relative urinary UMOD secretion was significantly higher in WT mice provided a low-Mg2� diet. The results are
representative of two experiments. Error bars, S.D.

Figure 8. Model of TRPM6 regulation by UMOD. UMOD is secreted in the TAL. Urinary secretion of UMOD is enhanced in low-Mg2� states. UMOD forms
multimers through the ZP domains and interacts through a predicted N-glycan with TRPM6. Galectin-1 either stabilizes UMOD multimerization or UMOD–
TRPM6 interaction, thus promoting lattice formation. The latter impairs dynamin-2– dependent endocytosis of TRPM6, thereby increasing the TRPM6 cell-
surface abundance. This allows the nephron to compensate for low-Mg2� states.
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Whole-cell patch-clamp recording

In brief, whole-cell patch clamp recording, co-immunopre-
cipitation, and immunofluorescent studies were performed in a
similar fashion as outlined previously (52, 59). Approximately
48 h after transfection, cells were dissociated and placed in a
chamber for ruptured whole-cell recordings as described pre-
viously. Transfected cells were identified for recording by their
GFP fluorescence. TRPM6 bath solution contained 140 mM

NaCl, 5 mM CsCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM glucose, 10
mM HEPES (pH 7.4 with NaOH). The pipette TRPM6 solution
contained 120 mM CsCl, 10 mM NaCl, 1 mM HEDTA, and 10
mM HEPES (pH 7.2 with CsOH). Whole-cell patch clamp
pipettes were pulled from borosilicate glass (Dagan Corp., Min-
neapolis, MN) and had resistance between 1.5 and 3 megaohms.
The cell membrane capacitance and series resistance were
monitored and compensated (�75%) electronically using an
Axopatch 200B amplifier (Axon Instruments, Foster City, CA).
The voltage protocol consists of a 0-mV holding potential and
successive voltage sets (400-ms duration) from �100 to �100
mV in �20 increments. Current densities were obtained by
normalizing current amplitude (obtained at �100 mV) to cell
capacitance. Data acquisition was performed using ClampX
version 9.2 software (Axon Instruments). Currents were low-
pass filtered at 2 kHz using an 8-pole Bessel filter in the clamp
amplifier, sampled every 0.1 ms (10 kHz) with the Digidata-
1440 interface, and stored directly to a computer hard drive.

Surface biotinylation assay

Biotinylation studies were performed as outlined previously
(52). Specifically, for biotinylation of cell-surface TRPM6, cells
were washed with ice-cold PBS and incubated with 0.75 ml of
PBS containing 0.75 mg/ml EZ-Link-NHS-SS-biotin (Thermo
Scientific, Rockford, IL) for 1 h at 4 °C. After being quenched
with glycine (100 mM), cells were lysed in radioimmune precip-
itation buffer (150 mM NaCl, 50 mM Tris-HCl, 5 mM EDTA, 1%
(v/v) Triton X-100, 0.5% deoxycholate, and 0.1% (w/v) SDS)
containing protease inhibitor mixture (Roche Applied Science).
Biotinylated proteins were precipitated by streptavidin-agarose
beads (Thermo Scientific). Beads were subsequently washed
four times with PBS containing 1% (v/v) Triton X-100. Biotin-
labeled proteins were eluted in sample buffer, heated at 50 °C
for 5 min, separated by SDS-PAGE electrophoresis, and trans-
ferred to nitrocellulose membranes for Western blotting.
TRPM6 proteins on the membrane were detected using a
mouse monoclonal anti-TRPM6 (human) antibody (Santa
Cruz Biotechnology). Biotinylation experiments were per-
formed three times with similar results.

Co-immunoprecipitation and immunoblotting

HEK293 cells were co-transfected with HA-tagged UMOD
and either TRPM6 or GFP-tagged TRPM6 using Lipofectamine
2000 and incubated for 48 h at 37 °C. Cells were collected and
lysed using a needle syringe. The protein concentration in the
cell lysate was determined using a protein assay (DC Protein
Assay, Bio-Rad). Samples were adjusted to the same concentra-
tion with buffer. Samples were resolved on a 4 –20% gradient
gel and processed for immunoblotting using specific antibod-
ies. For immunoprecipitations, we incubated 700 �g of cell

lysate with 3 �g of anti-HA, anti-TRPM6, or anti-GFP antibod-
ies overnight at 4 °C. Species-specific anti-IgG (Santa Cruz Bio-
technology) was used as control. Antigen–antibody complex
was then loaded onto Protein G beads (GE Healthcare, Little
Chalfont, UK) by slow rotation overnight, washed, and eluted
with Laemmli sample buffer. Samples were denatured at 65 °C
for 10 min and subjected to SDS-PAGE and immunoblotting.
Antibodies against human TRPM6 (Santa Cruz Biotechnology)
and UMOD (MP Biochemicals, Solon, OH) were used for
Western blotting.

Immunofluorescent staining

Male WT mice were sacrificed at the age of 3 months. Anes-
thetized mice were perfused with 4% (w/v) paraformaldehyde
in PBS (pH 7.4). Kidneys were harvested and sectioned. Sec-
tions were blocked with 10% (v/v) donkey sera in PBS, and im-
munofluorescence was performed with guinea pig anti-Trpm6
antibody (1:50), mouse anti-calbindin-D28K (1:100), and rabbit
anti-Ncc (1:200; Millipore) overnight at 4 °C (34). Fluorescent
images were obtained using a Zeiss LSM510 confocal micro-
scope (Zeiss, Jena, Germany). All animal experiments were per-
formed in compliance with relevant laws and institutional
guidelines and were approved by the University of Texas South-
western Medical Center at Dallas Institutional Animal Care
and Use Committee.

Metabolic cage studies in mice

Urinary excretion of Mg2� was determined in 9-month-old
WT and Umod�/� mice on a 129/SeEv background (43). Ani-
mals were acclimated for 3 days in metabolic cages before
experiments. Daily urine volume was measured after bladder
massage (89). Urine Mg2� was analyzed by the University of
Texas Southwestern metabolic phenotyping core. For furo-
semide challenge and urinary UMOD secretion studies, see the
supporting information.

Furosemide challenge and urinary UMOD secretion in mice

Baseline 24-h urine collections were obtained. Complete
bladder emptying was ensured by bladder massage. Animals
were injected with a single dose of 15 mg/kg furosemide intra-
peritoneally (90). Urine was collected after 4 h with bladder
massage (89). Urine output, sodium, potassium, calcium, and
magnesium were analyzed by the University of Texas South-
western metabolic phenotyping core. Furosemide response was
assessed individually for every mouse by determining the
hourly excretion of urine volume and electrolytes before and
after furosemide treatment. To calculate the furosemide
response, urinary data (e.g. volume and electrolyte excretion)
obtained before and 4 h after treatment were corrected for col-
lection time. For every individual animal, data points obtained
after furosemide treatment were divided by the data points
before treatment and multiplied by 100. To study the urinary
UMOD secretion in mice, WT mice were fed a low (50 ppm)-
Mg2� diet (Teklad, TD.02073) for 2 weeks followed by 2 weeks
of a regular diet. At the end of each dietary treatment, urine was
collected as outlined above. Urine creatinine was determined
by the University of Texas Southwestern O’Brien Kidney Cen-
ter. Urine volume was normalized for urinary creatinine, and
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UMOD secretion was studied in a semiquantitative fashion by
Western blotting using anti-Thp (G-20) antibody (1:200) from
Santa Cruz Biotechnology.

Statistical analysis

Student’s t tests were used to test whether there are signifi-
cant differences in the continuous outcomes between two study
groups. For multiple comparisons, one-way analysis of variance
studies followed by the Student-Newman-Keuls method,
allowing for pairwise multiple comparisons, were performed.
Data are reported as means � S.D. p � 0.05 was considered
statistically significant.
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Pérez, J. M., Medina-Urrutia, A., Jorge-Galarza, E., Juárez-Rojas, J. G., and
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